IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received September 6, 2019, accepted September 23, 2019, date of current version October 17, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2945842

QSSA: Quantum Evolutionary Salp Swarm
Algorithm for Mechanical Design

RONGZHONG CHEN'2, CHEN DONG 23, (Member, IEEE), YIN YE 12, ZHENYI CHEN?,

AND YANHUA LIU'3, (Member, IEEE)

ICollege of Mathematics and Computer Science, Key Laboratory of Spatial Data Mining & Information Sharing, Ministry of Education, Fuzhou University,

Fuzhou 350116, China

2ZKey Lab of Information Security of Network Systems (Fuzhou University), Fuzhou 350116, China
3Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing, Fuzhou 350116, China

“Department of Electrical Engineering, University of South Florida, Tampa, FL 33620, USA

Corresponding authors: Chen Dong (dongchen @fzu.edu.cn) and Zhenyi Chen (zhenyichen @mail.usf.edu)

This work was supported in part by the National Natural Science Foundation of China under Grant 61672159, Grant 61872091, Grant
U18042631, and Grant 61702105, in part by the Science Foundation of the Fujian Province, China, under Grant 2018J01793, and in part
by the Foundation of the Education Department of Fujian Province, China, under Grant JAT170099.

ABSTRACT Salp swarm algorithm is a new meta-heuristic algorithm which has excellent advantages for
solving the multidimensional optimization problem. In this paper, a hybrid model assisted evolutionary
algorithm for solving engineering design optimization problems is proposed and investigated. The purpose
of the optimizer is to improve the potential shortcomings of the basic salp swarm optimization, including
trapping in local or deceptive optima easily. On the one hand, quantum behavior can increase an individual’s
searchability, which can promote the overall optimization trend. On the other hand, the elite opposition-
based learning strategy is used to enhance the diversity of the population. Besides, mutation mechanism
is introduced to prevent the individuals of the population from being in stagnation behavior. The proposed
quantum-behaved and wavelet mutation salp swarm algorithm (QSSA) is applied on twenty-three benchmark
functions and three basic constrained engineering problems. Experimental results demonstrate that the
algorithm has excellent solution quality, and it can overcome the defect of the low convergence rate.

INDEX TERMS Evolutionary algorithm, salp swarm optimization, quantum behavior, wavelet mutation,

structure design.

I. INTRODUCTION

In the process of biological evolution, there are various social
behaviors. Different nature-inspired algorithms are creatively
proposed by researchers, such as artificial bee colony algo-
rithm (ABC) [1], particle swarm optimization (PSO) [2], [3],
grasshopper optimization algorithm (GOA) [4], and salp
swarm algorithm (SSA) [5]. However, most existing meta-
heuristic algorithms are more sensitive to the multidimen-
sionality of the problem, and it is customary to find the opti-
mal solution in a flat search area. The traditional algorithm
not only faces the space and time challenges, but also need
to ensure the accuracy of the solution obtained under non-
linear constraints. In the practical problems [6], [7], improve
efficiency is the emphasis of solution. Due to the limitations
of biological algorithms and the deficiency of self-search
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conditions, most algorithms [8], [9] tend to reach “‘premature
maturity”. To overcome the algorithm’s fall into the optimal
local solution [10], [11], the researchers propose different
ameliorative algorithms and apply their ideas in different
fields.

Inrecent years, SSA is intensely concerned by many schol-
ars owing to its fewer control parameters, fast convergence
speed, and better flexibility, which is adapted to solve com-
plex combinatorial optimization problems. The behavior of
the salp chains has been widely used due to its excellent
convergence and search accuracy. Parameters estimation of
photovoltaic cells is a typical multi-objective optimization
problem. Compared with other swarm intelligent algorithms
in designing SPVSs, the SSA algorithm shows strong com-
petitiveness, a high value of accuracy and practicability [12].
Tolba et al. [13] proposed to apply SSA for solving the
problems of RDG and SCB locations and capacities simulta-
neously on radial distribution networks (RDNSs). The article
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has focused on proposing a type-II fuzzy PID controller for
keeping both frequency and tie-line power to their nominal
values in the condition of different uncertainties. It is shown
that the I-SSO algorithm has greater performance advantages
than other meta-heuristic algorithms according to dynamic
response results are proposed [14].

According to survey statistics from the latest literature,
there are also many improvements based on the basic salp
swarm algorithm. Faris et al. [15] use the binary salp swarm
algorithm to enhance the exploration, and utilize the trans-
fer functions and crossover operator to tackle FS problems.
To accomplish microarray classification, a novel hybrid salp
swarm algorithm is proposed based on the improved version
of the bio-inspired optimization technique. Weighted-chaotic
SSA for both optimal gene selection and parameter opti-
mization of the KELM classifier, which has higher accuracy,
higher sensitivity, and better specificity [16]. Three chaotic
versions of the SSA algorithm are used to automatically
find the centroid of the document image dataset by adopt-
ing a k-means cluster [17]. On the best of our knowledge,
the authors in [18] used enhanced theory to improve the SSA,
which is called an enhanced salp swarm algorithm (ESSA).
To further enhance SSA, a modified binary Salp Swarm
Algorithm (BSSA) with different updating strategies rules
is proposed. In the Feature Selection process, the improved
algorithm is tested on 20 datasets of the UCI repository.
Experiments show that BSSA has good advantages in the
exploration and development of feature space [19].

A. ORGANIZATION OF THIS PAPER

The paper is organized as follows. In Section II, a brief
overview of the standard SSA and an improved QSSA algo-
rithm is contained. In Section III, on solving 23 benchmark
functions, experimental results of the comparison between
other methods are analyzed. In Section IV, an improved SSA
is elaborated with different operations for tackling the engi-
neering problems. Conclusions are drawn in Section V.

