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ABSTRACT In this paper, a robust fundamental matrix estimation method based on epipolar geometric
error criterion is proposed. First, the method removes outliers into the computation of the fundamental matrix
instead of taking it as an independent processing step. The potential error corresponding points are eliminated
by iteration to achieve the stable estimation of the fundamental matrix. Then, the epipolar geometry error
criterion is used to identify outliers and the estimation results of the fundamental matrix are obtained during
each iteration. The iterative process can converge quickly. Even if a large number of matched outliers are
present, the calculated values will soon become stable. Experiments have been carried out for synthetic and
real image pairs, which show that the proposed method performs very well in terms of robustness to noises
and outliers. Additionally it has a low computational cost and is convenient for use in practical applications.

INDEX TERMS Computer vision, fundamental matrix, epipolar geometry, robustness.

I. INTRODUCTION

Two perspective projective images of a single rigid scene are
related by the epipolar geometry [1], which can be described
by a matrix called fundamental matrix (F-matrix). All the
geometric information contained in the two views is com-
pletely captured by it. The fundamental matrix is independent
of the scene structure, and can be computed from corre-
spondences of imaged scene points alone, without requiring
knowledge of the cameras’ internal parameters or relative
pose [2]. Estimating the fundamental matrix is a basic step
for a wide variety of vision-based applications [3], [4], such
as 3D reconstruction [5], camera-pair calibration [5], [6],
object matching & tracking [7] object recognition [8], etc.
The estimated F-matrix is useful for recovering the relative
motion of camera, guiding correspondences establishment in
stereo matching, and so on. Therefore, developing a method
for fundamental matrix estimation with high efficiency and
robustness is of great significance.

Due to the great importance of the F-matrix, it has
received much attention in both photogrammetry and com-
puter vision communities. An application of scene recon-
struction using epipolar geometry was first published by
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H.C.Longuet-Higgins [9]. Over the years, numerous algo-
rithms for F-matrix estimation have been developed.
In [10], [11], different types of estimation are described and
compared in detail. They can roughly be divided into lin-
ear methods, iterative methods, and robust methods. Linear
methods are mainly based on least-squares minimization and
eigen values, which are sensitive to noise. In order to improve
the estimation accuracy in noisy situation with point local-
ization error, iterative methods are proposed by minimizing
the error cost function. Fathy et al. [12] summarized and
compared the accuracy and efficiency of the different error
criteria for computing the fundamental matrix. Subsequently,
an iterative algorithm based on the least absolute deviation
is put forward [13], further improves the estimation accuracy.
While in practical applications, due to the drawback of feature
extraction and matching methods, the correspondences data
are corrupted not only by noise but also by gross outliers
(false matches). In which case, the estimation accuracy of
linear and iterative methods would be seriously reduced.
Robust methods are based on computing a more accurate
geometry relation and removing false matches. An early
example of a robust algorithm is the random sample con-
sensus paradigm (RANSAC) of Fischler and Bolles [14]. As
small a subset of the data as is feasible to estimate the param-
eters is used (e.g, seven correspondences for fundamental
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matrix estimation), and this process is repeated enough times,
trying to find the largest consensus on an estimated F-matrix.
Later, some researchers have presented different methods for
improvement, such as LMedSeig, MLESAC and MAPSAC,
SDO, etc [11], [15]-[18]. The key idea of these algorithms
is to remove outliers independently based on the hypothe-
sis testing strategy. As they require random sampling test
for times, and all the datasets are involved to distinguish
inliers or outliers for each testing process. Thus, they are
computationally expensive with a low processing speed. It is
noteworthy that in [19], two nonparametric robust methods
are proposed to compute the fundamental matrix by mod-
ifying the ORSA method and using an empirical reference
distribution of the image features. Besides, in literature [20],
the authors first establish initial correspondences by fea-
ture description matches, and then estimate the fundamental
matrix and homography using L2E-LSC and get the refined
correspondences. However, the time complexities of their
method needs to be improved.

So far different methods have been presented [21]-[31],
while the problem of F-matrix estimation has not been well
solved. On the whole, linear methods don’t perform quite
well if the points are badly located in the image; iterative
methods can deal with some localization error of points,
but they are inefficient in the presence of outliers; robust
methods can cope with discrepancies in the localization of
points and false matches at the same time, but with an extra
computational complexity. Therefore, robust computation is
still a subject for wide research focusing mainly on proposing
new estimators to improve the accuracy of the fundamental
matrix and on reducing computation expenses.

