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ABSTRACT This paper addresses a design and application for the problem of state estimation for an
unmanned autonomous helicopter (UAH) equipped with instruments including an inertial measurement
unit (IMU), a magnetometer and a global positioning system (GPS). A dynamic enhanced robust cubature
Kalman filter (DERCKF) is proposed in this article. First, a robust filtering strategy is formulated to provide
a strong constraint for abnormal values. Second, a new robust CKF is formulated based on the spherical
cubature and Gaussian quadrature rules to estimate the probability state, without requiring calculation of the
Jacobian and Hessian matrices. Then, an enhanced rule is proposed to help eliminate the accuracy degrada-
tion caused by model uncertainty disturbance when the experimental platform is operating and to improve
the estimation performance of the filter. Meanwhile, by detecting the system uncertainty state, a dynamic
enhanced strategy is formulated to achieve automatic adjustments for the dynamic enhanced robust rule
and guarantee that the DERCKF will realize valid system state estimation at all times. Finally, numerical
experimental results are presented to demonstrate the effectiveness and robustness of the DERCKF.

INDEX TERMS Cubature Kalman filter, state estimation, UAH.

I. INTRODUCTION
Unmanned autonomous helicopters (UAHs) have the char-
acteristics of high maneuverability, small size, low cost and
vertical takeoff and landing [1], [2]. They have broad appli-
cations in areas such as industry, agriculture, and the military,
and many universities and research institutes have carried
out relevant research [3]–[6]. State estimation for helicopters
plays a key role in UAH autonomous systems, especially for
designing an autonomous system to control the helicopter
safely and stably in the real world in the presence of model
uncertainty [7].

The successful implementation of state estimation requires
the use of rate gyros with exceptional stability and accu-
rate information. The expensivemeasurement unit commonly
used is accurate enough for helicopters, but it is not practical
for use with UAHs due to its size, weight and cost limi-
tations. Inexpensive units also tend to be low-performance
sensors, and the navigation measurement error will accumu-
late significantly over time, so it is still a challenging task to
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adapt these instruments to long continuous flights. The tradi-
tional Kalman filter [8] was proposed to solve the estimation
problem of a linear system [9], but it is not useful in this
scenario. For the practical application of the Kalman filter
in these nonlinear cases, many researchers have proposed
some innovative approaches, which include the extended
Kalman filter [10], the unscented Kalman filter [11] [12],
the Gaussian filter [13], the fuzzy complementary Kalman
filter [14], the sparse-grid grid quadrature filter [15], the
stochastic integration filter [16] and the cubature Kalman
filter [17]. Among these methods, research on the cubature
Kalman filter (CKF) has attracted interest recently. Because
the CKF does not require the calculation of the Jacobian
and Hessian matrices, the filter is easy to create, it quickly
computes estimations with low complexity, and it particularly
satisfies the system requirements for fast state estimation
in real time. In [18], Benzerrouk et al. introduced a high-
degree CKF based on spherical-radial cubature rules and
applied the filter in a navigation problem for an unmanned
aerial vehicle (UAV). The filter was executed and verified
on an AR. Drone. Kim et al. used a CKF to detect a multi-
UAV system [19], in which a CKF-based fault detection
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scheme was developed to isolate the UAV fault from the
flight formation, but the high-degree CKF needed substantial
computing power. The H-infinity strategy was used to lower
the computational burden of the CKF in [20], which can
provide a strong constraint for abnormal values. Researchers
in [21] used a CKF to estimate the localization-augmented
state problem for a mobile robot. Due to the dynamic uncer-
tainties of mobile platforms, the nonlinear filter performance
of the position and velocity states might be severely degraded,
but model uncertainty is not considered here. Tseng et al.
proposed an adaptive CKF [22] for an integrated navigation
system and utilized a fuzzy logic adaptive strategy to resolve
shortcomings for selecting the process noise covariance by
experience. However, their adaptive strategy is very complex,
making it difficult to realize in application. Therefore, their
strategy works well only in simulations and shows limited
utility in real-time UAH platforms. Hailiang et al. proposed
an adaptive method for navigation systems in a GPS-denied
environment, using the strong tracking technique and the
least square principle to obtain the optimal estimation when
GPS data are not available [23]. The original CKF does not
have strong tracking ability when the system model does not
match, and system observation noise exists. It will lead to
the precision decreasing and estimation results divergence.
A strong tracking CKF (SCKF) was proposed to improve
tracking performance in [24], with an adaptive-adjustment
model that is formulated to overcome the invalidity problem
of the traditional filter. However, the researchers considered
only the of the state process noise and the state error, and
the uncertainty of the model system was not considered.
The process noise and the state error for UAHs are very
difficult to identify, with the characteristics of uncertainty and
high compiling. This disadvantage limited the filter perfor-
mance. Researchers in [25] used the strong tracking method
to improve the CKF tracking performance when a target
makes abrupt state changes. However, the strong tracking
strategy was conventional, which limits the application to
UAHs. The algorithms in [26], [27] are so complicated that
it is challenging to use them with UAHs, and the algorithms
have been verified only in simulations. Jianwang et al. pro-
posed a Bayesian-based strong tracking interpolatory CKF
method to improve the traditional CKF performance in tar-
get tracking [28] in simulations, but the fading factor exists
during the entire filtering process, and system uncertainty is
not considered in the process. These disadvantages make it
difficult to implement these algorithms with UAHs, for which
uncertainty appears randomly during the entire process.