Il. THE BASIC SSA MODEL

The salp is a transparent organism similar to jellyfish. Cur-
rently, it mainly lives in the sea near Oceania. They feed on
phytoplankton. Scientists have discovered that the predation
strategy of the sea squirt is a chain-like behavior that relies
on the chain mechanism of the group to better forage. The
salp chain is illustrated in Fig.1. Seyedali Mirjalili proposes a
salp swarm algorithm inspired by the predation mechanism
of the salps. SSA is one of the evolutionary computation
techniques. The salp optimization algorithm is based on chain
behavior to find the optimal solution. In the SSA method,
the population is divided into a leader, which is at the front of
the chain, and followers; the leader guides the salp chain and
the followers follow one by one. In the process of predation of
the salp, the leader leads the population to the optimal food,
and the follower follows the recent salp and transmittings
food signals to maintain the flexibility of the population, and
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FIGURE 1. The predatory chain of the salp swarm.

avoid population falling into the local optimal solution. Next,
the main steps of the salp swarm algorithm will be analyzed.

Let the position vector of each salp be an N x D dimen-
sional, where N is number of search agents and D repre-
sents the dimension of continuous solution space. Hence,
the position vector of the population can be represented by
a multidimensional matrix, as shown in Eq.(1):

1 1 1
x12 Xzz X’f
) X X e X
Xj = :1 :2 :D M
N xN N
xVooxyoo.o XN

The following equation suggested to update the position of
the leader can be represented as:

c3>0.5
c3 <0.5

x! Fj + c1((ubj — Ibj)cy + 1by)

j = ()
Fj — c1((ubj — Ibj)cy + 1bj)

where X,.] is the position of the first generation leader of
the population in the j;; dimension, ub; indicates the upper
bound of j;; dimension search space, [b; indicates the lower
bound of jth dimension search space, ¢y and c3 are the ran-
dom numbers during the interval [0, 1]. The coefficient c;
is the most important parameter in the iterative process of
the algorithm because it balances between exploration and
exploitation propensities, and it can be given by:

—( 4l )2
Ccl = 26 Imax (3)

where [ is the current iteration of the algorithm and [, is the
maximum number of iterations. The function curve is shown
in Fig.2.

The position of follower salp is updated according to New-
ton’s law of motion, and its formula can be briefly described
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FIGURE 2. The function curve of c;.

as follows:

i_ 1 5
X = Eat ~+ vot ()
where i > 2, XJ’ represents the position of iy, follower salp
in jy, dimension, ¢ is time, vg indicates the initial speed, and
a:i—(‘)wherev:@.

Combined with the classical Newton, the time interval in
the algorithm is iteration, the position update time is equal to
1, and considering vo = 0, this equation can be expressed as
follows:

X' = l(xf +x7 Q)
i J
where i > 2, and Xj" represents the position of iy, follower
salp in j;, dimension.

According to Egs.(2) and Eqs.(5), the salp chains can be
formed. Based on the above explanations, the pseudocode of
the SSA algorithm can be described in Algorithm 1.

ill. IMPROVED SALP SWARM ALGORITHM

In this section, the improved salp swarm algorithm is dis-
cussed from three aspects of the quantum mechanics, elite
opposition-based, and wavelet variation mechanism, respec-
tively. The relevant content will be elaborated in the following
subsections.

A. QUANTUM-BASED SALP SWARM ALGORITHM
When solving the multidimensional modal problem, the salp
swarm algorithm has the disadvantages of slow convergence
speed and quickly falls into a local optimum. A quantum
behavior particle swarm optimization is proposed to improve
the overall performance of the algorithm [20]. Inspired by this
idea, a quantum salp swarm algorithm is proposed.

In quantum mechanics, the general state of a free particle
can be represented by a wave function.

¥ = explik - r] = explip - r/h] (6)
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Algorithm 1 Pseudocode of the SSA Algorithm.

1: Randomly initialize the positions of salps xj(i =

1,2,---,N)according to ub; and Ib;

2: while termination criteria is not satisfied do
3 Set F as the best search agent
4: Calculate the fitness value of each salp
5: Update c¢1 by Eq.(3)
6:
7
8
9

ifi < N/2 then
Update the position of the leading salp by

Eq.(2)
: else
10: Update the position of the follower salp by
11: Eq.(5)
12: end if

13: Amend the each salp that go beyond the upper
14: and lower bounds

15: Recalculate the fitness of all salps

16: Update the best position of the food source(F).
17: end while

18: Next generation until stoping criterion

19: Return F

Fourier expansion is made for plane wave functions, and it
can be expressed as follows:

o) / W(r)e Py ™

1
T (2mh)3/?

W(r) / ()P a3 ®)

1
T Qrhp2

The dynamic behavior of particles can be seen as a superposi-
tion of planar monochromatic waves, which can be expressed
as follows:
1 )
r, t) = el(p~r—El)hd3 9
VoD = o f o) PENC)

According to the theory of planar monochromatic waves and
De Broglie:

—ihVy =py, —EVY =pPy (10)
And the relationship between energy and momentum:
E =p*/2m (11)

We can get the following simplification formula:

R W
T m Y )V = e
P2 i(pr—E)/hi 13, __
fw(p)(E—ﬁ)e @ =0 (12)
Equation(12) can be written as:

'h2 r,1) = ﬁvz 1) (13)
vt =—2 Ve,

Therefore, the particle moves in the one-dimensional poten-
tial field V(r), and the motion equation can be written as
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follows:
2

ih—y@r,t)=|—=—V "+ V@) | v 1) (14)
ot 2m

where 7 is Planck constant, and m is the masses of the particle.