In this paper, we propose a novel F-matrix estimation
method that integrates an outlier-rejection mechanism and
does not need to resort to an independent and separate strat-
egy. Like in RANSAC, our approach also iterates to remove
outliers. Where at each step, the criterion that results from
the geometric error (geometric distance between image point
and corresponding epipolar line) is used to reject them. This
process has a fast converge, even in situations where many
correspondences outliers exist. As we will demonstrate in the
experimental section, this results in speed-ups of computa-
tion time compared to the methods with hypothesis testing
strategy, while yielding similar or comparable accuracy.

The remainder of this paper is organized as follows.
The basics of epipolar geometry are revisited in Section 2.
The linear formation for fundamental matrix estimation
and the details of the proposed algorithm are presented in
Section 3. In Section 4, both simulative and real data are used
to validate the proposed method, and the paper is concluded
in Section 5.

Il. EPIPOLAR GEOMETRY AND FUNDAMENTAL MATRIX

The epipolar geometry of scene is illustrated in Figure 1,
where a 3D point P; is projected onto image point x; and
x'; in the two different image planes, respectively. Where

O, O represent the camera centers of the two cameras.
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FIGURE 1. Epipolar geometry.

The line linking the two optical centers is called baseline,
which intersects with corresponding image plane /() at
¢'(e), called epipole. The plane ] that passes through both
the camera centers and the real world 3D point P; is called
the epipolar plane. And the line through the epipole and an
image point is the epipolar line, which is also the intersection
of epipolar plane with image plane.

From these two images, we can get the homogenous coor-
dinates of a pair of corresponding points, X; and X';, cor-
responding to the same 3D point. The relation of the point
correspondence can be expressed by the fundamental matrix
F, as shown in the following equation,

x’iTFx,- =0 (1)

This is known as the epipolar constraint, whose geomet-
rical meaning is that, point pairs X’; and x; must lie on its
corresponding epipolar lines, denoted by I/ = Fx/;, and
l,’ = FTX/,'.

Actually, the fundamental matrix contains the intrinsic
parameters of both cameras and the rigid transformation of
one camera related to the other. Eq. (1) characterizes the
fundamental matrix only in terms of correspondences, which
provides a cue to estimate the fundamental matrix without
knowing the camera matrices.

IIl. PROPOSED ROBUST METHOD FOR F-MATRIX
ESTIMATION

With the inspiration of ref. [32], in which a robust solution
to the Perspective-n-Point (PnP) problem is presented by
integrating the outlier removal procedure. We apply the idea
to estimate the fundamental matrix, the details of the pro-
posed algorithm is described in this section. Firstly, the linear
formulation of the F-matrix estimation is revisited. Then
we combine the robust outlier rejection scheme with the
linear formulation. With several iterations, the outliers are
discarded progressively based on the criterion of geomet-
ric error, and the F-matrix is solved by estimating the null
space of the linear system. Although we adopt the idea of
ref. [32], the method of this paper is different. We have made
corresponding improvements. In ref. [32], the author did
not calculate the fundamental matrix separately. In addition,
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the selection of error criteria is different. We choose polar
geometric errors, while algebraic errors are used in ref. [32].

A. LINEAR FORMULATION FOR F-MATRIX ESTIMATION

Given two images of the same scene, a point X; in the first
image and the corresponding point X’; in the second satisfy
the epipolar constraint equation Eq. (1). Assume that the
homogenous coordinates of a pair of imaged points corre-
sponding to the same 3D point are x; = (u;, v;, DT andx'; =
(u;, v, 1T, respectively. And the Eq. (1) can be rewritten as,

Fii Fio Fi3 u;
W vi, )| Far Fn  Fx3 vi | =0 (2)
F31 F3 F33 1

Then we formulate the following equation which can be
deduced from Eq. (2),

Uit = [(u, vi, 1) ®© (v, DIf=[x] ©x[]f=0 (3)
where ® denotes Kronecker product, with vector f as,
f = (F11, F12, F13, Fa1, F2, F23, F31, F32, F33)T (4)

Finally, concatenating these equations for n correspon-
dences x; <> X'; (i = 1,---, n) can be expressed as a linear
system,

Mf=0 ©)

where M is a n x 9 matrix, generated by the n image cor-
respondences. It provides a cue to estimate the fundamental
matrix based on solving a linear system in terms of correspon-
dences.

B. INTEGRATE OUTLIER REMOVAL WITHIN LINEAR
F-MATRIX ESTIMATIONS
The solution of Eq. (5) can be expressed as a linear combina-
tions of the null eigenvectors of M. If the correspondences
are noiseless, then the rank of null-space of M should be
exactly one and we can solve for F-matrix up to a scale factor.
However, in the presence of noise and outliers, M has no
eigenvalue that is strictly zero, though some of which are
very close to zero. Following the suggestion of ref. [32],
we assume the rank of the null-space of M to be always one.
Then a robust method is proposed to compute this null space
while removing outliers and gross error correspondences.