According to the authors’ knowledge, a state estimation
system based on this kind of CKF has not yet been inves-
tigated in the UAH community. In the traditional CKF pro-
cess, the previous state is involved in estimating the current
system state directly. In contrast to the conventional process,
an intelligent way of using the previous estimation informa-
tion is discussed. Hence, to overcome the problems of the
conventional filters and to improve the state estimation per-
formance, we propose a dynamic enhanced robust cubature

Kalman filter (DERCKF) combined with a robust strategy
and a dynamic enhanced CKF.

The main contributions of this paper are as follows. First,
a robust strategy is proposed that can provide a strong con-
straint for abnormal values, and the novel CKF algorithm
has the ability to realize an improved state estimation per-
formance for UAHs. Second, an enhanced CKF algorithm
is proposed to help improve the estimation performance of
the proposed CKF when the experimental platform is oper-
ating in the existence of disturbances. A novel computing
fading factor algorithm is described in detail without Jaco-
bian and Hessian matrix calculations, saving execution time.
Third, a dynamic enhanced strategy is proposed to achieve
automatic adjustment of the enhanced strategy by detecting
the system uncertainty state, and in this way, the DERCKF
achieves valid system state estimation in due course and
avoids the loss of accuracy when system uncertainty does not
exist. Finally, comparable experimental results are given to
verify the higher robustness and accuracy of proposedmethod
compared to other CKF algorithms—not in simulations but
on a real helicopter platform.

II. SYSTEM AND MEASUREMENT MODELS
A. SYSTEM MODEL
The UAH navigation system utilizes a loose coupling model
of the IMU and GPS. In this paper, the IMU/GPS measure-
ment model uses the following assumptions: the position,
velocity and attitude information from the GPS are included
in the model; the horizontal angle error is small and can be
ignored; and the drift error consists of the one-order Markova
component and a constant value.

The gyroscope output in the body coordinate system is

gb(t) =
[
ωbx(t) ωby(t) ωbz(t)

]T (1)

However, the real output contains different errors and can-
not be observed ideally according to Eq. 1. The real output
should be rewritten as

ω̃b(t) = gb(t) − δωb(t) (2)

where δωb(t) is the gyroscope measurement error.

