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ABSTRACT In this paper, we compared the existing routing algorithms in the context of Software Defined
Networking (SDN ), where a logically centralized controller acquires the global view of the network, selects
the paths using a routing algorithm, and installs the determined routing rules to the switches. We divided
existing routing algorithms (RA) into three categories: RA with static link cost (RA-SLC), RA with dynamic
link cost (RA-DLC), and RA with dynamic link cost and minimum interference (RA-DLCMI ). We then
implemented various routing algorithms from each category using RYU SDN controller and compared
their performances on Mininet emulator. For the network state information (NSI) needed for the routing
algorithms, we first consider the idealistic case where the accurate NSI is available, as assumed in the
literature. However, since this is not possible in practice, we also considered the practical case where the
controller periodically collects the NSI with some inaccuracy. In our experiments, we observed that while
RA-DLC and RA-DLCMI give similar performance, RA-SLC falls behind of RA-DLC and RA-DLCMI in
the number of accepted flows and total throughput. We also showed that the performance of every algorithm
is adversely affected from the inaccuracy of NSI, calling for further research on developing effective NSI
collection methods.

INDEX TERMS Routing algorithms, network state information accuracy, software defined networking
(SDN), traffic engineering.

I. INTRODUCTION
Traditional IP Network was originally designed as a simple
but highly fault-tolerant distributed system that can provide
best-effort communications services in a trusted environment.
However, these key assumptions behind the original design
have been changing in the real-world situations, requiring
the Internet to have many new features. Unfortunately, it was
almost impossible to replace or redesign the underlying IP
architecture [1]–[3]. As a result, many new features were
simply patched on top of the original architecture, resulting in
one of the largest and complex distributed system to manage.

To simplify network management while creating a flex-
ible architecture that can seamlessly integrate new fea-
tures into the network, researchers have introduced a recent
model called Software-Defined Networking (SDN) [4], [5].
In essence, SDN separates the control plane from data plane,
and builds up a logically centralized controller. This logically
centralized controller is responsible for obtaining the global

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhaojun Li .

view of the underlying network and making all control plane
decisions (e.g., which paths to use) [6]–[8]. The controller
then simply conveys these decisions to the underlying routers
and switches via a well-defined API such as OpenFlow [9].
This centralized control plane greatly simplifies network con-
figuration and new policy installation, particularlywhen com-
pared to the traditional distributed control plane where each
router/switch has to figure out what to do through exchanging
massages with each other.

Realizing the potential benefits of SDN, the industry has
also shown significant interest in developing and deploying
SDN-based technologies. For example, many commercial
switches/routers have now support for OpenFlow API [6].
An OpenFlow switch is simply a forwarding element (such
as a router, switch, firewall, etc.) that forwards incoming
packets based on the routing decisions that are determined
and installed by SDN controllers [1], [6], [7].

Efficiently routing the given flows through the underlying
network is one of the important objections in SDN. To achieve
this, the centralized controller needs to efficiently perform
the following three tasks: (i) acquiring the global view of
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the underlying network as accurately as possible, (ii) com-
puting the best paths that can meet the demands of the given
flows while highly utilizing the underlying resources, and
(iii) installing the determined routing rules to the forwarding
elements (e.g., switches and/or routers) in data plane. Since
an open communication protocol (e.g., OpenFlow [7]) is used
in order to operate the last task, we especially concentrate
on the first two tasks. Accordingly, we implemented sev-
eral existing routing algorithms and compared their perfor-
mance. For the implementation and testing, we used RYU
controller [10] andMininet emulator [11]. We performed our
experiments under two different network topologies while
obtaining network state information using both the idealistic
case where we maintain accurate NSI in the controller and
practical case where the controller periodically collects NSI
and has some inaccuracies.

Various surveys have focused on Quality of Service (QoS)
routing algorithms under different network applications and
settings. For example, surveys related to multi-cast routing
algorithms that aim at finding paths from one source to
multiple destinations have been studied in [12]–[15]. Multi-
path routing algorithms have been studied in [16]. Several
other surveys have focused on routing algorithms in wireless
networks [17]–[22]. A recent survey in [23] has provided
a detailed description of various QoS routing algorithms
while complementing several prior surveys focusing on gen-
eral QoS routing and its challenges [24]–[26]. The authors
in [23] have especially focused on delay constrained rout-
ing algorithms and compared their performance. In contrast,
we mainly focus on QoS routing algorithms that use available
bandwidth (or utilization) as cost metrics. All the above
mentioned surveys have been assuming that accurate network
state information (NSI) is available. However, collecting NSI
is not an easy task as we have presented in [27]. Accordingly,
in this paper, we also considered the periodic NSI collection
method with different intervals and evaluate how the routing
algorithms perform under different level of inaccuracies in
the acquired NSI.

The existing routing algorithms use either static link cost
(e.g., hop count, distance, link capacity) or dynamic link
cost (e.g., available link capacity, link utilization). To fur-
ther improve the routing algorithms using dynamic link cost,
researchers have considered additional metrics (e.g., num-
ber of flows on a link) to minimize the interference among
the flows. Correspondingly, we grouped the existing routing
algorithms under three classes and especially implemented
the followings:
• RA-SLC: Routing Algorithms with Static Link Cost
include Minimum Hop Algorithm (MHA), Shortest
Path Algorithm (SP) and Widest Shortest Path Algo-
rithm (WSP) [28]–[30].

• RA-DLC: Routing Algorithms with Dynamic Link Cost
include Constraint Shortest Path First (i.e., Dynamic
Shortest Path (DSP)), Dynamic Widest-Shortest Path
Algorithm (DWSP).

• RA-DLCMI: Routing Algorithms with Dynamic Link
Cost and Minimum Interference include Minimum
Interference Routing Algorithm (MIRA), the Least
Interference Optimization Algorithm (LIOA) and
the Improved Least Interference Routing Algorithm
(ILIOA) [30]–[33].