The SchrAdinger wave equation reveals the fundamen-
tal laws of material motion in the microscopic world. It is
assumed that the particles have quantum behavior, which
expresses different wave functions. In the one-dimensional
Delta potential field, the potential energy distribution of the
potential well where the particle centered on point X, as fol-
lows:

V(r)=—yé(r) 15)

where y is the potential well depth, we can get the wave
function of the particle based on Eq.(14).

s,l

. 1 ’x;,tﬂ Ot
)\ (x;,t+l> == exp L—’ (16)
Li, .t
hZ
L = W (17

L is the characteristic length of the Delta well. The probability
density function of particles in the jth dimension can be
expressed as follows:

21, —
: 1 it+1 it
0 ()= e[ -———2] )
’ J J
( Li,t Li,t

In the one-dimensional Delta potential field of the particle,
its motion equation satisfies the SchrAdinger formula, so the
position of the particle is uncertain at any point in time.
However, in the basic salp swarm algorithm, the individual
position of the salp must be determined in the correspond-
ing iteration. To obtain the precise position of individuals,
the state of individuals can be collapsed from a quantum state
to a classical state by using the Monte Carlo method.

lret1l = a - |re] - In(1/u) (19)
where 1,41 = x; — P, u is a random number.
Xk+1 =Pxa-|xx — P|-In(1/u) (20)

Therefore, the position update strategy for the leading salp
is described as follows:
O s M =x) n(1/e2) e3 205
gt sho—cr- (M —x!) In(1/c2) 3 <05
2D

where s}’ ; is the global optimal value, M is the average of the
local optimum values and is defined in Egs.(22).

N
Zi:lpi,t
N

M= (22)
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FIGURE 3. Distribution of the particle.

In the basic salp swarm algorithm, the individual of the
population lacks communication as leading salps have com-
prehensive guidance for the subsequent update the position of
the follower salps. The introduction of quantum mechanics
can effectively enhance the mobility of salps. The results
show that quantum mechanics has better convergence speed
and robustness, and the solution results are excellent.

B. ELITE OPPOSITION-BASED LEARNING
Reverse learning [21] is a new strategy in the field of intel-
ligent computing, and it has the advantage of low cost and
high effect of solving problems by comparing with other
algorithms. In multi-dimensional complex issues, the quality
of solutions is often affected by many factors. Most group
intelligence algorithms use the random optimization method
to search space and find globally optimal solutions until some
termination criterion is reached. Search strategy based on
reverse learning can significantly enhance the searchability
of the population.
« Definition 1. Opposite Point
Let X; = (xi,1,%2,....%,p) be a solution in D-
dimensional space. Its reverse solution Y; = y; 1, i 2,
.., yi.p is defined by

Y; = ubj + Ibj — X; (23)

where [Ib;, ub;] is the dynamic boundary of the j; search
space and its defined as follows:

lbj = min (x,‘,j)
ubj = max (xi,j) (24)

« Definition 2. Elite Opposite Solution

It is observed from Fig.3 that the convergence trend of
the particles. For a solution in population, its fitness
function is expressed as f(X). For a problem to be min-
imized, if f(X) < f(Y) then Y can be replaced by X in
the algorithm iteration. Therefore, random and reverse
population are simultaneously evaluated, and a better
solution among them is regarded as the next-generation
solution.
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In this paper, the position of the follower salp will only
be affected by the leader salp. There is no doubt that
the chain predation behavior of salps leads to a single
solution. Non-dominated solutions are often viewed as
elite individuals in multi-objective optimization prob-
lems, and these individuals are considered to enhance
the population to find the global optimal Pareto frontier.
Follower salps in the algorithm are also essential parts of
the population, so analyzing the elite inverse solution of
the follower salps can enhance the algorithm diversity.
Formally, elite reverse solution [22] can be expressed as
follows:

X (elite) = k(ubj + b)) — X](normal) (25)

where k is a random number generated by a uniform
distribution in [0, 1]. X!(normal) and X/."(elite) are the
positions of follower salp and their elite reverse solu-
tions, respectively. Calculate the fitness for them sepa-
rately, and choose the best individual among them as the
next generation while preserving reverse elitism prop-
erty up to some predefined stopping criteria. Therefore,
elite reverse strategy is introduced at the position of the
follower salps can provide more appropriate and robust
candidate solution.

C. WAVELET MUTATION

It is well known that mutational manipulations are often used
in mutated individuals to improve convergence. In the salp
swarm optimization, we introduce wavelet mutation [23] into
the later stage of evolution to maintain population diversity.
The specific details of the wavelet variation can be briefly
described as follows. Each follower salp of the population
has an opportunity for variation, which is controlled by a
probability of mutation p, € [0, 1]. For each individual,
a random number between 0 and 1 is generated for assessing
the variability condition that if it is less than or equal to

)?}(t) = [le 1), sz(t), . ,x;(t)], the mutation operation will

take place on that individual. Next, we suppose Y]l-(t) is the
selected individual of the path generation, and its range is
inside the boundaries [Ib;, ub;]. )_(;(t) will be mutated accord-
ing to the following formula.

X0 + 0 x (uby = 20) . ifo >0

xX(1) = l, l. , (26)
xj(t)—i—o X xj(t)—lbj), ifo <0
with
1 -’ x
o = %6‘ 2 cos (5 (;)) (27)

where a is dilation parameter that usually changes with the
individual’s iteration to achieve the goal of fine-tuning.
Therefore, the curve trend of different dilated Morlet
Wavelets can be seen in Fig.4. It can be seen from the fig-
ure that the amplitude of v, o(x) will be scaled down as the
parameter a increases. This variation character reflects the
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slight adjustment of the algorithm at a later stage. Since more
than 99% of the total energy of the morlet wavelet function
is concentrated in the interval [—2.5, 2.5], x can be randomly
obtained within the interval [—2.5 x a, 2.5 x a]. The value
of the dilation parameter a increases with the change of //L,
where / represents the current number of iterations and L
represents the maximum number of iterations. This linear
change can increase the search performance of the algorithm.
Therefore, the expression for the dilation parameter can be
obtained as follows.