δωb(t) =
[
δωbx(t) δωby(t) δωbz(t)

]T (3)

Similarly, we can obtain the accelerometer and magne-
tometer output expressions as{

ãb(t) = ab(t) − δab(t)
m̄b(t) = mb(t) − δmb(t)

(4)

The measurement errors are{
δab(t) =

[
δabx (t) δaby(t) δabz(t)

]T
δab(t) =

[
δmbx (t) δmby(t) δmbz(t)

]T (5)

Here, to overcome the singular problem in the attitude cal-
culation, the attitude quaternion algorithm is used to update
the attitude information process. After the discretization
process, the attitude matrix 9n,k and velocity matrix Vn,k
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expressions of the UAH in the local north-east-down (NED)
coordinate system can be expressed as

9n,k = 9n,k−1 + Rk−1ω̃b,k1t (6)

Vn,k = Vn,k−1 − Rb−e,k−1ãb,k1t (7)

The position expression in the NED coordinate system is

Pn,k=Pn,k−1 − Vn,k1t (8)

where Rk−1 and Rb−e,k−1 are the rotation matrices defined
in [6]. In general, Eq. 6-8 are the system model.

B. MEASUREMENT SYSTEM MODEL
Themeasurementmodel in the previous section can be rewrit-
ten as {

Xk+1 = f (Xk )+ Vk
Yk = HXk + Nk

(9)

where Xk = [1rek ,1ṙ
e
k , qk,m,1gyr

b
k ,1ak,b,1attik ]

T ,
m=0,1,2,3 is the state vector of the system; 1rek and 1ṙek
are the position and velocity errors, respectively, and both
are in the NED coordinate system; qk,m,m = 0, 1, 2, 3 is
the quaternion of the attitude angle; 1gyrbk and 1ak,b are
the gyroscope and accelerometer drift error, respectively, and
1attik is the attitude error, all of which are in the body
coordinate system; f (∗) is the system dynamic function;
Yk =

[
1k,ned ,1k,v, ak,b,mk,b

]
is the measurement vector

of the system; 1k,ned and 1k,v are the position and velocity
difference value vectors, respectively, of the IMU calculation
and GPS measurement, both of which are in the conventional
terrestrial system; ak,b is the component of the accelerometer,
mk,b is the component of the magnetometer, and both are in
the body coordinate system;Vk−1 andNk are the process error
and measurement noise, respectively. We can also obtain the
observation matrix H when the measurement and state are in
the same coordinate system:

H =

I3×3 03×3 03×4 03×9
03×3 I3×3 03×4 03×9
06×3 06×3 Quat6×4 06×9

 (10)

where Quat6×4 is the linearized transfer matrix of ak,b and
mk,b composed of the quaternion qk,m,m = 0, 1, 2, 3.
Because the attitude solution algorithm is not the focus of the
present study, readers interested in this part can refer to [29].
Here, the initial quaternion value is q0,m = [1 0 0 0].

III. DYNAMIC ENHANCED ROBUST CKF DESIGN
The DERCKF is proposed in this section. The filtering pro-
cess of the DERCKF is shown in Fig. 1. The robust H∞ norm
principle is introduced to overcome the abnormal observed
value first. Additionally, a CKF technique is incorporated to
estimate the system state. To enhance the filter dynamic esti-
mation performance, an enhanced strategy is used in the CKF.
Also, it is reasonable for us to formulate a dynamic detection
algorithm to determine that the enhanced CKF algorithm can
be introduced into the filter in due course. In this way, we can

FIGURE 1. Filtering process of the DERCKF.

avoid a loss of accuracy when system uncertainty does not
exist.

The key point is that the previous state information at
time k-1 is utilized to estimate the system state information
at time k. Thus, a dynamic enhanced rule is introduced to
extract useful information from a previous estimation state
to enhance the current estimation performance. A dynamic
enhanced strategy is designed to guarantee that the enhanced
rule is injected into the process when the system state meets
the enhanced decision criteria by detecting the system uncer-
tainty state.