In order to remove the outliers, we denote matrix L to be a
noise-free version of M, and solving L is converted into the
following minimization,

arg min [|[W(M — L)||2
LW
subject to rank(L) = rank(M) — 1 (6)

where W = diag(wy, wa, - -+, Wp—1, Wy) 1s a n x n diagonal
matrix. If the i-th data-pair is considered as inliers, then
w; = 1. And w; = O indicates an outlier of the i-th
correspondence.

Here we aim to compute the null eigenvector of M, i.e,
the F-matrix vector f as defined in Eq. (4). By distinguishing
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TABLE 1. Algorithm 1.

Algorithm 1 Robust estimation for the fundamental matrix F

Input: M : 72X 9 matrix generated by correspondence; O,

max :
maximal geometric error (geometric distance between image point and
corresponding epipolar line).

Output: the fundamental matrix F .

Initialize: W =1 , & =1Inf .

1: loop

2: [U,S,V]=svd(M"WM) ; where V=[v,, ,v,];

S =diag(s,, ,s,).

3: f < v, ;where k:s, =min(s,, ,s,).

4: Compute the fundamental matrix F corresponding to
vector f using Eq. (4).
5: Compute {&,}(i=1,
between image points and corresponding epipolar lines
using Eq. (9).

6: ¢ =0 (&, ,&,).

7:if ¢, > & then

,n) , the geometric distance

return F

else

€ = Epnay
end if
8: Update matrix W by computing {w,}(i=1, ,n)
using Eq. (8).
9: end loop

the outliers from data correspondences, we have the matrix L
with Lf = 0. Then, we multiply the both sides of Eq. (6) by
f, the constrained minimization of Eq. (6) is turned into the
following minimization with vector f and matrix W,

argmin ||WMIf]? @)
f,W

To solve this optimization, we compute f and W iteratively
by integrating outlier removal, as detailed in Algorithm 1.
Initially, all correspondences are assumed to be inliers, and
thus W is initialized to the n x n identity matrix. We then
compute the singular value decomposition of M? WM, and
take f to be the eigenvector associated to the smallest singular
value. In each iteration, the criterion that results from the
geometric error is used to distinguish the inliers and outliers.
That is, all the entries of the matrix W are updated according
the function as follows,

1, if & < max(&max, Omax)
w; = . ®)
0, otherwise

where the geometric error (i.e, geometric distance between
image point and corresponding epipolar line) associated to
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the i-th correspondence is computed as,
1 1

= ( +
JEXDT +Fx3 [T} + (T %)

x! Fx/;

|

€))

And emax = Q25%(e1, -+ , &n), the lowest 25% quartile
of geometric error for all the correspondences, is used to
remove the outliers with large geometric errors. Note that
in an outlier-free case, the inliers correspondences would be
wrongly considered to be outliers and rejected only by the
criterion epax. For this, a geometric error threshold §pax 1S
also introduced, avoiding this situation and achieving faster
convergence at the same time. While the threshold Spax is
related with the location accuracy of data correspondence,
we set Smax = 0.18 in our experiments. With several iter-
ations, it would converge as the outliers are removed; the
robust estimation for the fundamental matrix F is obtained.

C. DATA NORMALIZATION

A normalization process is needed before applying the algo-
rithm for fundamental matrix estimation to reduce its sus-
ceptibility to noise. According to the suggestion of ref. [10],
the raw data is normalized by using Hartley’s method [33].
The normalization is done by translating the centroid of the
measured image points to the origin and scaling them to a
average distance of V2 from the centroid (origin). In which
method, image coordinates are transformed by multiply-
ing them by T in one image and T’ in the second image,
where T and T’ are scaling and translation normalizations.
The fundamental matrix approximation F is estimated
from the normalized data then. And it is de-normalized to
obtain the final estimation of fundamental matrix F = T'V FT
that corresponds to the original image correspondences.

IV. EXPERIMENTAL RESULTS

We adopt the two testing datasets from the Affine Covariant
Regions Datasets and USAC Datasets.The two Datasets were
released by the Oxford University. We compared the proposed
method with other state-of-art robust methods(M-estimator
[10], LmeSeig [11], RANSAC [14], FNS [26], SDO [18],
L2E-LSC [20]) using simulated data that contained different
levels of Gaussian noise and false matches, as well as real
images with different scenarios. In which process, the average
epipolar distance of inliers were used as the evaluation per-
formance criteria to test the accuracy [7]. All the algorithms
are implemented with Matlab R2017a and performed on a PC
with Intel(R) Core(TM) i5-4300 M CPU @ 2.6 GHz.