Ea)m
_ e x(1=1 ) inen

(28)

where £, is the shape parameter of the monotonic increasing
function, and g; is the upper limit of the parameter a. The
domain of parameter a varies from 0 to 1, and it follows the
increase in the number of iterations / and the tendency to
change nonlinearly is shown in Fig.5. It is suggested that the
value of a is between 1 and g1(= 10000) through the scien-
tific analysis of specific experiments. The characteristics of
the morlet wavelet function can help the algorithm jump out
of the local optimum during the search phase to achieve fine
tuning.
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X},iter =0

Calculate the fitness,update the position of
the leading and follow salp
Xj(leader) =F; + cl((lllbj = Ibj)c,+1b;y)
) 1 i
X;j(follower) 7E(X]! +X;™)

The stopping criterion is met?

No
Quantum mechanics and elite reverse
learning mechanisms
b e 11 (leader) = Skt cl(M-le_t)ln(I/cz)
X} (elite) = k(ub; + Ib;) — X}(normal)

Yes

| Recalculate the fitness of each salp and sorted

l

A random individual is selected for wavelet mutation ——
20 Xi(t) + 0 (ub,- - x;(t)),if ¢>0
xi(®) + o(X}(H) - 1b;),if 6 < 0

Best solution

FIGURE 6. Flowchart of the QSSA algorithm.

In this section, a wavelet mutation optimization algorithm
is proposed to find the optimal solution in multi-dimensional
problems. Morlet wavelet mutation can coordinate perfor-
mance and expand the contradiction of the search area.

The salp-chain predation behavior is a dynamic structure in
which elements are closely linked to maintaining a dominant
relationship between individuals. This rigorous structure has
a good advantage in biological predation. Multidimensional
problems are often limited by the individual’s distribution and
convergence speed, so it’s hard to find the optimal solution.
This paper introduces quantum mechanism to improve the
position of the followers and looks at the quantum changes
of individuals from physics. Next, elite reverse learning is
used to allow follower salp changes their current position,
and overcome the deficiency which absolute obedience. In the
final stage of the iteration, some individuals are randomly
selected for wavelet mutations to help the algorithm jump out
of the locally optimal solution. The SSA and QSSA are the
two-layer loops, so the time complexity is O(n?). Flowchart
of the QSSA algorithm is proposed in this paper, as shown
in Fig.6. The QSSA optimizer is proved its superiority with
high performance and accuracy for solving many complex
problems.

D. BENCHMARKS AND EXPERIMENTAL SETTINGS
The proposed QSSA discussed in the preceding sec-
tions will be tested on some uni-modal, multi-modal, and
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TABLE 1. Uni-modal benchmark functions.

Function Dim Range fmin
Fi(z) =Y, 22 n [-100,100] 0
Fo(x) = o0 Jaa| 4 [T0 |l n [-10,10] 0
Fy(e) = Xy (35 xj)2 n [-100100] 0
Fy(z) = max; {|z;],1 <i<n} n [-100,100] 0
Fs(z) = 0100 (241 — 22)° n [-30,30] 0
+ (2 — 1)?]

Fo(z) = 3", ([zi +0.5])2 n  [-100,100] 0
Fr(z) =31, iz} 4+ random|0, 1] n [-128,128]

fixed-dimension multi-modal benchmark functions under the
same conditions in this section.

As we all know, unimodal functions has only globally
optimal but no locally optimal, so they are more capable
of detecting the development capabilities of the algorithm.
Multimodal functions are often unable to find global opti-
mal solutions because of many disturbing factors. Therefore,
multi-modal functions can detect the exploration ability of the
algorithm.

To validate the effectiveness of the QSSA proposed in this
paper, we firstly conduct experiments on twenty-three well-
known benchmark functions in this section to determine the
related optimal parameters, and the maximum iteration is set
to 500 for test functions. Table 1, Table 2, and Table 3 list the
characteristics of twenty-three benchmark functions.

In the experiment, the population size is set to 30. The
parameters ¢ and c¢3 are the random number of [0, 1], and
the value of c¢| decreases from 2 to 0 in a linear way through
the iterations. The experiments are executed in computer
intel i3-4150 CPU 3.50 GHz and 4G memory with system
Windows 7 Ultimate. The programs are written in MATLAB
R2016a and perform 30 times for every function. Without loss
of generality, the performance is also estimated in terms of
the fitness mean (Mean) and standard deviation (Std) of the
fitness errors.

E. COMPARISON RESULTS ON THE BENCHMARK
PROBLEMS

In this section, tables and figures are shown in a very
intuitive way to improve the overall visual effect. It is
mainly compared with the recent meta-heuristic algorithm
(ESSA [18], SSA, CSSA [30], GWO [25], WOA [35], PSO,
GSA [27], FEP [28] and CS [29]). Different key parameters
of intelligence algorithms can be seen in table 4. In the uni-
modal benchmark function, as shown in table 5, the improved
QSSA algorithm achieves the best ranking in most of the
test functions except for the fs and fs functions. For the
multi-modal benchmark function(fy, fi0, fi1, fi2 and fi3),
the improved algorithm can find the optimal solution than
other algorithms. In the fg function, although the QSSA algo-
rithm fail to achieve a good ranking, it obtain the smaller
standard deviation. Fixed-dimension multimodal benchmark
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TABLE 2. Multi-modal benchmark functions.