A. ROBUST CKF ALGORITHM
The robust H∞ norm principle is introduced to resolve abnor-
mal measurement values. The transfer function norm of the
noise input to the estimation error output is expected to be
less than a constraint value γ . The cost function is given by

J =

∑N
k=1

∥∥∥Xk − X̂k∥∥∥∥∥∥X0 − X̂0∥∥∥2
P−10

+
∑N

k=1 (‖Vk‖
2
Q−1k
+ ‖Nk‖R−1k

)
< γ

(11)

where X̂k is the estimated value of discrete state variant
Xk at timek; γ is the threshold value, which meets the Ric-
cati inequality P−1k + HT

k Hk − γ
−2LTk Lk > 0; X̂0 is the
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estimation of
∥∥∥X0 − X̂0∥∥∥2

P−10

(X0 − X̂0)TP
−1
0 (X0 − X̂0); X0 is

the initial state of the system; and P0 is the variance of X0.
The probability density functions are represented by P(Vk ) =
N (VK ; 0,Qk ) and P(Nk ) = N (Nk ; 0,Rk ), wherein Qk and Rk
are the covariance matrices of the system:
Pk=Pk|k−1 −

[
PXY ,k Pk|k−1

]
Pγ
[
PXY ,k Pk|k−1

]T
Pγ =

(
PYY ,k − Pk + I PTXY ,k

PXY ,k Pk|k−1 − γ 2I

)
(12)

where Lk is the restraint matrix and Hk is the measurement
matrix. γ is related to the robustness degree of the estimation
system. There is not enough space here to do discuss the
richness of the calculation process. Readers interested in its
derivation can refer to [30].

The steps of the robust CKF are as follows:
Step 1: Determine the cubature sample point.
The cubature points γi and the corresponding weights wi

are given by

γi =

{√
nei, i=1,...,n
−
√
nei, i = n+1,...,2n

(13)

Wi =
1
2n
, i = 1, ..., 2n (14)

where i is the number of the cubature sample point.
Step 2: Information prediction.
The robust strategy easily leads to the lack of a solution

to the Riccati inequality and the divergence of the filter,
which make the strategy unsuitable for application on a real
helicopter. To overcome this issue, we use the singular value
decomposition method to guarantee the symmetric nonneg-
ative definite characteristic of the covariance matrix Pk−1,
implement it, and then place the Cholesky decomposition in
the H∞CKF. That is,Pk−1 = Uk−1Sk−1V T

k−1, where Sk−1 is a
diagonal matrix. The propagated CKF point can be calculated
by

X ′i,k−1 = Ui,k−1Sk−1γi + X̂k−1 (15)

where Sk−1 is the square root matrix of Pk−1:

Sk−1 =
√
Pk−1 (16)

Through using this method, the calculation process
achieves better numerical stability. In addition, the filter can
achieve more robust results for a wider range of param-
eter conditions. The prediction covariance matrix can be
calculated by

Pk|k−1 =
∑N

i=1
Wi

(
f
(
X ′i,k−1

)
− X̂k−1

)
(
f
(
X ′i,k−1

)
+ X̂k−1

)T
+ Qk−1 (17)

where N is the number of points. The estimation information
is

X̂k|k−1 =
∑N

i=1
Wif

(
X ′i,k−1

)
(18)

where Wi is the filter coefficient value at pointi.

Step 3: Measurement updating.
The state at time k is given by

Xi,k|k−1 = Sk−1|k−1γi + Xk|k−1 (19)

The measurement information at timek is given by

Yi,k|k−1 = H
(
Xk|k−1

)
(20)

The measurement estimation process can be expressed as

Ŷk =
∑N

i=1
WiYi,k|k−1 (21)

The cross variance and covariance can be given by
PXY ,k =

∑N
i=1Wi

(
X ′i,k−1 − x̂k−1

) (
H
(
X ′i,k−1

)
− Ŷk−1

)T
PYY ,k =

∑N
i=1Wi

(
H
(
X ′i,k−1

)
− Ŷk−1

)
(
H
(
X ′i,k−1

)
− Ŷk−1

)T
(22)

The state and covariance updating equations are given by{
X̂k = X̄k + Kk

(
Yk − Ŷk

)
Pk = Pk|k−1 − KkPzz,kKT

k

(23)

where the gain matrix Kk = PXY ,k/PYY ,k .
A robust filtering strategy is formulated to provide a strong

constraint for abnormal values. Then, a robust CKF is formu-
lated using the spherical cubature and Gaussian quadrature
rules to estimate the probability state. This makes the lin-
earization of the nonlinear measurement function lose less
accuracy than in the traditional method. Because the CKF
does not require the Taylor series approximation of the non-
linear function, which makes it possible to estimate the sys-
tem state without calculation of the Jacobian and Hessian
matrices, it saves execution time. Finally, the singular value
decompositionmethod is introduced to overcome the singular
problem in the computing process. All these attributes make
the filter more robust and the system easy to implement on a
real unmanned helicopter platform.