All of the above mentioned routing algorithms have been
assuming that the accurate network state information (NSI) is
available in the controller. In the case of a single controller,
we will try to mimic this assumption by updating the NSI at
the controller as we install new flows, which we call a shadow
topology. However, in practice, the controllers have to query
NSI from the switches because of the background traffic and
multiple controllers that may install rules for different flows.
As we discuss later, obtaining accurate NSI in such practical
scenarios is a challenging issue [27], [34], [35] and negatively
affects the performance of every routing algorithm, calling for
further research.

In our experiments, RA-DLC and RA-DLCMI outperform
RA-SLC as we expected. We also observed that the existing
algorithms using dynamic link cost do not have significant
difference between each other under both accurate NSI and
periodic NSI. However, since periodically collected NSI is
not accurate, more flows have been accepted by all algo-
rithms which caused overload on the network, resulting in
more packet loss for every flow. Obviously, even though total
throughput is high, packet loss is not acceptable for the sake
of Quality of Service (QoS). In Section V, we will discuss
more results in detail.

The remainder of this paper is structured as follows.
We first give detailed background information related to
SDN in Section II. In Section III, we describe existing rout-
ing algorithms and give their computational complexities.
In Section IV, we discuss how we mimic the availability of
accurate NSI in the controller and how NSI is periodically
collected in practice. In Section V, we explain our experi-
mentation set up and discuss our results. Finally, we present
our conclusions and some directions for future research in
Section VI.

II. BACKGROUND OF SOFTWARE
DEFINED NETWORKING
A. WHAT IS SOFTWARE DEFINED NETWORKING?
Software-Defined Networking is a new network architecture
where the network’s control logic (the Control Plane) and
forwarding logic (the Data Plane) are decoupled [1], [36].
After this separation, the central controller becomes the brain
of the network and makes all the decisions for the routers and
switches that become simple forwarding devices. As illus-
trated in Figure 1, this is in sharp contrast to the traditional
IP network where the control logic and forwarding logic are
coupled and distributed [37].

The main components and the general architecture of SDN
are shown in Figure 2. From this figure, we can see that SDN
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FIGURE 1. Comparing traditional network and SDN.

FIGURE 2. Software defined network architecture.

has the following four key innovations over the traditional
networks:
• SDN removes the control logic from network devices
(e.g., routers and switches). So the network devices have
become simple forwarding elements.

• SDN puts control logic in an external and central
unit called SDN controller or Network Operating
System (NOS), which is a software that runs on a
server. It obtains the global view of the network and
make necessary routing decisions for the simple for-
warding devices [38].

• SDN makes routing decisions per flow1 while tradi-
tional IP routing is destination based. SDN then places
identical policies on the forwarding devices in the deter-
mined path so that each packet of the flow receives
consistent services [40]. This flow-based programming
capability of SDN provides extraordinary flexibility in
managing the network [7].

• SDN makes it easy to develop several new services by
running new applications on top of SDN controller. Such
applications simply get the abstract network view (ANV )
from the SDN controller. Upon making the necessary
policy decisions, they interact with the underlying data
plane through SDN controller that maps higher-level

1A flow can be defined as a sequence of packets from a source to a
destination [39].

FIGURE 3. Centralized controller model.

policy decisions to lower-level forwarding decisions.
This is considered as the most important innovation
of SDN.

B. CONTROLLERS IN SDN
In this section, we first explain three control models of SDN :
Centralized, Hierarchical, and Flat.
CONTROL MODELS OF SDN:
• Centralized
Control plane is initially created based on a central-
ized solution where one controller as seen in Figure 3
obtains the global view of the network and makes all
the control decisions. While this design could be accept-
able in small scale networks, it would have significant
drawbacks as it creates a single point of failure and
performance bottleneck for the network. To avoid single
point of failure, we can use backup controllers. As a
matter of fact, to be able to backup the state information
at another controller, OpenFlow allows the connections
from multiple controllers to a switch [7], [41]. However,
we still need to deal with the performance bottleneck
problem and other limitations of a single centralized
controller. To overcome these limitations, researchers
have proposed hierarchical and flat control models that
we discuss next.

• Hierarchical
In hierarchical approach, there are at least two levels of
control as seen in Figure 4. At the bottom level, we have
multiple local controllers while having a centralized
controller at the top level. Local controllers respond
faster and provide data-path services for the requests that
need only local network state information. They redirect
only the requests that require the global network view
to the centralized controller [42]. This approach reduces
overload on the centralized controller; but it still has the
single failure of point problem [43].

• Flat
In Flat approach, there are many physically distributed
controllers that operate in a logically centralized manner
as in Figure 5. These controllers use their local view
to set up paths through their own domain. However,
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FIGURE 4. Hierarchical controller model.

FIGURE 5. Flat controller model.

they also exchange their information with each other
to deal with paths involving multiple domains. Accord-
ingly, this approach has an advantage as it decreases the
protocol overhead when compared to single centralized
controller [44]–[46].

Controller Placement: Distributed mode of control avoids
the single point of failure and provides performance improve-
ments. However, it introduces several new challenges. For
example, the number and placement of controllers are very
important design issues and can significantly impact the
performance. The number of SDN controller is critical in
order to provide reliable network operation. Placement of
these controllers is very important for network objectives
such as inter-controller latency, reliability, fault tolerance,
switch-controller latency, application requirements and path
reliability [41], [43], [47]–[51].

The SDN placement problem was firstly presented in [47].
In [47], the authors investigated howmany controllers needed
and where to place them with respect to latency constraint
and the network topology. They showed that the latency
from every node to the controller can satisfy response time
goals of existing applications in many medium-size networks
with a single controller [52]. In [53], the authors studied
the same problem with additional metrics such as load bal-
ancing among controllers and inter-controller latency. After
discussing different resilience aspects, it was observed that
there is not only one solution for different metrics, but a
trade-off between them. In [54], authors provide a tool set

which is very fast in facilitating the analysis and optimiza-
tion of the controller placement in small and medium SDN
networks under dynamic conditions. However, in the context
of SDN based WANs, dynamically changing network state
information dramatically affects performance of the network.
Thus, the controller placement problem comes into promi-
nence in order to control the dynamic changes in the WANs.
So faster heuristic approaches are presented in [55]. Yet, even
if heuristic approaches have faster computation time, they
could sacrifice accuracy or vice-versa. Thus, the controller
placement problem is still an open research challenge in
SDN -based WANs.