Function Dim Range fmin
Fy(z) = Y1, —;sin (m) n [-500,500] -418.9829%5
Fy(z) = >, [¢2 — 10cos (2mz;) + 10] n [-5.12,5.12] 0
Fio(z) = —20exp (—0.2, [L 500 w?) — exp (L 00, cos (27@)) +20 + ¢ n (-32.32] 0
Fui(z) = go55 S0, @2 — 1‘[1 | cos (f) +1 n [-600,600] 0
Fia(z) = Z{10sin (my1) + X177 (i — 1)* [1 4 10sin? (7yi41)] + (yn — 1)°} n [-50,50] 0
+3°" , u(=w,10,100,4)
yo=1+ 2t
k(z; —a)™ z; > a
u (x4, a,k,m) = 0 —a<z;<a
kE(—z; —a)™ z; < —a
Fi3(x) = 0.1{sin? (37z1) + 2? L (@i = 1)2[1 +sin? (37, + 1)] n [-50,50] 0
+ (2 —1)? [1+sin? (272n)]} 4+ >0 u (24, 5,100,4)
TABLE 3. Fixed-dimension multi-modal benchmark functions.
Function Dim Range fmin
—T1
Fia(z) = (500 +332, m) 2 [-65.65] 1
Fis(x) = 2i2, [ai - ié(j’bf‘;’fﬂ 4 [551 0003
Fig(z) = 42} — 2.123 + 28 + 2120 — 423 + 42] 2 [-5,5] -1.0316
Fir(z) = (m R 6)2 +10(1— 2~ ) cos 1 + 10 2 [-5.5) 0.398
Fig(x) = [1 + (z1 4+ 22 4+ 1)? (19 — 1421+ 322 — 1422 + 62122 + 323)] 2 [-2,2] 3
X [30 + (2z1— 3w2)2 18 32z + 123:1 4+ 489 — 362172+ 27:52)}
fro == ciexp (=20 aij (xj — piy)? 3 [1,3] -3.86
fi9 = — Z?,l ciexp [ — Z? 1 aij (x5 — p”)2 6 [0,1] -3.32
For(z) = -5, [(X —a) (X —a)T + cz] 4 [0,10] -10.1532
Pas(z) = =31 [(X —a;) (X —a;)" + cz] 4 [0,10] -10.4028
Fas(z) = — 210, [(X —a) (X —a)T + cz] 4 [0,10] -10.5363
functions can detect the ability of the algorithm to jump out TABLE 4. Updating strategies.
of the local optimal solution. For the multimodal benchmark - -
problems in Table 6, one can see that QSSA can obtain Algorithm Key parameter Updating f(fm:llz
better mean values than other algorithms. Table 7 shows the ESSA c1 c1 = 267( )
convergence accuracy between the improved algorithm and SSA - e = 2 (2)?
other algorithms. In this table, NA indicates “‘not available” CSSA o1 oap1 = c- 0 (1— 03)
value. Specifically, the QSSA algorithm can find the optimal ot ° °
solution in the fis, fi6, fis, f19, f21, f22 and f>3 benchmark GWO a a=2-2
functions. Although the QSSA algorithm fails to find the best WOA a a=2-2
solution in the comparison with other benchmark functions, PSO . W=y = 20y =2
the results are not far from the algorithm with the highest
ranking. For example, the gap result of the improved algo- GSA Go G(t) = Go x e=o!/T
rithm and PSO are only 0.0994 in the f14. The results prove FEP T n;(3) = n:(j) exp(7'N(0,1)
the stability and robustness of the QSSA in the benchmark +7N;(0,1))
function. IR
In this paper, the benchmark functions f1, f3, 7, fo, fi5 and cs 3 o= { [(1+5) sin (zl) }
f1s are selected for the trajectory, the average fitness value pr(+42)2z

and the convergence curve are shown in Figure 7. Individual
convergence trajectory is used to evaluate the performance of
the algorithm, we only record the first generation trajectory of
the salps to observe the search area in this problem. Observing
the trajectory of the benchmark function, it is found that most
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individuals will change their positions randomly and tend to
be stable in the iteration. Another indicator is the change in
the average fitness, especially the initial period of the algo-
rithm. The average fitness reflects the global optimization
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TABLE 5. Results of uni-modal benchmark functions.