B. AN ENHANCED CKF ALGORITHM
In this section, an enhanced strategy is introduced into the
robust CKF process. Regarding the problem of nonlinear
UAH state estimation, the traditional enhanced algorithm
requires the Jacobian calculation of the measurement sys-
tem, which limits the practical applications of the traditional
Kalman filter. The enhanced factor exists in the entire filter-
ing process, which cannot guarantee that the filter operation
will always maintain an optimal estimation. Therefore, it is
difficult to achieve accurate estimations at all times when
the CKF is implemented on a real helicopter, wherein model
uncertainty exists. The enhanced concept utilizes the struc-
ture of a long-term state to improve the estimation perfor-
mance. In practical terms, a forgetting factor is introduced to
extract useful information from the previous estimation state
and to adjust the gain matrix in real time, depending on the
different cases of the system model.
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Based on the enhanced strategy, a novel prediction covari-
ance matrix in Eq. (17) can be constructed as

P∗k|k−1 = λk


∑N

i=1Wi

(
f
(
X ′i,k−1

)
− X̂k−1

)
·(

f
(
X ′i,k−1

)
+ X̂k−1

)T
+ Qk−1

 (24)

where λk is the enhanced factor, which can be obtained from
the following equationEmin

[
(Xk − X̂k )(Xk − X̂k )T

]
E
[
(Yk − Ŷk|k−1)T (Yk+j − Ŷk+j|k+j−1)

]
= 0

(25)

The first line in Eq. 25 is the performance index of the
filter. The second line can ensure that the new state vector
sacrifices the orthogonality relation, which has the ability to
guarantee that the effective information has been extracted
and determine whether the filter performance is excellent.
Thus, the key point is the determination of the value λk .

We define the estimation error and prediction error as{
X̃k = Xk − X̂k
X̃k|k−1 = Xk − X̂k|k−1

(26)

By substituting Eq. 10 into Eq. 26, we can rewrite the
prediction error as

X̃k|k−1 = Fk · Xk +1(X̃k−1)+ Vk (27)

where Fk =
∂f(X )
∂(X )

∣∣∣
X=X̂k−1

and 1(X̃k−1) is the second

and upper-order matrix in the Taylor expansion. Cause the
Taylor expansion will produce an inevitable error in the
linearization process. In order to build the standard state
estimation equation and better describe the error of the first-
order linearization approximation, an unknown time-varying-
diagonal matrix is introduced

βk = diag(β1,k ,...,βn,k ) (28)

Then, by substituting this expression into Eq. 27, we can
obtain

X̃k|k−1 = βkFk X̃k−1 + Vk (29)

Similarly, a new innovation can be obtained:{
Yk = akHX̃k|k−1 + Nk
αk = diag(α1,k ,...,αn,k )

(30)

The new cross variance and covariance can be rewritten as
P̂Ŷk|k−1 = E

[
(Yk − Ŷk|k−1)(Yk − Ŷk|k−1)T

]
= akHP̂k|k−1HT ak + Nk

P̂X̂k|k−1,Ŷk|k−1 = E
[
(Xk − X̂k|k−1)(Yk − Ŷk|k−1)T

]
= P̂k|k−1HT ak

(31)

By combining Eq. 29-30, we can obtain

Ỹk = αkH (βkFk X̃k−1 + Vk )+ Nk (32)