A. EXPERIMENTS WITH SYNTHETIC DATA

In our simulation experiment, we generate 125 pairs of cor-
respondences points that distributed in the synthetic images.
We perturb the synthetic data by Gaussian noise and outliers
to simulate the feature location error and false matching.
The proposed method is compared with other six robust
methods: M-estimator, LmedSeig, RANSAC, FNS, SDO and
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FIGURE 2. Comparison of the performance for different F-matrix
estimation methods by varying the standard deviation of Gaussian noise.
(a) the mean of the distance between correspondences points and
epipolar lines; (b) the standard deviation of the distance between
correspondences points and epipolar lines.

L2E-LSC. The implementations of the compared methods
are provided in reference [11]. In which, the parameters of
the compared methods used for the experiments are detailed.
Their accuracy and robustness are analyzed with the syn-
thetic data varying the Gaussian noise and the percentage
of outliers. The mean and standard deviation of the distance
between points and epipolar lines are computed on the set
of inlier matches, which are used as measurement of the
accuracy of different F-matrix estimation methods. For each
group of data, we perform 100 independent trials, and the
results given below are the average.

In the first simulation experiment, the ratio of outliers is
fixed to 0, and the Gaussian noise with a mean of 0 and a
standard deviation of 0 to 2 pixels is added to the data set of
the simulation points for testing.The results obtained by dif-
ferent F-matrix estimation methods are illustrated in Figure 2,
in which the mean and standard deviation of the distance
between correspondences points and epipolar lines are used
for performance (or accuracy) comparison. As we can see,
the accuracy of all the estimation methods decreases linearly
with the increasing noise level. The M-estimator method and
L2E-LSC method achieve better results in the conditions
of different noise levels. The performance of the proposed
method is comparable to that of LMedSeig, RANSAC, FNS
and SDO methods. For the proposed estimation method with
Gaussian noise of 1 pixel, the mean of the distance between
correspondences points and epipolar lines is around 1.1 pixels
and the standard deviation is less than 1 pixel.

In the second simulation experiment, we do not add noise
to the data set and only change the proportion of outliers
(0~45%) to verify the robustness of the estimation method.
The results obtained by different F-matrix estimation meth-
ods are shown in Figure 3, and the performance (or accuracy)
is also compared using the mean and standard deviation of
the distance between the correspondences points and epipolar
lines. As we can see, the accuracy of all estimation methods
decreases approximately linearly with the increase of the
proportion of outliers. The LMedSeig method achieves better
results in the conditions of different ratio of outliers. Besides,
the two methods of RANSAC and FNS have achieved
relatively poor results in different proportion of outliers.
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FIGURE 3. Comparison of the performance for different F-matrix
estimation methods by varying the proportion of outliers. (a) the mean of
the distance between correspondences points and epipolar lines; (b) the
standard deviation of the distance between correspondences points and
epipolar lines.
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FIGURE 4. Comparison of the performance for different F-matrix
estimation methods by fixing a certain proportion of outliers and varying
the standard deviation of Gaussian noise. (a) the mean of the distance
between correspondences points and epipolar lines; (b) the standard
deviation of the distance between correspondences points and epipolar
lines.

However, the performance of the proposed method is com-
parable to that of M-estimator, SDO and L2E-LSC methods.

In the third simulation experiment, the proportion of fixed
outliers is 60%, and Gaussian noise with mean value of 0
and standard deviation of 0 to 2 pixels is added to verify
the robustness of the estimation method in the presence of
outliers and noises in the data set. The results obtained by
different F-matrix estimation methods are shown in Fig.4,
and the performance (or accuracy) is also compared using
the mean and standard deviation of the distance between
the correspondences points and epipolar lines. As we can
see, the accuracy of all estimation methods is approximately
unchanged with the increase of noise level. This shows that
the influence of outliers is greater than that of low noise when
the ratio of outliers is 60%. Moreover, under different noise
levels, the proposed method achieves good results.

Next, the estimation results of synthetic data in the pres-
ence of different percentages of outliers by different meth-
ods are summarized in Table 2. From which we can see
that, all the robust methods could partly detect and remove
potential outliers. M-estimator reduces the effect of outliers
weighting the residual of each correspondence, which starts
from a linear initial guess and is limited in presence of a
large amount of outliers. RANSAC and LMedSeig are both
based on hypothesis testing strategy. RANSAC estimates the
F-matrix that maximizes the number of inliers, while LMed-
Seig choose that minimize the median distance between the
points and epipolar lines. That LMedSeig is more restrictive
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FIGURE 5. The mean computational time using different methods with all
the synthetic data, (b) is a partially enlarged view of the dashed box in (a).

than RANSAC and the results show that LMedSeig achieve
better accuracy. FNS is based on the non-linear gradient cri-
terion and represents the basic data method, but its estimation
accuracy is poor. The proposed method also has good robust-
ness to outliers, whose accuracy is close to that obtained
by L2E-LSC and SDO with data in presence of different
percentages of outliers. Moreover, when the outliers exceed
50%, the proposed method has the smallest polar geometric
error compared with other methods.