C. ROUTING FRAMEWORK IN SDN
There are three common tasks for routing in SDN. The SDN
controller needs to (i) discover network topology and obtain
current statistics of links, (ii) compute ideal paths for the
given flows, and (iii) use OpenFlow protocol to install for-
warding rules on the SDN switches over the computed path.

After briefly discussing these tasks, we mainly concen-
trate on the tasks (i) and (ii) in the remainder of the paper.
We examine the performance of various routing algorithms
with two different NSI collection methods.

1) ACQUIRING THE GLOBAL VIEW OF THE NETWORK
In SDN, unlike classic routing protocols (e.g., OSPF), for-
warding elements do not have any information about the
network because the management plane is removed from
them to a remote controller. Therefore, to perform routing
decisions and compute new paths, the controller needs to
discover network topology and accurately acquire the link
state information from the underlying forwarding elements
(e.g., routers and switches).

After the SDN controllers discover the network topology,
they query the underlying switches and obtain the link-state
information about each link. Using topology discovery pro-
tocols is sufficient for obtaining the static link state metrics
because they do not change over time [8], [46]. On the
other hand, since the dynamic link-state metrics (e.g., avail-
able bandwidth, utilization, delay, jitter) frequently change,
the controllers need to periodically query the state informa-
tion of each link to retain accurate NSI. In order to meet
the flow demands and avoid congestion, we need to better
utilize underlying network resources. Therefore, we have to
obtain high accuracy in the link-state information. To do
that, the controllers need to query the switches at very short
intervals which causes significant overhead.

So achieving the accurate acquisition of the dynamic link-
state information while minimizing the overhead on the con-
troller and in the network becomes one of the challenging
issues in SDN. To address this issue, further research is
needed. In this study, however, we focus on the existing
algorithms and evaluate their performance under idealistic
case where we assume that the accurate NSI is available
and practical case where the controller collects NSI periodi-
cally. We will try to mimic the availability of accurate state
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information by maintaining a shadow topology where the
controller updates NSI after each path installation. Unfor-
tunately, this method cannot be implemented in case of
the involvement of multiple controllers, elastic background
traffic, and excessive delays, etc. In such cases, the con-
troller must periodically query each node and obtain the
link-state information. Therefore, we will also evaluate the
performance of the existing algorithms with periodic link-
state collection method. We collect NSI with three different
intervals and show their impacts on accuracy and the routing
algorithms.

We discuss collection mechanisms and the details of our
link-state representation in Section IV.

2) COMPUTING FEASIBLE AND/OR OPTIMAL PATHS
Using the NSI obtained in the first step, the SDN controller
executes a routing algorithm to compute an ideal path for
a given flow. We will discuss the routing algorithms in
Section III.

All the existing routing algorithms need the underlyingNSI
to be represented as a directed graph G = (V ,E), where V is
the set of nodes/switches and E is the set of links. Let n = |V |
be the number of nodes and m = |E| be the number of edges
in the network. Each link (u, v) ∈ E is has a link cost denoted
by C(u, v). This cost is computed with respect to the acquired
static or dynamic link-state information. Actually, as we
further present in Section III, the difference between most
of the existing algorithms is in how they determine C(u, v)
metric. Most of the existing routing algorithms generally use
Dijkstra’s shortest path algorithm or its modified versions to
compute a path based on the determined link cost. In some
algorithms, the links that do not meet the requested demands
are eliminated before computing the paths.

3) INSTALLING THE FORWARDING RULES
After computing a path, the next step is to install the deter-
mined rules on each switch in the computed path. The SDN
controller uses OpenFlow to install these rules on the for-
warding table of each switch. The path computation and the
rule installment process can be done in proactive, reactive,
and hybrid modes. These three modes of operations can be
described as follows:
Reactive Mode:

When a switch receives a request that does not
match with the existing rules in its forwarding table,
it considers this as a new flow and creates an Open
Flow Protocol (OFP) packet-in message for the first
packet of the new flow. It then sends this mes-
sage to the controller for a decision. Accordingly,
the controller creates a rule and sends it to the switch
via OpenFlow. The switch uses this rule to for-
ward future packets. Even though this approach uses
existing flow table memory more efficiently, unfor-
tunately, it causes performance delay because of
continuous communication between forwarding ele-
ments and the controller for the first packet of each

new flow. This delay can be ignored in small scale
networks; but, it is a significant burden for geograph-
ically remote controllers, short-lived flows, general
purpose CPU and/or vSwitches [41], [56]–[60].

Proactive Mode:
The SDN controller determines forwarding rules for
possible traffic in advance and installs the necessary
rules to the switches ahead of time. So when a new
flow arrives, the switches can forward its packets
without consulting with the controller. Accordingly,
the switches forward all the packets at line rate [41],
[56]–[58], [61], [62]. Moreover, since all flows find
a match in the switches and avoid consultation
with the controller, this mode significantly reduces
the burden on the controller. The disadvantage of
this approach is that the flow tables should be
coarse-grained because of scalability issues. To meet
fine-grained control needs, we can use the hybrid
approach discussed next.

Hybrid Mode:
The controller and switches can use the combina-
tion of reactive and proactive modes. Accordingly,
we can get the flexibility of reactive mode in pro-
viding fine-grained control while benefiting from
proactive mode by eliminating delay and avoiding
significant burden on the controller. Based on the
network performance, the proactive mode can peri-
odically modify routes and flow tables to improve
performance [56]–[58].

Since we mainly evaluate the routing algorithms based
on their performance in finding the paths for given flows,
reactive mode is more suitable for our experiments. When a
new flow is seen, the source switch will inform the controller.
Accordingly, the controller will compute an appropriate path
and install it through the network.

III. EXISTING ROUTING ALGORITHMS
We partition the existing routing algorithms into three cate-
gories: RA-SLC (Routing Algorithms with Static Link Cost),
RA-DLC (Routing Algorithms withDynamic Link Cost), and
RA-DLCMI (Routing Algorithms with Dynamic Link Cost
and Minimum Interference).