Upon definingMj,k = E
[
Ỹk+jỸ Tk

]
, it is easy to prove that

Mj,k = E
[
Ỹk+jỸ Tk

]
= E{[αk+jH (βk+jFk+jX̃k+j−1 + Vk+j)+ Nk+j]

× [αkH (βkFk X̃k−1 + Vk )+ Nk ]T }

= αk+jHβk+jFk+j · [
k+j−1∏
i=k+1

(I − KiαiHi)βiFi]

(P̂X̂k|k−1,Ŷk|k−1 − KkMo,k ) (33)

where Mo,k can be calculated by

Mo,k =


Ỹ1Ỹ T1 , k = 1
venhMo,k−1 + Ỹk Ỹ Tk

1+ venh
, k ≥ 2

(34)

where venh is the forgetting coefficient for venh ∈ (0, 1).When
Eq. 33 satisfies Mj,k = 0, we can obtain

P̂X̂k|k−1,Ŷk|k−1 − KkMo,k = 0 (35)

Substituting the improved covariance matrix Eq. 24 into
Eq. 31 and replacing P̂k|k−1 with P∗k/k−1 gives a new cross
covariance and a new measurement covariance:

P̂∗
X̂k|k−1,Ŷk|k−1

= P∗k/k−1H
Tα

= λk P̂k|k−1HTαk

P̂∗
Ŷk|k−1

= αkHP∗k/k−1H
Tαk + Nk

= λkαkHP̂k|k−1HTαk + Nk

(36)

The gain matrix Kk can be rewritten as Kk =

P̂∗
X̂k|k−1,Ŷk|k−1

/
P̂∗
Ŷk|k−1

. Eq. 35-36 subsequently yield the

enhanced coefficient equation as follows

Mo,k − Nk = P̂∗
ˆXk|k−1,Ŷk|k−1

K−1k − Nk

= P̂∗
X̂k|k−1,Ŷk|k−1

P̂∗
ˆYk|k−1
P̂∗−1
ˆXk|k−1,Ŷk|k−1

− Nk

= P̂∗
ˆYk|k−1
− Nk

= λkαkHP̂k|k−1HTαk

= λk (P̂ ˆYk|k−1
− Nk)

= λk
∑N

i=1
Wi

(
γi,k|k−1 − Ŷk|k−1

)
(
γi,k|k−1 − Ŷk|k−1

)T
(37)

The matrix trace operation is carried out on Eq. 37 to yield
the enhanced coefficient λ∗k

λ∗k=
Tr(Mo,k−Nk )

Tr
(∑N

i=1Wi

(
γi,k|k−1−Ŷk|k−1

) (
γi,k|k−1−Ŷk|k−1

)T)
(38)

When using this equation to calculate λk , the value will be
less than 1 in some cases. To ensure that λk is always greater
than 1 in the filtering process, we determine the value by

λk = max(1, λ∗k ) (39)
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FIGURE 2. The experimental helicopter.

C. DYNAMIC ENHANCED STRATEGY
As mentioned earlier, it is obvious that the DERCKF does
not need to compute the system Jacob matrix when solving
for λk . The advantages of the dynamic enhanced method can
guarantee more accurate state estimation results when the
measurement system model is uncertain in some scenarios.
The improved covariance matrix in Eq. 24 is the dynamic
enhanced factor when model uncertainty exists. Therefore, it
is reasonable for us to formulate an uncertainty feature detec-
tion algorithm to determine that the enhanced CKF algorithm
can be introduced into the filter in due course. In this way,
we can avoid a loss of accuracy when system uncertainty
does not exist. The uncertainty detection index is designed
as

Dk = Ỹ Tk · P
−1
ẑk|k−1
· Ỹk

= Ỹ Tk

{∑N

i=1
Wi

(
γi,k|k−1 − Ŷk|k−1

)
(
γi,k|k−1 − Ŷk|k−1

)T}−1
Ỹk (40)

We define two assumption scenarios for the estimation
system:

Case 1 C0: The estimation system works normally.
Case 2 C1: The estimation system contains model uncer-

tainty.
Meanwhile, the detection index Dk always strictly obeys

the χ2 distribution ofm degrees of freedom. The significance
level l ∈ (0, 1) can be used to determine the gate value χ2

l,m

by

P(χ2
� χ2

l,m) = l (41)

The dynamic enhanced method is used in the estimation
system only if the assumed condition is valid, that is, if Dk is
greater than χ2

l,m . This process can be expressed asDk � χ
2
l,m,

with P∗k/k−1 replacing Pk/k−1:

C0 : Dk ≤ χ2
l,m,∀k

C1 : Dk � χ2
l,m, ∃k (42)

FIGURE 3. The pirouetting flight path.