We also do the comparison about the computational com-
plexity of different methods. The mean computational time
with all the synthetic data is illustrated in Fig.5. It’s observed
that the proposed approach is faster than other four meth-
ods. This is because that our method integrates the outlier-
rejection mechanism in estimating F-matrix and does not
need to resort to an independent strategy that requires extra
processing time.

B. EXPERIMENTS WITH REAL DATA

Real images in different scenarios (provided by ref. [10])
were selected and intensive experiments were carried out
in order to further validate the proposed method. Here the
points correspondence between images have been solved
based on the method proposed by Zhang et al. [7]. In which,
a Harris corner detector is applied to get a list of inter-
esting points, followed by a pixel-based correlation method
for points matching between two images. Figure 6 shows
four sets of image pairs in different scenarios, the matching
results (labeled by white ‘4’). And the epipolar geometry
recovered by the proposed method is also given. In which,
20 pairs of matching inliers (labeled by red ‘0’) and the
corresponding epipolar lines are illustrated. As we can see,
F-matrix is accurately estimated by using the proposed
method. With each matching point being on its correspond-
ing epipolar line exactly, the epipolar geometry is properly
modeled.

For each F-matrix estimation method, the mean and stan-
dard deviation of the distance between points and epipo-
lar lines are shown in Table 3. In addition, Table 3 also
counts the runtime of different methods for estimating the
Fundamental Matrix. From which we can see that the estima-
tion accuracy achieved by the proposed method is compara-
ble with that of LMedSeig, SDO and L2E-LSC; and better
than M-estimator, RANSAC and FNS method as a whole.
Moreover, compared with the other six methods, the pro-
posed method has the shortest running time. In order to
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TABLE 2. Comparison of the performance for different F-matrix estimation methods by adding different percentages of outliers (the standard deviation
of the added Gaussian noise is fixed to 1 pixel). Every cell shows the mean and standard deviation of the distance between correspondences points and
epipolar lines.

ethods

Data M-estimator LMedSeig RANSAC FNS SDO L2E-LSC  Proposed
outliers 0% 0.809 1.328 4.444 4.184 1.343 1.182 1.179
o 0.548 1.088 16.908 11.939 1.203 0.989 0.940
outliers 10% 0.826 1275 19.917 14.568 1.345 1.268 1.133
° 0.556 1.234 48212 34.176 1.246 1.096 0.925
outliers 20% 1.065 1.455 33.370 24.939 1.456 1.336 1.253
° 0.692 1.874 61.149 45.599 3.286 0.957 0.952
outliers 30% 1.402 1.589 42.526 32.919 1.916 1.819 1.673
° 1.034 1.783 73.082 52.033 4391 1.690 1.420
outliers 40% 1.423 3.937 66.380 42.762 1.887 1.964 1.552
° 1.133 5.624 101.714 58.177 3.678 1.476 1.341
iers 50% 2.026 5.942 74.977 75.616 2.453 2.017 1.755
outhers 5U7 2.393 9.634 88.976 58.914 5.349 2.155 1.558
iers 559 5771 11.267 87.407 73.718 2223 1.913 1.586
outhiers 557 16.596 19.984 102.461 57.238 3.658 1.633 1.401
iers 60% 15.082 16.978 75.946 70.362 2.574 2.162 1.405
outhers 607 19.356 24.709 83.508 57.329 5.938 2.367 1.299

TABLE 3. Comparison of performance for the proposed method and other six methods by testing with real images. Each unit shows the average and
standard deviation of the distance between the corresponding point and the exterior line, and running time.

Methods
Testim; M-estimator LmedSeig RANSAC FNS SDO L2E-LSC Proposed

580.241 11.424 146.244 158.41 8.169 6.236 5.968

779.791 18.577 246.307 235.41 14.748 10.239 9.759

0.1371 5.8378 49713 0.0905 0.1310 0.0893 0.0810

91.864 2.896 93.967 120.29 2.232 1.415 1.212

101.064 5.879 164.404 100.95 3.439 2.610 2.405

0.2066 9.5933 7.8694 0.1651 0.1891 0.1792 0.1091

512.432 0.629 34.509 29.928 2.815 1.404 1.317

837.22 1.068 124.090 135.09 4.094 2.518 2.493

0.2589 12.0024 10.0753 0.2456 0.2535 0.2358 0.0953

162.901 1.273 100.739 59.088 1.873 1.016 0.976

469.817 3.006 146.594 93.298 2.062 1.997 1.766

0.2614 12.4944 10.4822 0.2382 0.3373 0.2373 0.1371

476.694 10.914 102.417 128.45 6.638 3.927 3.633

1161.497 16.507 117.948 118.17 6.571 4.954 3.554

0.1300 4.7394 3.3912 0.0893 0.1638 0.0844 0.0640

Scene6

6.395 0.209 15.839 28.778 1.004 0.481 0.308

3 4.893 0.266 42.159 41.932 1.132 0.834 0.733
0.0797 3.4024 2.9245 0.0508 0.0874 0.0518 0.0378