With some exceptions, almost all these algorithms have the
same key steps. Therefore, before mentioning the details of
each algorithm, we like to present the generic framework in
Algorithm 1.
RA-SLC do not need the Steps 1 and 2 because they

do not include current link-state information to determine
cost metric for path computation. Therefore, RA-SLC use
static link cost metric that results in computing same path
for all the flows between a given pair of nodes (s, d).
Conversely, RA-DLC and RA-DLCMI consider current link
state information to determine cost metric for path computa-
tion. Accordingly, first two steps (especially, Step 1) become
very important components for the algorithms. Actually,

VOLUME 7, 2019 148633



E. Akin, T. Korkmaz: Comparison of RA With Static and Dynamic Link Cost in SDN

Algorithm 1Generic Framework for All Routing Algorithms
Input: Graph G(V ,E), vector BW which is the initial band-

width capacity of the links, vector RBW which is the
residual bandwidth of the links, vector I which is the
number of flows carried on the links, and a flow request
between the pair of nodes (s, d) with the required demand
of r(s,d).

Output: p, a path between the pair of nodes (s, d)
that satisfies the requested demand of r(s,d). That is
min{RBW(u,v)|(u, v) ∈ p} ≥ r(s,d).

1: Based on the proposed heuristic, compute link cost met-
ric c(u,v) for all edges (u, v) ∈ E .

2: Eliminate all links that have residual bandwidth less than
requested demand r(s,d).

3: Use Dijkstra’s algorithm to compute the shortest path p
between the pair of nodes (s, d).

4: SDN Controller installs the forwarding rules on the SDN
switches in p.

5: SDN switches route the packets of the requested demand
r(s,d) through path p.

6: SDN Controller periodically collects the updated link-
state information.

the key difference among all these algorithms is in how they
determine the dynamic link cost metric in Step 1. Step 2 is the
same for all algorithms; they simply eliminate the links which
do not have enough residual bandwidth capacity to carry the
requested demand. We should also note that Dynamic Widest
Shortest Path (DWSP) under RA-DLC computes a path with
the largest residual bandwidth in Step 3 by using a modified
version of Dijkstra’s algorithm that directly uses the residual
bandwidth of each link. So it does not need to use Step 1.

We consider the first two steps as the pre-computation
phase for RA-DLC and RA-DLCMI. For each new flow,
this pre-computation phase is performed because of changes
in the link-state information after installing the forwarding
rules for each previous flow. However, since acquiring the
up to date link-state information of all links is very costly,
the SDN controller periodically collects that information in
practice. However, as we examine later in detail, the periodic
collection causes some inaccuracy in the link-state informa-
tion and negatively affects the performance of the routing
algorithms.

The last four steps are the same for all RA-DLC,
RA-DLCMI, and RA-SLC. In Step 3, all algorithms use some
form of Dijkstra’s algorithm to compute the best path p
(e.g., least cost path, widest path) based on the dynamic
or static link cost obtained in Step 1. In step 4, the SDN
controller installs the necessary rules on the SDN switches
in the computed path p. Then, in Step 5, the packets of the
given flow are routed through p. Lastly, in Step 6, in order
to make routing decisions for the new flows, the SDN con-
troller obtains the dynamic link-state information (e.g., resid-
ual bandwidth) by periodically inquiring all switches in the
network.

In the next three subsections, We discuss the key assump-
tions and the ideas behind the aforementioned existing
routing algorithms that we categorized into three classes,
as shown in Table 1. Besides, we investigate the advantages
and disadvantages of each group of the routing algorithms
and summarize their key characteristics.

A. ROUTING ALGORITHMS WITH STATIC
LINK COST (RA-SLC)
For RA-SLC, the SDN controller determines the static link
cost (e.g., hop count, distance, 1/bandwidth) for each link
once while discovering the network topology. The SDN con-
troller does not need to obtain dynamic link-state informa-
tion (e.g., link utilization) because RA-SLC do not consider
changes in link-state information.

Clearly, since the SDN controller does not need to peri-
odically collect current link-state information or re-compute
the link cost with respect to the current link-state informa-
tion, the algorithms that use static link cost are more useful
in terms of reducing the message and the pre-computation
overhead. Although this approach might perform better when
the network utilization is low, it will cause serious congestion
and unbalancewhen the network utilization increases because
it always finds the same paths for the flows with the same
source and destination pairs.

To overcome these problems, researches have proposed
RA-DLC and RA-DLCMI that we discuss in the next section.
To better evaluate the performance improvements of RA-DLC
and RA-DLCMI, we have included the following RA-SLC in
our evaluations.
Minimum Hop Algorithm (MHA) computes the shortest

path with the minimum number of links between source and
destination nodes [30]. To do that, the algorithm sets the cost
metric of each link to 1 and runs BSF (Breadth First Search)
or Dijkstra’s Algorithm.
Shortest Path Algorithm (SP) sets the cost metric of each

link to inversely proportional to the bandwidth capacity of
that link and runs Dijkstra’s Algorithm to find the shortest
path based on the cost metric [28]. This approach is also used
in Open Shortest Path First (OSPF) [64].
Widest-Shortest Path Algorithm (WSP) uses a modified

version of Dijkstra’s algorithm that aims to compute a path
with the largest bandwidth capacity and minimize hop-
count [29], [65]. There is another version called Shortest-
widest path algorithm (SWP) that first eliminates all the links
that do not have enough capacity to carry the given demand
request and then uses the Dijkstra’s shortest path algorithm to
select the links with the largest bandwidth capacity [66].

B. ROUTING ALGORITHMS WITH DYNAMIC
LINK COST (RA-DLC)
Even there may be alternative links to use, RA-SLC finds the
same paths for all the given flows between the same source
and destination nodes that results in congestion on some
links. To overcome this issue, the controller periodically col-
lects dynamic NSI (e.g., available bandwidth, link utilization)
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TABLE 1. Classification of existing routing algorithms.

and uses this information to compute paths. Accordingly,
researchers have proposed various routing algorithms with
dynamic link cost to better utilize the network resources
and increase the throughput by preventing congestion. The
main goal of these algorithms is that minimizing the rejec-
tion of future demands while finding paths for the requested
demands.