Function  Index QSSA ESSA SSA CSSA GWO WOA PSO GSA FEP CS
f1 Mean 0 5.12E-38  3.29E-07 1.40E-09 1.27E-27 1.41E-30 1.31E-05 2.53E-16  0.00057 5.78E-03
Std 0 2.44E-37  592E-07 3.31E-10 3.11E-27 491E-30 2.39E-05 9.67E-17  0.00013  2.41E-03
Rank 1 2 7 6 4 3 8 5 10 9
f2 Mean  2.47E-323  2.01E-25 19111 4.14E-06  8.52E-17  1.06E-21 0.0076 5.57E-02 0.0081 2.08E-01
Std 0 7.74E-25 1.6142 1.68E-06  6.62E-17  2.39E-21 0.0262 0.19407 0.00077  3.17E-02
Rank 1 2 10 5 4 3 8 6 9 7
f3 Mean 0 3.36E-35 1.50E+03  5.40E-10 2.43E-05 5.39E-07 2.13E4+03  8.97E+02 0.016 2.63E-01
Std 0 1.79E-34  707.0529 1.94E-10  8.14E-05 293E-06  878.7605 318.96 0.014 2.97E-02
Rank 1 2 9 3 5 4 10 8 7 6
fa Mean  4.94E-324  4.25E-18  2.44E-05 1.08E-05  7.69E-07  0.072581 16.4104 7.35E+00 0.3 1.43E-05
Std 0 2.1E-17 1.89E-05 1.55E-06  6.51E-07 0.39747 4.3603 1.74145 0.5 4.83E-06
Rank 1 2 6 4 3 7 10 9 8 5
fs Mean 34174 28.8803 136.5676 8.9354 27.1786 27.86558 106.6465 67.543 5.06 0.008
Std 3.7151 0.0298 1.54E+02 0.0173 0.814 0.763626 104.3333 62.225 5.87 0.054
Rank 2 7 10 4 5 6 9 8 3 1
fe Mean 5.71E-11 3.3387 1.72E-07 1.77E-10 0.70757 3.116266  5.59E-05 2.50E-16 0 6.17E-04
Std 2.35E-10 0.8243 2.44E-07 3.89E-11 0.3632 0.532429 1.42E-04 1.74E-16 0 2.8E-05
Rank 3 10 5 4 8 9 6 2 1 7
fr Mean 6.92E-05 8.82E-05 0.169 9.06E-05 1.72E-03  0.001425  6.05E-02 8.94E-02 0.1415 0.02855
Std 6.33E-05 6.94E-05 0.0686 9.27E-05 1.10E-03  0.001149 0.0206 0.04339 0.3522 0.001277
Rank 1 2 10 3 5 4 7 8 9 6
TABLE 6. Results of multi-modal benchmark functions.
Function  Index QSSA ESSA SSA CSSA GWO WOA PSO GSA FEP CS
fs Mean -7014.46 -4830 -7460 -2710 -5776.12 -5080.7 -9347.8 -2821.07 -12554 -2128.91
Std 117.69 709.30 634.6745 639.7074 682.0101 695.796  754.483 493.037 52.6 0.0084
Rank 4 7 3 9 5 6 2 8 1 10
fo Mean 0 0 55.4523 1.30E-10 3.1496 0 58.0837 25.968 0.046 0.246
Std 0 0 18.2751 2.26E-10 4.0294 0 13.1635 7.47 0.012 0.0018
Rank 1 1 10 4 7 1 9 8 6 5
f1o Mean  8.88E-16 8.88E-16 2.8401 7.03E-06 1.027E-13 7.4043 0.9353 0.0621 0.018 4.1E-10
Std 2.01E-31 0 0.6581 2.41E06 1.60E-14 9.89757 0.9909 0.2363 0.0021 5.2E-09
Rank 1 1 9 5 3 10 8 7 6 4
f11 Mean 0 0 0.2291 1.64E-09 6.08E-03 0.00028 1.9E-02 27.702 0.016 0.1852
Std 0 0 0.1295 8.19E-10 0.0111 0.00158 0.0232 5.0403 0.022 0.039
Rank 1 1 9 3 5 4 7 10 6 8
fi2 Mean 1.72E-09 0.2724 6.8274 0.1462 0.03669 0.33967 0.9099 1.79962 9.0E-06 0.01258
Std 6.51E-09 0.1555 2.7192 0.0627 0.0175 0.21486 1.0678 0.9511 3.0E-06 4.1E-09
Rank 1 6 10 5 4 7 8 9 2 3
f13 Mean  8.15E-09 2.8525 21.3116 0.0015 0.62239 1.88901 0.119 8.8991 0.0002 0.485
Std 3.44E-08 0.3519 16.9894 3.49E-04 0.2837 0.26608 0.2396 7.1262 0.00007 6.8E-08
Rank 1 8 10 3 6 7 4 9 2 5

ability of the population. It can be seen from the figure that
average fitness decrease in proportion to the iteration num-
ber. The convergence curve comparison is used to evaluate
the advantages and disadvantages of this algorithm. In the
convergence curves of various basic intelligent algorithms,
QSSA can find the optimal solution faster and more accurate
than other algorithms. The comparison with traditional meth-
ods suggests that the QSSA can achieve better results than
other algorithms. Therefore, we have great significance for
the improvement of the classic SSA.

Quantum behavior mechanisms can make leading salps
generate quantize variation, which can better prevent the
population from falling into local optimization. At the
same time, the elite reverse learning strategy increases the

VOLUME 7, 2019

“survival of the fittest” of the follower salps, which can make
the algorithm evolve in a better direction. In the later stage
of iteration, taking into consideration the wavelet mutation
strategy, and we mainly mutate the individuals whose fitness
value is less than a certain value. The correctness of theoreti-
cal analysis is validated by experiments, so we conclude that
QSSA can find the optimal solution of the model within a
very short time.

IV. ENGINEERING OPTIMIZATION OF IMPROVED
ALGORITHM

In this section, the propose algorithm is used to optimize
engineering structure problems. It is difficult to solve in
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TABLE 7. Results of fixed-dimension multimodal benchmark functions.