Scene7

148.093 6.455 53.018 50.355 3.838 2.027 1.819

304.365 9.946 76.110 63.195 3.909 2.364 2.102

0.0520 2.3066 2.0061 0.0359 0.0514 0.0410 0.0315

compare the robustness of the methods intuitively, Figure 7- Figure 7(b)-(h) and Figure 8(b)-(h) show the inliers obtained
Figure 8 give the results with Scenel and Scene2. Of which, by M-estimator, LMedSeig, RANSAC, FNS, SDO, L2E-
Figure 7(a) and Figure 8(a) show the initial correspondences; LSC and the proposed method, respectively. We can see
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FIGURE 6. Four sets of image pairs in different scenarios: the matching results and epipolar geometry
recovered by the proposed method. (a) Scenel, the first view; (b) Scenel, the second view; (c) Scene2,
the first view; (d) Scene2, the second view; (e) Scene3, the first view; (f) Scene3, the second view;

(g) Scene4, the first view; (h) Scene4, the second view.

that the poor results obtained by M-estimator, some good not perform well neither, as many outliers are not detected;
matchings are removed in Figure 7 (b) while many out- LMedSeig, SDO and L2E-LSC have good robustness and
liers are still kept in Figure 8(b); RANSAC and FNS do they can remove most of the outliers; the proposed method
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FIGURE 7. Robustness comparison of seven different methods with Scenel. (a) Initial
correspondences; (b) Inliers obtained by M-estimator; (c) Inliers obtained by LMedSeig;
(d) Inliers obtained by RANSAC; (e) Inliers obtained by FNS; (f) Inliers obtained by SDO;
(g) Inliers obtained by L2E-LSC;(h) Inliers obtained by the proposed method.

obtains comparatively the same results with LMedSeig, SDO Similarly, we compared the computation time for F-matrix
and L2E-LSC and there is few or no false matching in the estimation by M-estimator, LMedSeig, RANSAC, FNS,
obtained inliers. SDO, L2E-LSC and the proposed method with real images,
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(h

FIGURE 8. Robustness comparison of seven different methods with Scene2.
(a) Initial correspondences; (b) Inliers obtained by M-estimator; (c) Inliers
obtained by LMedSeig; (d) Inliers obtained by RANSAC; (e) Inliers obtained by
FNS; (f) Inliers obtained by SDO; (g)Inliers obtained by L2E-LSC; (h) Inliers
obtained by the proposed method.

which are shown in Figure 9. It can be seen that the proposed The experiments with synthetic data and real images
approach is faster than other six methods. It has good real- demonstrate that the proposed method has fairly good
time performance, the average time for computing F-matrix adaptability to noise and false matching. Comparing with
is about 30 milliseconds. other robust methods, good accuracy in fundamental matrix
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FIGURE 9. The Mean computational time using different methods with
all the test images, (b) is a partially enlarged view of the dashed
box in (a).

estimation is obtained by our approach. Moreover, it has
obvious advantage in terms of computational efficiency.

V. CONCLUSION

A very fast and robust method to estimate the fundamental
matrix from image pairs is proposed in this paper. Instead
of using the hypothesis testing strategy for outlier removal,
we integrate the outlier rejection scheme within the F-matrix
estimation pipeline. The validity of the method is demon-
strated both in simulation and experimentally. The results
show that the new approach achieves a good performance
by comparing to several other robust methods. Despite of
its robustness to outliers and noises, the computational effi-
ciency is particularly high, which is very appropriate for
practical application.

ACKNOWLEDGMENT

The authors greatly appreciate X. Armangué for pro-
viding the testing images and the implementations of
the M-estimator, LMedSeig, RANSAC, FNS methods.
The authors also appreciate the anonymous reviewers
whose comments led to substantial improvements in this
manuscript.

REFERENCES

[1] R.Hartley and A. Zisserman, Multiple View Geometry in Computer Vision.
Cambridge, U.K.: Cambridge Univ. Press, 2000.

[2] Z. Zhang, “Determining the epipolar geometry and its uncertainty:
A review,” Int. J. Comput. Vis., vol. 27, no. 2, pp. 161-195, 1998.