IV. EXPERIMENT
A. PLATFORM
To verify the effectiveness of the proposed DERCKF, an esti-
mation performance experiment on a real UAH is con-
ducted. The small helicopter is equipped with an onboard
computer with Raspberry Pi, an accelerometer (ADXL326),
a gyroscope (ADXRS620), a magnetometer (HMC1002),
an altimeter (MPXA6115A+LW20), and a real-time kine-
matic GPS (RTK NEO-M8P), as shown in Fig. 2. The mea-
surement accuracy of velocity is 1 cm/s, that of the attitude
is 0.1 degree, and that of the position is 1 cm. The LiDAR
module LW20, which is mounted downward, can measure
heights in the range of 0∼110.00 m, with a resolution of 1
cm. The barometer will be used in the height measurement
process when the platform height exceeds the LiDAR range.
To record the flight data, a data recording system is designed
on the embedded platform using a memory card. For the
DERCKF performance test, a pirouetting flight motion under
model uncertainty is selected to obtain the original data, and
the mission path is shown in Fig. 3. We adapt the real heli-
copter in Fig. 2 to compare the performances of the traditional
CKF, the SCKF [24] and the DERCKF. The weight of the
UAH in Fig. 2 is 9.6 kilograms, and the main rotor radius
is 0.82 m. Meanwhile, a high-precision measurement ADIS
16488CMLZ is used in the platform to acquire the accuracy
measurement data, which is also recorded on the memory
card. The different characteristics of the sensors are shown
in Table 1. The two sets of measurement are presented in the
same place to guarantee that the units are operating under the
same conditions.

B. EXPERIMENTAL RESULTS
The helicopter takes off from a table at a safe speed of 2.5 m/s
and then flies to the preset point: (−25cm,−380cm, 1100cm).
The helicopter then executes a pirouetting flight mission. The
overall flight process takes 200 seconds, and the path is shown
in Fig. 3. The wind speed is approximately 6 m/s.
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TABLE 1. Main parameters of the sensor module.

FIGURE 4. The attitude responses of the pitch channel.

FIGURE 5. The attitude responses of the roll channel.

During this experiment, a measured pirouetting flight mis-
sion is performed as a test to compare the performances of
the different filters. The attitude response curves are shown
in Fig. 4–6. From the performance of the pitch, roll and yaw
channels, it is possible to compare the attitude estimation
performances of the filters. The original CKF is the least-
accurate filter in estimating the UAH state, followed by the
SCKF [24] and the DERCKF. The latter two filters show
similar accuracy estimation abilities. However, the proposed
DERCKF is the best filter, and it obtains values closest to
the measured states. It seems that the filters have clear differ-
ences, and the estimated performances of the three filters are
acceptable for the platform. As shown in the zoomed area,
the DERCKF performance is significantly better than those
of the other filters. In the yaw channel response performance

FIGURE 6. The attitude responses of the yaw channel.

in Fig. 6, the estimation error of the traditional CKF accu-
mulates at the beginning and yields an error space in the
measurement curve in the process. Both the SCKF and the
DERCKF are more accurate than the traditional CKF, but
the proposed filter is still the best, producing the least error.
Additionally, it can be observed that strong coupling exists
between the pitch and the yaw channel. Thus, accurately
estimating the state is a very challenging task.