Function  Index QSSA ESSA SSA CSSA GWO WOA PSO GSA FEP CS
f14 Mean 1.0974 3.9752 1.1301 NA 4917 2.111973 0.998 5.8598 1.22 1. 4236
Std 0.3033 3.6295 0.5659 NA 4.125 2.498594 0 3.83 0.56 1.3E-02
Rank 2 7 3 10 8 6 1 9 4 5
f1s Mean 3.32E-04 0.0024 0.0027 0.0015  5.08E-03  0.000572  3.20E-03  0.003673 0.0005 5.0E-04
Std 6.34E-05 0.0053 0.00543 3.5E-04 0.0086 0.000324 0.0071 1.65E-03  0.00032  1.11E-04
Rank 1 6 7 5 10 4 8 9 2 2
fie Mean -1.0316 -1.0316 -1.0316 NA -1.0316  -1.03163 -1.0316 -1.0316 -1.03 -1.0316
Std 0 6.5189E-06 5.78E-14 NA 2.64E-08  4.2E-07 6.71E-16 4.88E-16 4.9E-07  1.49E-08
Rank 1 1 1 3 1 1 1 1 2 1
fi7 Mean 0.3979 0.3979 0.3979 NA 0.3979 0.397914 0.3979 0.397887 0.398 0.3979
Std 5.48E-07 0.000011 1.26E-14 NA 8.86E-07  2.7E-05 0 0 1.5E-07  3.24E-06
Rank 2 2 2 5 1 4 2 3 1 2
fis Mean 3 3.0002 3 NA 3 3 3 3 3.02 3.0014
Std 0 0.00036902 2.66E-13 NA 427E-05 4.22E-15 1.26E-15 4.17E-15 0.11 0.00258
Rank 1 2 1 5 1 1 1 1 4 3
fi9 Mean -3.8628 -3.8261 -3.8628 NA -3.861 -3.85616  -3.8625 -3.86278 -3.86 -3.268
Std 4.52E-16 0.0533 1.1304E-11 NA 0.0023 0.002706 0.0014 2.29E-15 0.000014  1.85E-05
Rank 1 8 1 10 5 7 4 3 6 9
f20 Mean -3.2621 -3.1703 -3.22526 NA -3.2568 -2.98105 -3.2518 -3.31778 -3.27 -3.32185
Std 0.0664 0.1191 0.05772 NA 0.0885 0.376653 0.1086 0.02308 0.059 7.21E-03
Rank 4 8 7 10 5 9 6 2 3 1
f21 Mean -10.1532 -10.1478 -7.33 -9.8918 -9.3955 -7.04918 -6.2948 -5.95512 -5.52 -9.728
Std 3.6134E-15 0.0143 3.3158 0.187 2 3.629551 2.9249 3.73708 1.59 0.2881
Rank 1 2 6 3 5 7 8 9 10 4
fa2 Mean -10.4029 -10.4004 -8.480225 NA -10.2241  -8.18178 -7.0398 -9.68447 -5.53 -9.873
Std 7.23E-15 0.005 3.094025 NA 0.9701 3.829202 3.5751 2.014 2.12 0.32034
Rank 1 2 6 10 3 7 8 5 9 4
f23 Mean -10.5364 -10.5331 -8.64195 NA -10.0838  -9.34238 -7.7011 -10.5364 -6.57 -9.7822
Std 9.03E-15 0.0051 3.1316 NA 1.7514 2.414737 3.6189 2.6E-15 3.14 0.5002
Rank 1 3 7 10 4 6 8 1 9 5

precision because engineering optimization is a typical
NP-hard problem in combinatorial optimization. So the
swarm intelligence algorithm is widely considered to the
best way to get the optimal solution compared with other
methods. Through comparing the latest known optimizer,
the experimental results show the validity and availability of
the improve salp swarm algorithm.

A. WELDED BEAM STRUCTURE DESIGN PROBLEM
Welded beam design is a typical optimization problem in
the civil engineering field, which can be described simply
as finding the minimum cost under a particular constraint.
Four main variables affect the optimization results, includ-
ing the length of the bar attached to the weld (/), the weld
thickness (%), the height of the bar (7), and the thickness of
the bar(b)(as shown in the Fig.8). It can be expressed as:
XT = {x1, x2,x3, x4} = {I, h, ¢, b}. The optimization model
is expressed as follows:

F() = 1.10471x2x; 4+ 0.04811x3:4(14.0 + x2)  (29)
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we can get the relevant constraints according to the engineer-
ing conditions.

g1(x) = T(x) — 13000 < 0
2(x) = o(x) — 30000 < 0
g3(x)=x1—x4 <0

g4(x) = 0.1047x}

+0.04811x3x4 (14.0 +x2) — 5.0 < 0
g5(x) =0.125—x1 <0

g6(x) = 8(x) —0.25 <0

87(x) = 6000 — Pc(x) <0

(30)

where :

— "2 27/ //x_2 2
T(x) \/(f)+ rr2R+(t),
6000 , MR

B V2x1x2 o
X2
M = 6000 (14+ E> :

/!
)
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FIGURE 7. Welded beam design problem.
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TABLE 8. Comparison of best obtained results for welded beam problem.

TABLE 9. The volume result of the planetary gears.

algorithm T1 To T3 T4 fx) function T1 T9 T3 f(=x)
QSSA 0.2028 3.3757 9.0368 0.2057 1.7076 QSSA 17.0000 85.7125 5.17496 9575582.48
SSA 0.2057 3.4714 9.0366 0.2057 1.7249 SSA 17.0000 89.8279 5.28399 10462655.01
SA-MFO 0.2057 3.4724 9.0367 0.2057 1.7245 GOA 17.0007 88.7268 5.21927 10083622.46
MFO 0.2051 3.4847 9.0365 0.2057 1.7249 WOA 17.0000 87.6907 5.39555 10649564.48
MBA 0.2057 3.4705 9.0366 0.2057 1.7248 SCA 17.0015 87.0031 5.70173 11801315.78
MHS-PCLS 0.2057 3.4705 9.0366 0.2057 1.7249 MFO 17.0123 86.1056 5.34533 10277624.19
NM-PSO 0.2058 3.4683 9.0366 0.2057 1.7247 MVO 17.0570 90.3776 5.39662 11051503.93

LV

b
1 L

FIGURE 8. 2K-H planetary transmission design problem.
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FIGURE 9. Trapezoidal leaf spring design problem.
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504000 2.1952
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P.(x) = 64746.022 (1 — 0.028234613) x3.x]
0.1 <x; <2,0.1 <xp < 10,
0.1 <x3<10,0.1 <x4 <2. (31)

The results of the welded beam design problem are shown
in table 8 in terms of SSA, SA-MFO [30], MFO [31],
MBA [32], MHS-PCLS [33], and NM-PSO [34]. From the
experimental results, QSSA obtaine better solutions than
other algorithms after 500 iterations.

B. PLANETARY GEAR TRANSMISSION DESIGN PROBLEM

Planetary gear transmission design is a multivariable,
multi-constrained, nonlinear optimization design problem.
The volume of the 2K-H planetary transmission mechanism
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is optimized based on the acquired background knowledge in
this paper, and we can see the basic structure model diagram
from Fig.9.