In on-line setting that the flows arrive one at a time, it is
not possible to achieve these goals completely because future

demands are not known in advance. Furthermore, the prob-
lem is NP-Complete even the flows are known in advance
(off-line setting) [36], [67]–[70]. Therefore, researchers have
proposed heuristic algorithms. We present the basic forms
of these proposed heuristic algorithms as RA-DLC in this
subsection and their advanced forms as RA-DLCMI in the
next subsection.

Actually, RA-DLC take into account residual band-
width of each link instead of static link cost and use the
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aforementioned SP and WSP to compute paths. Correspond-
ingly, we name these algorithms as Dynamic Shortest
Path (DSP) and Dynamic Widest-Shortest Path (DWSP),
respectively [29], [31].

RA-DLC are able to find different paths for the flows
between the same source and destination nodes. This is the
main advantage of RA-DLC because they better utilize net-
work resources and maximize its revenues. However, in order
to accurately acquire the dynamic link-state information,
these algorithms cause protocol overhead. Furthermore, these
algorithms need to re-compute the link cost with respect
to current link-state information which causes extra pre-
computation cost before starting to compute a path for the
new flow.

C. ROUTING ALGORITHMS WITH DYNAMIC LINK COST
AND MINIMUM INTERFERENCE (RA-DLCMI)
In order to increase the chance of accepting more future
demands and optimizing performance (e.g., less delay
and loss), the dynamic link metrics (e.g., residual band-
width) used in RA-DLC may not be enough. Accordingly,
RA-DLCMI try to minimize the interferences among the
flows by evenly distributing the traffic load through the
network.

To accomplish these goals,RA-DLCMI determines the cost
of each link by using the other metrics (e.g., critical links
between source-destination pairs and/or number of flows
carried on the links) along with the dynamic cost metrics
(e.g., residual bandwidth).

In the literature, researchers have proposed several heuris-
tic algorithms by using different combination of various
metrics to determine the dynamic cost of each link. They
mainly differ in how they determine the dynamic cost of each
link. In this subsection, we first present the details of the
algorithms that we implemented. Then, we briefly present the
other proposed heuristic algorithms.

Minimum Interference Routing Algorithm (MIRA)
considers that all the demands flow through a pre-defined
set of (ingress-egress) pairs. MIRA tries to determine crucial
links for each pair. So, it uses the links that are less crucial to
the other pairs when computing the shortest path for a given
flow between a pair [30].

Accordingly, it initializes the cost metric of each link to
0 before computing the shortest path for a given pair. MIRA
finds the min-cut set between each pair except for the pair for
which it tries to find a path. To do that, it uses the residual
bandwidth information in the max-flow min-cut algorithm.
It adds 1 to the cost of each link if it is in min-cut sets. Then,
it runs Dijkstra’s algorithm based on the cost metric to com-
pute the shortest path. MIRA maximizes the minimum avail-
able capacity between all other pairs. However, because of its
significant computational complexity of the pre-processing
step for each flow, it is not an effective algorithm to use in
practice, especially if the network is large and the number of
pairs is high.

Least Interference Optimization Algorithm (LIOA)
uses the inversely proportional ratio of the number of flows
on each link to the residual capacity on that link to determine
the link cost metric [32]. Accordingly, (LIOA) computes the

link cost using C(u,v) =
Iα(u,v)

RBW α
(u,v)

, and then runs Dijkstra’s
algorithm to find the shortest path. As it should be, (LIOA)
chooses the links with less number of flows and high residual
bandwidth. Accordingly, it balances the number and quantity
of flows in the network to reduce the interference between
source-destination (ingress-egress) pairs.

Improved Least Interference Optimization Algo-
rithm (ILIOA) is modified version of LIOA and takes more
metrics into account in computing the link cost [33].
(ILIOA) uses the number of flows on the links, initial band-

width capacity, residual bandwidth capacity, and utilization of
the links.

Specifically, (ILIOA) computes C(u,v) = (1 − U(u,v)) ∗
Iβ

BW β
(u,v)

+U(u,v)∗
Iα

RBW α
(u,v)

. If link utilization is low, (1−U(u,v))∗

Iβ

BW β
(u,v)

dominates the costmetric to choose the linkswith large

capacities. Otherwise,U(u,v)∗
Iα

RBW α
(u,v)

aims to choose the links
with large remaining bandwidth.

In addition to the aforementioned algorithms, there are
some other RA-DLC and RA-DLCMI. For example, Dynamic
Link Weight (DLW ) avoids congested links by trying to
choose lower loaded paths [71]. As in MIRA, Wisitak’s
Routing Algorithm (WSS) determines a cost parameter to
detect possible critical links [72]. Unlike, it does not con-
sider other dynamic link costs such as residual bandwidth
capacity. Fabio’s Weight Function (WF) uses dynamic link
costs; but, it does not take the use of pair interferences [73].
BU-MIRA takes into account the available bandwidth of each
link and the number of flows carried on it when comput-
ing the cost metric for each link [74]. The algorithm by
Wang-Su-Chen (WSC) is the extended version of MIRA and
uses a different method to determine the cost metric [75].
Bandwidth Constrained Routing Algorithm (BCRA) takes
into account the residual capacity, initial bandwidth capac-
ity of the links, and the number of the flows carried on
the links to detect interference, as in LIOA [76]. Maximize
Residual Bandwidth and Link Capacity - Minimize Total
Flows Routing Algorithm (MaxRC-MinF) determines a cost
metric as in LIOA and BCRA [77]. We will not include these
algorithms in our evaluations because they have been inten-
sively evaluated and shown that the three algorithms (MIRA,
LIOA, ILIOA) that we implement have outperformed them.
In addition, we did not include Light Minimum Interference
Routing (LMIR) [69] algorithm in our evaluations because of
some ambiguities in some steps that did not lead to finding
the lowest capacity paths.

IV. ACQUIRING NETWORK STATE INFORMATION
All the algorithms we presented have been proposed with the
assumption that the controller has the accurate network state
information (NSI) before computing a path. Unfortunately,
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the controller needs to continuously query the distributed
switches to obtain the accurate NSI. However, this will cause
significant protocol overhead and obtained NSI may not be
accurate because of delays and measurement errors. In order
to reduce protocol overhead and obtain accurate NSI, the
controller uses a periodic monitoring method that collects the
link-state information from each switch at a predetermined
rate (e.g., every T seconds) [10]. Selecting the value of T
is very crucial because if it is reduced, the controller gets
considerably more accurate NSI at the expense of increasing
protocol overhead.