[3] C. Steger, “Estimating the fundamental matrix under pure translation
and radial distortion,” ISPRS J. Photogramm. Remote Sens., vol. 74,
pp. 202-217, Nov. 2012.

[4] G. M. Jog, H. Fathi, and I. Brilakis, “Automated computation of the
fundamental matrix for vision based construction site applications,” Adv.
Eng. Inform., vol. 25, pp. 725-735, Oct. 2011.

[5] Q.-T. Luong and O. D. Faugeras, ‘“Camera calibration, scene motion, and
structure recovery from point correspondences and fundamental matrices,”
Int. J. Comput. Vis., vol. 22, no. 3, pp. 261-289, 1995.

[6] Y. Hong, G. Ren, and E. Liu, “Non-iterative method for camera calibra-
tion,” Opt. Express, vol. 23, no. 18, pp. 23992-24003, 2007.

[7] Z. Zhang, R. Deriche, O. Faugeras, and Q.-T. Luong, “A robust tech-
nique for matching two uncalibrated images through the recovery of the
unknown epipolar geometry,” Artif. Intell., vol. 78, nos. 1-2, pp. 87-119,
1995.

[8] Y. Gao, J. Ma, and A. L. Yuille, “Semi-supervised sparse representa-
tion based classification for face recognition with insufficient labeled
samples,” IEEE Trans. Image Process., vol. 26, no. 5, pp. 2545-2560,
May 2017.

[9] H.C. Longuet-Higgins, ““A computer algorithm for reconstructing a scene
from two projections,” Nature, vol. 293, no. 5828, pp. 133-135, 1981.

147532

(10]

(11]

[12]

[13]

[14]

(15]

[16]

(17]

(18]

[19]

[20]

(21]

(22]

(23]

(24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

P. H. S. Torr and D. W. Murray, “The development and comparison of
robust methods for estimating the fundamental matrix,” Int. J. Comput.
Vis., vol. 24, no. 3, pp. 271-300, 1997.

X. Armangué and J. Salvi, “Overall view regarding fundamental
matrix estimation,” Image Vis. Comput., vol. 21, no. 2, pp. 205-220,
2003.

M. E. Fathy, A. S. Hussein, and M. F. Tolba, ‘“Fundamental matrix
estimation: A study of error criteria,” Pattern Recognit. Lett., vol. 32,
pp. 383-391, Jan. 2011.

M. Yang, Y. Liu, and Z. You, “Estimating the fundamental matrix based
on least absolute deviation,” Neurocomputing, vol. 74, pp. 3638-3645,
Oct. 2011.

M. A. Fischler and R. C. Bolles, Random Sample Consensus: A
Paradigm for Model Fitting with Applications to Image Analysis and
Automated Cartography. San Mateo, CA, USA: Morgan Kaufmann,
1987.

P. H. S. Torr and A. Zisserman, “MLESAC: A new robust estimator with
application to estimating image geometry,” Comput. Vis. Image Under-
stand., vol. 78, no. 1, pp. 138-156, 2000.

P. H. S. Torr, “Bayesian model estimation and selection for epipolar
geometry and generic manifold fitting,” Int. J. Comput. Vis., vol. 50, no. 1,
pp. 35-61, 2002.

G. Chesi, A. Garulli, A. Vicino, and R. Cipolla, “Estimating the fun-
damental matrix via constrained least-squares: A convex approach,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 3, pp. 397401,
Mar. 2002.

C.-B. Xiao, D.-Z. Feng, and M.-D. Yuan, “Soft decision optimization
method for robust fundamental matrix Estimation,” Mach. Vis. Appl.,
vol. 30, pp. 657-669, Jun. 2019.

F. Espuny, P. Monasse, and L. Moisan, “A new a contrario approach for
the robust determination of the fundamental matrix,” in Proc. Image Video
Technol.-PSIVT Workshops, 2013, pp. 181-192.

L. Peng, Y. Zhang, H. Zhou, and T. Lu, “A robust method for estimating
image geometry with local structure constraint,” IEEE Access, vol. 6,
pp. 20734-20747, 2018.

Z. L. Sun, K. M. Lam, and Q. W. Gao, “Depth estimation of face images
using the nonlinear least-squares model,” IEEE Trans. Image Process.,
vol. 22, no. 1, pp. 17-30, Jan. 2013.

P. Chen, “Why not use the Levenberg—Marquardt method for fundamental
matrix estimation?”” IET Comput. Vis., vol. 4, pp. 286-294, Dec. 2011.

Y. Zheng, S. Sugimoto, and M. Okutomi, “A practical rank-constrained
eight-point algorithm for fundamental matrix estimation,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit.,, vol. 9, Jun. 2013,
pp. 1546-1553.