To better verify the DERCKF performance, the error dis-
tribution drawings of the attitude are shown in Fig. 7 for
1000 even distribution sampling points, by using the esti-
mation results to subtract the measurement ones. In the roll
channel, the CKF error is distributed from −2.4◦ to 1.6◦ the
SCKF is distributed from −1.6◦ to 1.3◦, and the DERCKF
is distributed from −0.8◦ to 0.7◦. For the CKF, the SCKF,
and the DERCKF, the error distribution between (−1◦,1◦)
accounted for 83.6%, 86.3%, and 100%, respectively, of the
total. In the pitch error histograms for the CKF, the SCKF,
and the DERCKF, the error distribution between (−0.5◦,0.5◦)
accounted for 69.3%, 63.3%, and 91.9%, respectively, of the
total. In the yaw channel, the CKF estimation error distribu-
tion is clearly more decentralized than those of the other two
filters. The CKF error range is from −2.6◦ to 1.4◦, while for
the SCKF and the DERCKF, the error distribution between
(−0.5◦,0.5◦) accounted for 62.9% and 91.9%, respectively,
of the total. By comparing the error histograms of the three
filters in Fig. 7, it can be found that the estimation perfor-
mance of the proposed DERCKF is better than that the SCKF
and CKF in terms of both the error range and the distribution.
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FIGURE 7. The error histograms of the attitude response.

The velocity response curves are shown in Fig. 8–10. From
the performance of the Vx, Vy, and Vz channels, it is easy
to observe the comparative performances of the filters in

FIGURE 8. The velocity responses of the Vx channel.

FIGURE 9. The velocity responses of the Vy channel.

FIGURE 10. The velocity esponses of the Vz channel.

velocity estimation. The proposedDERCKF achieves the best
velocity estimation performance, and its values are the closest
to those of the measured curve. Additionally, we can see
that the vertical speed is much more stable than the x and
y coordinate speeds.
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FIGURE 11. The error histograms of the velocity responses.

The error distribution drawings of the velocity are shown
in Fig. 11. For the Vx channel, the CKF, SCKF, and DER-
CKF errors are distributed from −20 cm/s to 25 cm/s, from

−16 cm/s to 14 cm/s, and from−17 cm/s to 12 cm/s, respec-
tively. For the Vy channel, the CKF, SCKF, and DERCKF
errors range from −40 cm/s to 20 cm/s, from −20 cm/s to
20 cm/s, and from−18 cm/s to 12 cm/s, respectively, and the
error distribution between −10 cm/s and 10 cm/s accounts
for 95.1%, 93.0% and 80.2%, respectively, of the total. For
the Vzchannel, the CKF, SCKF, and DERCKF errors range
from −0.4 dm/s to 0.3 dm/s, from −0.2 dm/s to 0.1 dm/s,
and from −0.1 dm/s to 0.2 dm/s, respectively, and the error
between −0.1 dm/s and 0.1 dm/s accounts for 98.6%, 95.3%
and 78.5%, respectively, of the total. As illustrated in Fig. 10,
the filtering errors of the three algorithms are located near
the zero line. However, comparatively speaking, the total
error range of the proposed method is the least, and the
error distribution is the most concentrated. These compar-
ative results prove that the proposed DERCKF is effective.
Meanwhile, the computational cost of the proposed method
is approximately 4.8 ms, which is a little longer than those
of the SCK and CKF. However, it still meets the real-time
requirements of the UAH platform.

V. CONCLUSION
To solve the UAH state estimation problem, a novel dynamic
enhanced robust cubature Kalman filter (DERCKF) is pro-
posed to improve the filter accuracy of the UAH state esti-
mation system, which greatly impacts the performance of
autonomous helicopters. First, the IMU/GPS model is ana-
lyzed. The DERCK algorithm is described in detail. Then,
a system uncertainty detection method is proposed to achieve
automatic adjustments of the enhanced rule. To evaluate the
performance of the filter, attitude and velocity state estima-
tion tests are conducted on an experimental helicopter. Based
on a series of comparisons, the results show that the DERCKF
has a better ability to achieve accurate state estimation than
traditional methods and offers a clear advantage for use in
UAH applications.
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