In the remainder of this section, we will firstly discuss
how the availability of accurate NSI can be mimicked at the
controller. Then, we present the main steps of periodically
collecting NSI. In the next section, we use both methods
(accurate NSI and periodically collected NSI) to better eval-
uate the existing algorithms under the ideal and practical
settings, respectively.

1. Accurate Network State Information (NSI): The con-
troller keeps the shadow of the topology by updating the
residual link capacities after installing a flow to mimic
the accurate NSI availability. The controller computes
a path for a given flow demand. Then, it subtracts the
requested demand from the residual capacity of each
link on the computed path. Therefore, the controller will
always have current residual graph to compute a path
for a new request. Clearly, we can use this idealistic
approach if there is only one physical controller and
there is no background traffic as we implemented our
simulation. Therefor, we can use this method to better
compare the performance of the algorithms under the
common assumption of having accurate NSI.

2. Periodically collecting NSI: In practice, to acquire
NSI periodically, the controller sends the port statistics
requests to the all OpenFlow switches in every T sec-
onds. Upon receiving this request from the controller,
each switch sends the total amount of traffic sent on its
ports until the request comes. Let us keep the following
quantities at the controller: txc(u,v) be the total amount of
traffic sent on link (u, v) until the current time tc, and
txp(u,v) be the previously recorded total amount of traffic
sent on link (u, v) until the previous query time tp. Using
these quantities, the controller can update the residual
bandwidth of link (u, v) as follows:

D(u,v) =
txc(u,v) − tx

p
(u,v)

tc − tp
(1)

RBW(u,v) = BW(u,v) −D(u,v) (2)

From the equation (1), we determine the average cur-
rent traffic rate denoted by D(u,v). From the equa-
tion (2), we determine the residual bandwidth RBW(u,v)
by subtracting D(u,v) from the BW(u,v), which is the
initial capacity of the link. Finally, the controller uses
the following equations to save the current quantities
as the previous quantities for the calculations in the

next period.

tp = tc (3)

txp(u,v) = txc(u,v) (4)

V. PERFORMANCE EVALUATION
In this Section, we compare the performance of several
existing routing algorithms that we implemented using RYU
SDN Controller [10]. RYU allows us to create new control
applications by providing application program components
and/or interfaces (API ).We then run the controller onMininet
emulator, which enables us to create a network of virtual
switches, hosts, and links [11], [78]. OpenFlow protocol
(version 1.3) is used to communicate with the forwarding
elements on Mininet. We use Linux software and iperf for
performance measurements and the traffic generation at the
hosts on Mininet [79].
Since TCP flows aim to maximize throughput by using all

available bandwidth on the links so this causes misleading
to acquire better evaluation for the performance of the rout-
ing algorithms which consider the given requested demand.
Therefore, instead of TCP, we generatedUDPflowswith uni-
formly assigned demands. When a randomly generated flow
request (s, d, r(s,d)) is received in the controller, a path from
source s to destination d with demand of r(s,d) is computed
by using one of the routing algorithms.

If the controller finds a feasible path where each link on
the path has enough available capacity to carry the demand,
it installs the essential forwarding rules to the switches
through the path. Otherwise, it rejects the flow. When a flow
is established, it continuously loads the network with its
demand until the end of the simulation.

We use the following performancemeasures to evaluate the
performance of the algorithms by testing each algorithm with
the same set of flow requests:
Number of Accepted Flows (NAF)

The number of flows for which the algorithm is able
to find a feasible path.

Total Transferred Bandwidth (TTB)
The total amount of the data rate transferred for the
accepted flows, which might be smaller than the
total demand of the accepted flows as some of their
packets could be lost.

Packet Loss (PL)
The percentage of the all the sent packets got lost
when being transferred through the network.

Normalized Path Computation Time (NPCT)
The normalization of the computation time of each
algorithm over the computation of the algorithm
which has the minimum computation time.

In the remainder of this section, we present the network
topologies used in our experiments. We used both NSI collec-
tion methods that we mentioned in Section IV. Accordingly,
we first show the performance evaluation results under the
idealistic method. Then, we used Periodically Collecting NSI
method with the intervals of T = 3, 5, 10 seconds.
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FIGURE 6. MIRANET topology.

FIGURE 7. Extended ANSNET topology.

A. NETWORK TOPOLOGIES
We usedMIRANET [30] and extended ANSNET [80] topolo-
gies to compare the routing algorithms.

As seen in Figure 6,MIRANET topology contains 56 bidi-
rectional links and 15 nodes. MIRANET is used to compare
the algorithms in [30]–[33]. We assigned 5 Mbps to the
thinner links and 25 Mbps to the thicker links 2. As orig-
inally declared in [30]–[33], we used the same four (s, d)
pairs (namely, (S1, S13), (S5, S9), (S4, S2) and (S5, S15)).
We generated 100, 200, and 300 flowswith requested demand
of uniform(50, 200) kbps.

We also used the realistic network topology extended
from ANSNET in [80] to evaluate the performance of the
algorithms on a larger topology. ANSNET topology has 32
nodes and 108 bi-directional links. The bandwidth capacity
of each link is randomly selected from uniform(2, 10)Mbps.2

We randomly selected the source from the leftmost nodes
(1, 2, 3, 4, 5) and the destination from the rightmost nodes
(23, 25, 29, 30, 31). At this time, we match the pairs between
any source and destination which results in 25 different pos-
sibilities. Since MIRA has to run max-flow algorithm for all
pairs (excluding the pair which we try to compute a path for
it) its computation time increases significantly under larger
topologies, we did not include MIRA algorithm to evaluate

2In Mininet, the forwarded packets share CPU and memory resources of
the computer, resulting in significant overload and limitations [81]. To over-
come these limitations, particularly on large topologies, we have to use
smaller link capacities and less number of flows to reach reasonable load
in the network.