F. Bugarin, A. Bartoli, D. Henrion, J.-B. Lasserre, J.-J. Orteu, and
T. Sentenac, ‘“‘Rank-constrained fundamental matrix estimation by polyno-
mial global optimization versus the eight-point algorithm,” J. Math. Imag.
Vis., vol. 53, no. 1, pp. 42-60, 2014.

F. Zhou, C. Zhong, and Q. Zheng, ‘““Method for fundamental matrix estima-
tion combined with feature lines,” Neurocomputing, vol. 160, pp. 300-307,
Jul. 2015.

W. Chojnacki, M. J. Brooks, A. van den Hengel, and D. Gawley, “FNS,
CENS and HEIV: A unifying approach,” J. Math. Imag. Vis., vol. 23,
pp. 175-183, Sep. 2005.

Z.-L. Sun, K.-M. Lam, and Q.-W. Gao, “An effective missing-data esti-
mation approach for small-size image sequences,” IEEE Comput. Intell.
Mag., vol. 10, no. 3, pp. 10-18, Aug. 2015.

Y. Liu, Z.-L. Sun, X. Chen, and L. Shang, “A BRMF-based model for
missing-data estimation of image sequence,” Neurocomputing, vol. 228,
pp. 65-70, Mar. 2017.

Y. Liu, Z.-L. Sun, Y.-P. Wang, and L. Shang, “An eigen decomposition
based rank parameter selection approach for the NRSFM algorithm,”
Neurocomputing, vol. 198, pp. 109-113, Jul. 2016.

L. Wang, Z. Liu, and Z. Zhang, “Efficient image features selection and
weighting for fundamental matrix estimation,” IET Comput. Vis., vol. 10,
pp. 67-78, Feb. 2016.

Y. Cheng, J. A. Lopez, O. Camps, and M. Sznaier, “A convex optimization
approach to robust fundamental matrix estimation,” in Proc. CVPR, 2015,
pp. 2170-2178.

L. Ferraz, X. Binefa, and F. Moreno-Noguer, ‘“Very fast solution to the PnP
problem with algebraic outlier rejection,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2014, pp. 501-508.

R. I. Hartley, “In defense of the eight-point algorithm,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 19, no. 6, pp. 580-593, Jun. 1997.

VOLUME 7, 2019



K. Yan et al.: Robust Fundamental Matrix Estimation Method Based on Epipolar Geometric Error Criterion

IEEE Access

KUN YAN received the B.S. degree from Sichuan
Normal University, Chengdu, China, in 2013, and
the Ph.D. degree from the Institute of Optics
and Electronics of Chinese Academy of Sci-
ences, Chengdu, in 2018, where he is currently a
N Researcher.

He was supported by the National Natural Sci-
ence Foundation of China and the Project of Young
Scholars in Western China, Chinese Academy of
Sciences. His research interests include binocu-
lar vision, computer vision, pose estimation, photogrammetry, and image
processing.

RUJIN ZHAO received the B.S. and M.S. degrees
from the Southwest University of Science and
Technology, Mianyang, China, and the Ph.D.
degree from the Institute of Optics and Electron-
ics of Chinese Academy of Sciences, Chengdu,
China, where he is currently a Researcher.

He has published relevant articles and is a mem-
ber and peer reviewer of several journals. He was
supported by the National Natural Science Foun-

! - dation of China and the Youth Innovation Promo-
tion Association CAS. His current research interests include visual measure-
ment, SLAM, and space robotic detection.

VOLUME 7, 2019

ENHAI LIU is a Researcher and a Doctoral Tutor.
He is currently the Deputy Director of the Insti-
tute of Optoelectronic Technology of Chinese
Academy of Sciences. He is a member of the
Academic and Academic Degree Committee and
is engaged in research and engineering research
on photoelectric precision measurement and auto-
matic control technology. He undertaken and com-
pleted a number of manned spaceflight and lunar
exploration in related fields. The research (devel-
opment) of the engineering, 863, and 973 engineering projects received
four awards for provincial and ministerial level scientific and technological
progress. His research interests include space optoelectronic precision mea-
surement, photodetector application and photodetection technology, signal
and information processing, optoelectronic measurement system error theory
analysis, and system integration technology research.

Mr. Liu is a member of the Chinese Optical Society, Optical Engineering
Society, and Space Optical Engineering Society.

YUEBO MA received the B.S. degree in mechan-
ical engineering from the Jincheng College of
Sichuan University, Chengdu, China, in 2014, and
the ML.S. degree in automobile engineering from Xi
Hua University, Chengdu, in 2017. He is currently
pursuing the Ph.D. degree with the Institute of
Optics and Electronics of Chinese Academy of
Sciences, Chengdu.
His current research interests include object
& detection, object tracking, measurement, computer
vision, and deep learning.

147533