Our optimization model is mainly affected by three vari-
ables including the number of sun gear(Z), the fixed width
of the inner gear ring(B) and the gear modulus(M). It can
be expressed as: XT = {x1,x, x3} = {Z,B,M}. The
optimization model is expressed as follows:

f@) = Zx3 (v +2.5%x (32)

we can get the relevant constraints according to the engineer-

ing conditions.

YI=x1-17>0

Y2=x-10>0

Y3=x3—2>0

Ys=x)—5x3>0

Ys=17x3 — x>0

Y = x%x%xzk (33)

—Ap Ty u/(u—2) =0

Y7 = [ian sin(m /k)

—igg +1lx1 —2>0

Ys = x1x32x2k

—ArT, (4.69 —0.631Inx1) >0

where :
Ay = 8003KAKﬁH/ [UH]2 ,Ap = 133KAK/3]:/ [oF]
k=3,Kys=14,Kgy=1.1,[ou] =790,T, =138,
u=157,i,qg =4.14, Kgr = 1.15, [op] = 158 (34)

To assess the precision of the QSSA compared to other
optimization algorithms. Simulation results of the QSSA
compared to SSA, GOA, and different state-of-the-art intelli-
gence algorithms like WOA, SCA [35], MFO, and MVO [36]
for optimizing the volume of 2K-H planetary transmission
mechanism are recorded in Table 9. Simulation results indi-
cate that the result of Planetary reducer volume optimization
is satisfactory, and application of the improved algorithm to
the engineering is feasible.

C. TAPER-LEAF SPRING DESIGN PROBLEM
A small piece of variable-section leaf spring is an important
part of the vehicle, and the purpose of the design is to reduce
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the weight of the objective function. The objective function
is constrained by four variables(h ), length(h,), thickness(/y),
blade width and the number of blades(/)(as shown in the
Fig.10). It can be expressed as: XT = {x1,x,x3, 04} =
{h1, ha, I, 1}

The mathematical expression for taper-leaf spring is as
follows:

f(x) = 2pbn[x1x3 + x203
+0.5 (x4 —x3 —B3) (x1 +x2)]  (35)

Taking into account the arrangement of steel spring, stiffness,
strength, material, size and manufacturing process of the steel
spring, the following constraint equations can be established.

g1X)=x1—H; >0
eX)=Hy—x>0
gsX)=x-x1-1>0
g4X)=x3>0
gX)=L/2—x4>0

K — K,
g6(X) = K, —

g1(X) =0l — —— >0
while :

X3 > (g — 1) <2ﬂ—1 ,
2y 5P ( )
SP(xp — x1
s(X)=1[o]r —
§ nzb [x1 (xa — I3) — x2x3]
[(M — k) —X3} =0
X3 — X1
else :

(36)

x3 < (x4 — 13) PR ;
X

2
_ 6P (x4 — I3) -

gs(X) = [o]2 >0

nbxy
where :

6EJ. 1
K= 32§ =
x4 n 12

x4 — I3 3 X3 3
X4 x4 — 13
(=Y (=
X4 X1

p=78x10"%b=90,n=3
Hy=8,H,=15L=1720

K, = 0.008, K. = 176, 7 = 0.92

[o]1 = 350, [o]> = 500, I3 = 40
P=16170,E = 2.1 x 10° (37)

3
nbx;

From Table 10, we observe that QSSA has the lowest
optimizing accuracy for solving the taper-leaf spring. The
design of this article can make the structure of the taper-leaf
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TABLE 10. The results of taper-leaf spring.

algorithm T 9 T3 T4 f(x)

QSSA 8.0000 12.6497  54.8482  557.3966  24.0948
SSA 9.5718 13.2140 89.2402 586.6462 27.7736
GOA 8.0095 13.4735 60.1924 592.7502 26.5856
WOA 8.0000 13.6283  50.0000  596.6981 27.0605
SCA 9.8358 12.3987 67.9163 547.8393 25.5024
MFO 8.8835 13.1039 75.8601 576.9112 26.3953
MVO 8.0000 14.0163  61.0710  615.3451 28.2643

D

Car

-
I

FIGURE 10. Comparison of algorithm results: function, trajectory, average
fitness, and convergence.

spring cross section more reasonable and ensure its stability
and smoothness.

V. CONCLUSION AND FUTURE DIRECTIONS

Due to the effect on salp swarm optimization, we have pro-
posed a improved SSA algorithm in this paper. The main
contributions of this work can be summarized as follows.
Firstly, quantum mechanics are used to update the position
of leading salps and enhances the global search ability of the
population. Secondly, we applyA the elite reverse learning
strategy toA guide the follower salps, which can keep the bal-
ance between exploration and exploitation. In the later stage
of iteration, taking into consideration the wavelet mutation
strategy, and we mainly mutate the individuals whose fitness
value is less than a certain value. So that, the probability that
the population escapes from the locally optimal region can be
improved. A large quantity of simulation data indicates that
the improved algorithm can obtain better solutions than other
algorithms in both uni-mode and multi-modal benchmark
functions. It is ideal for solving complex engineering opti-
mization problems in the real world, including welded beam
structure optimization, planetary gear transmission optimiza-
tion, and taper-leaf spring optimization.

Although the QSSA algorithm has good performance in
solving single-objective problems, but the study had its lim-
itations. We are not sure whether the algorithm has a good
solution for multi-objective problems and dynamic optimiza-
tion. These problems will be the focus of future research.

The future work includes studies on how to extend QSSA
to solve more problems and explore the efficiency of it
on engineer problems. It’s a new way to improve the SSA
combines with other optimizers, and more tests should be
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conducted in this way. Besides, the optimal values of the
parameters in the proposed methods will be investigated in
the future.
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