FIGURE 8. Throughput and number of accepted flows under MIRANET
topology with accurate NSI.

under this setting. We randomly generated 50, 75, and 100
flows with requested demand of uniform(200, 500) kbps.

B. PERFORMANCE RESULTS UNDER ACCURATE NSI
Since using dynamic link costs allow the RA-DLC and
RA-DLCMI to compute alternative paths for the flow
requests, they outperform the RA-SLC (e.g., MHA, SP, WSP)
in terms of the total transferred bandwidth (TTB) and the
number of accepted requests (NAF).

We mainly focus on the performance of RA-DLC and
RA-DLCMI. As we see in Figure 8,DWSP gives worse perfor-
mance than DSP, LIOA and ILIOA while they perform simi-
larly. In contrast to the low performance under theMIRANET
topology,DWSP’s performance under the ANSNET topology
is similar to others, as we present later.

According to our observations, after larger bandwidth
capacity links are occupied, DWSP cannot compute paths for
the flow requests that have larger demands due to lack of
alternatives in MIRANET topology.

Since MIRA runs the max-flow min-cut algorithm for all
pairs, it is the worst algorithm among the three best algo-
rithms in terms of normalized computation time. We first
determine the computation times of the algorithms and then
normalized them with the algorithm that has minimum com-
putation time.
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FIGURE 9. Normalized average computation time under MIRANET
topology with accurate NSI.

As seen in Figure 9, Normalized Path Computation
Time (NPCT) ofMIRA is 10−15 times worse than the others.
Since the RA-SLC only use Dijkstra’s algorithm without any
pre-computation, they give similar performance to the fastest
dynamic algorithm. Therefore, we did not include them in the
NPCT evaluation.

Because of the excessive computation time of MIRA,
we did not include it when we compare the other algorithms
under the larger topology named ANSNET which has 25
source-destination pairs.

As we see in Figure 10, we again see that RA-SLC
fall behind of RA-DLC and RA-DLCMI in the number of
accepted flows and total transferred bandwidth. At this time,
performance of DWSP is similar to other RA-DLC and
RA-DLCMI. We think the reason is that ANSNET topol-
ogy has more alternatives that the algorithms are able to
explore.

During our experiments under accurate NSI, we observed
that there is 1− 2% and 3− 7% packet loss underMIRANET
and ANSNET, respectively. In theory, this should not happen
because the algorithms reject a flow that has higher requested
demand than the available link capacities. The delay in com-
puting paths and installing the rules on the switches through
the found paths cause some of the packet losses. Furthermore,
OpenFlow Discovery Protocol (OFDP) causes the protocol
overheads which the shadow topology and NSI we use at
the controller do not take into account. In practice, in order
to discover the topology, the controller interacts with the
switches by sending encapsulated Link Layer Discover Pro-
tocol (LLDP) packets. Switches transmit packets to one of
their adjacent switches by using a port. This switch responds
the controller by encapsulating the received LLDP packet.
This communication process grants the controller to learn
there is a unidirectional link between the two switches. All
links perform the same process in the network which may
increase the usage of the controller and load on the links.
Therefore, the cost of topology discovery increases linearly
if the size of topology increases [82]. Since we ignored this
process when maintaining the shadow topology to mimic

FIGURE 10. Throughput and the number of accepted flows results under
ANSNET topology with accurate NSI.

accurate NSI, we have been exposed to the packet losses we
mentioned above.3

Since the periodic collection method obtains the current
total traffic including discovery protocol traffic on the ports,
it is expected to avoid this kind of loss. However, as we dis-
cuss in the next subsection, we still observe packet loss under
periodically collected NSI because the routing algorithms use
inaccurate NSI and accept more flow than the network is able
to carry.

C. PERFORMANCE RESULTS UNDER
PERIODICALLY COLLECTING NSI
Now, we use periodically collecting NSI method to exam-
ine the routing algorithms under the same two topologies.
We first present some general observations. Under periodic
collection of NSI method, the controller cannot obtain accu-
rate NSI because it needs to wait until the next period.
Thus, since the information from the previous period is used,
the requests admitted by the controller may exceed the current
available bandwidth capacities of the links. This may cause
that all flows may lose packets.

3In our simulations, we observed that we can minimize the packet losses
if we assume 10 − 15% of the link bandwidths are reserved for LLDP and
compute packets based on this assumption. However, further research needed
to determine optimal method
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4Second, possibly some flows may stop sending traffic,
resulting in decreasing load on the link. However, the con-
troller will not obtain the updated information until the next
query time. Therefore, assuming the link is still overloaded,
it may reject some incoming flows, causing underutilization
of the network.

In this section, we used the same set of flows as we gen-
erated in section V-B and the same two topologies. As we
discuss later in detail, whenNSI is collected in longer periods,
the number of accepted flows (NAF) increases, resulting in
more packet loss (PL) that negatively affects total transferred
bandwidth (TTB) as seen in Figure 13.We considered various
intervals (short, medium, and large) for NIS collection and
observed similar trends. Accordingly, to minimize simulation
times, we used T = 3, 5, and 10 seconds as the represen-
tative of short, medium, and large intervals for NSI collec-
tion. Due to similar trends we observed with the different
numbers of flows, we only report the results with 300 flows
under MIRANET topology and 100 flows under ANSNET
topology.

Firstly, we present the simulation results under MIRANET
topology. We observe that all the algorithms accept more
flows under periodically collected NSI than that under accu-
rate NSI, as seen in Figure 11(a). The reason for this is that
the controller does not obtain current state information and
wrongly overload some links by accepting more flows. As we
see in Figure 11(b), this results in higher total throughput.
However, as we see in Figure 11(c), accepting more flows
than the network is able to carry causes each flow to lose huge
number of packets. Obviously, this is not acceptable for the
sake of providing Quality of Service (QoS).

Naturally, we expect to have more accurate NSI, when
we decrease the collection interval. In contrast, we realized
that the algorithms accept more flows that result in more
packet loss when NSI is collected in every 3 seconds than
5 or 10 seconds. We believe that there can be two reasons for
this: (i) using shorter periods to collect NSI causes significant
overload in the network which negatively affect the robust-
ness of the controller, (ii) collecting NSI with shorter peri-
ods does not obtain enough statistical information to make
accurate estimation. Although more accurate estimation is
possible under 5 and 10 seconds collection, packet loss is still
high since the controller use older and inaccurate statistical
information.

We now present the simulation results under ANSNET
topology. As observed above, all the algorithms again accept

4We explain this situation with the following example. Let assume that
there is a link that has 15 Mbps capacity and we generate two requests,
each with 10 Mbps demands. In the case of accurate NSI, the algorithms
accept first flow and transfer the flow on the link. So, the available bandwidth
capacity of the link is updated as 5. Algorithms reject the second flow
because the demand (10 Mbps) is higher than the remaining bandwidth
capacity (5 Mbps) of the link. However, under periodically collecting NSI,
since the controller did not obtain the updated information of the link yet,
algorithms accept the second flow too. Certainly, overload on the link is
inevitable. Thus, although both flows may give better or similar performance
than a single flow under accurate NSI in terms of the throughput, both flows
lose packets under periodically collecting NSI method.

FIGURE 11. Accepted flows, throughput, and packet lost (%) under
MIRANET topology with accurate and periodically collected NSI in every
3, 5 and 10 seconds.

more flow requests when we periodically collect NSI in
every 3 seconds, as seen in Figure 12(a). Accepting more
flows provides higher total throughput at the cost of more
packet loss, as we see in Figures 12(b) and (c), respectively.
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FIGURE 12. Accepted flows, throughput, and packet lost (%) under
ANSNET topology with accurate and periodically Collected NSI in every
3, 5 and 10 seconds.

On the other hand, under the periodic collection in every 5
seconds, the algorithms accept fewer request, causing under-
utilization of the network resources. When we increase the
collection interval to 10 seconds, the packet loss increases
more significantly. The reason should be that collecting NSI

FIGURE 13. Accepted flows, throughput, and packet lost (%) under
ANSNET topology with accurate and periodically collected NSI in every 3,
5, 10, 20, 30, 50 and 100 seconds.

in longer interval time does not provide accurate state infor-
mation, resulting in computing the same paths for the differ-
ent requests.

In order to further evaluate how the length of collection
period impacts performance, we now present the simulation
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results with periodically collected NSI in every 3; 5; 10;
20; 30; 50; and 100 seconds under ANSNET topology.
As the representatives of RA-DLC and RA-DLCMI algo-
rithms, we consider DSP and LIOA, respectively. As we see
in Figure 13(a), both algorithms accept more flow requests
when NSI is periodically collected in longer periods. In fact,
in every 50 and 100 seconds, all flows are accepted by
both algorithms. However, total throughput is decreasing and
packet loss is increasing as seen in Figure 13(b) and (c).
As we mentioned above, in the case of longer period of col-
lection, algorithmswrongly use the same available bandwidth
capacities of the links and calculate the same paths for the
same source-destination flows regardless of their demands.
Therefore, it is very important to determine length of period to
collect NSI more accurately. This period could be vary based
on the size and density of the topology.

VI. CONCLUSION AND FUTURE WORKS
In this paper, we grouped the existing algorithms into three
categories: (a) Routing Algorithms with Static Link Cost
(RA-SLC) compute paths by using hop count, distance
and/or link capacity which are static link costs that do not
change during network traffic [28]–[30]; (b) Routing Algo-
rithms with Dynamic Link Cost (RA-DLC) computes path
by using dynamic link cost such as remaining bandwidth
capacity of the links; (c) Routing Algorithms with Dynamic
Link Cost and Minimum Interference (RA-DLCMI ) are the
extended version of the RA-DLC that compute paths by using
other dynamic link costs such as link utilization, number
of flows carried on the links together with aforementioned
dynamic and static link costs [30]–[33].

In the context of SDN-based networks, we evaluated the
performance of the existing routing algorithms. We used
RYU SDN-controller to implement the algorithms. Then,
we tested the implemented algorithms on Mininet emulator
by using two different network topologies. The reason to
choose MIRANET topology is that it is the main topology
used for the algorithms in the literature. We also wanted to
test the algorithm on a larger topology so we used extended
ANSNET topology.
Obtaining network state information (NSI) was one of the

key challenges. All routing algorithms have been proposed
assuming that the controller has accurate NSI. However, it is
a challenge to achieve high accuracy in practice because
the controller periodically collects NSI. Therefore, we try to
evaluate the existing routing algorithms under both the ide-
alistic method where we maintain the shadow of the network
topology tomimic accurate NSI in the controller and the prac-
tical method where the controller collects NSI periodically
sacrificing some accuracy.

As we expected, we observe that RA-DLC and RA-DLCMI
outperform the RA-SLC in terms of the throughput and
accepted requests under both topologies. There is no signifi-
cant difference among RA-DLC and RA-DLCMI algorithms
but MIRA had very excessive computation time compared
the others. Under accurate NSI, we were not expecting any

packet loss. However, we have detected %1 − 2 packet loss
in MIRANET topology and %3 − 7 packet loss in ANSNET
topology. We believe that it happens because of two reasons:
(i) the background traffic generated by OpenFlow Discovery
Protocol (OFDP) during network topology discovery and
(ii) the delays until the paths are installed.
There was no consistence in results because of inaccuracies

when we tested the algorithms under periodically collected
NSI in every 3, 5 and 10 seconds. When the controller cannot
have up to date link-state information, the algorithms use
the old and inaccurate statistical information. This causes the
algorithms to wrongly accept more flows than the network
capacity, resulting in significant packet loss. Even the total
throughput increases, packet loss negatively affects the QoS
of all flows.

We expected that if we collected NSI with shorter peri-
ods, we could get more accurate NSI. However, the accu-
racy of NSI depends on not only the collection period but
also the size and density of topology. Thus, one needs to
either tune the collection period based on the given net-
work topology and traffic load, or propose new collection
methods to increase the accuracy of NSI. As the future
work, we plan to specifically study on how to eliminate the
inconsistencies caused by periodically collected NSI. First,
we plan to create some probabilistic link metrics that deal
with inaccurate state information. Second, we plan to pro-
pose an effective NSI collection method that minimizes the
load on the controller and the message overhead throughout
the network.
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