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ABSTRACT To solve the problems of full-state constraints in trajectory tracking of surface vessels,
a backstepping technique combining a novel integral barrier Lyapunov function (iBLF) with neural network
and sliding mode is proposed. Moreover, the control law is extended to the control problem with input
saturation. First, the iBLF-based control approach is applied to the control design. The purpose of the iBLF-
based approach is to deal with the constraints without transforming the constraints bound into the tracking
errors bound. Second, the Neural Networks (NN) is used to handle with the system uncertainties, and a single
parameter online adjustment is used instead of the weights online adjustment of the neural networks to realize
the adaptive estimation of a single parameter. Third, defining an auxiliary analysis system to deal with the
effect of input saturation on the system, an effective control approach under input saturation is realized.
Furthermore, it is proved that the designed control law can guarantee the uniformly ultimately bounded
stability of closed-loop system and system state can not violate the constraints. Finally, the simulation results
of trajectory tracking control of the surface vessel show that the proposed control approach can effectively
solve the control problem of nonlinear systems with full-state constraints, system uncertainties and input

saturation.

INDEX TERMS Surface vessels, backstepping, full-state constraints, input saturation, neural network.

I. INTRODUCTION

In recent years, with the increasing needs of the marine
engineering [1], the higher accuracy of the trajectory tracking
control of surface vessels for different mission require-
ments is strongly needed. Research on the nonlinear con-
trol approaches for surface vessels have become a hot
topic [2]-[5]. State constraints is a challenge in trajectory
tracking of surface vessels. Once the system violates the
constraints during the operation, the system dynamic per-
formance degradation may occur, and it is difficult to meet
the control requirements. In order to stabilize the system
under the constraints, artificial potential field [6], [7], model
predictive control [8], [9] and invariant set [10], [11] are
applied. Compared to these approaches, the barrier Lyapunov
function (BLF) approach is used to handle the system con-
strains by Lyapunov-based control design technique, which
averts the need for explicit solutions. Ren et al. [12] pro-
posed a class of constraint control approach based on BLFs.
By constructing the explicit BLFs, the controller for con-
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strained control system can be designed by combining Lya-
punov direct method with other mature control approaches.
Tee et al. [13], [14] used the BLFs to solve nonlinear system
control problems with constraints. Ren et al. [15] applied
the BLF control approach to the control design of nonlinear
systems with state constraints. However, most of the refer-
ences using BLF-based approaches adopt a log-type BLF
to deal with the state constraints of nonlinear systems. This
approach converts actual constraints into system tracking
error constraints for indirect processing rather than directly
dealing with actual constraint problems. In view of this situ-
ation, Tang et al. [16] applied the integral barrier Lyapunov
functions (iBLFs) to deal directly with a class of perturbed
uncertain nonlinear systems with full-state constraints. Fur-
thermore, Tang et al. [17] presented an iBLF control scheme
to the control design of an uncertain robotic manipulator
with joint space constraints. Li ef al. [18] applied the iBLF
directly to deal with the nonlinear systems with uncertain
parameters and full-state constraints. To highlight the effec-
tiveness of the BLFs approach, in recent years, some scholars
have applied this approach to the trajectory tracking control
problem of the surface vessels to effectively solve the output
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constraints and full-state constraints in the control process.
Zhao et al. [19] combined the log-type BLF with the Neural
Networks to design the controller for uncertain multiple-
input and multiple-output (MIMO) surface vessel with output
constraints. Based on the same approach, Yin et al. [20] com-
pleted the control design for the MIMO surface vessel with
full-state constraints and uncertain parameters. Few iBLF
approaches are used to solve the trajectory tracking control
problem for surface vessels with full-state constraints. There-
fore, it is of novelty to handle trajectory tracking problem in
the control design process for the surface vessels.

In the aforementioned control designs using BLFs,
the input saturation of actual system are hardly considered.
Input saturation is a potential problem for systems since the
control input calculated by the controller may exceed the
maximum that the system control input can produce. This
would give rise to degraded performance and even insta-
bility of the nonlinear systems. In the presence of input
saturation, Wen et al. [21] designed an adaptive control
law for uncertain nonlinear systems under external distur-
bance and asymmetric saturation, where input saturation
was handled by using a smooth function. Wang et al. [22]
proposed a robust adaptive fuzzy control algorithm for pure-
feedback stochastic nonlinear systems with input saturation.
A piecewise smooth function is introduced to approximate the
saturation function. Veksler et al. [23] developed model pre-
dictive control (MPC) for the dynamic positioning systems
combining control design with allocation. They applied the
optimization problem of MPC to handle actuator saturation.
Perez and Donaire [24] presented a passivity-based control
scheme for dynamic positioning system, where input satu-
ration was handled by using the anti-windup compensator.
Chen et al. [25] proposed a robust adaptive neural network
control approach for MIMO nonlinear systems with input
saturation. The auxiliary design system was introduced to
analyze the influence of input constraints. Du et al. [26]
designed robust controllers for dynamic positioning vessels
with external disturbances and input saturation and intro-
duced auxiliary dynamic systems to solve input saturation
problem. The approaches proposed in the above references
effectively solve the system input saturation problem, but they
all neglect state constraints that exist in the actual system.
Therefore, it is necessary to solve the problem of input sat-
uration and state constraints simultaneously.

Moreover, vessels may unstable without close-loop con-
trol, especially in transit while withstanding waves, currents
and wind. Fossen and Grovlen et al. [27] designed dynamic
positioning control law by using backstepping approach,
where disturbances including waves, currents and wind were
neglected. In addition, the vessels dynamics are highly non-
linear and contain unknown parametric or functional uncer-
tainties. If these factors are not taken into consideration, this
may lead to degraded performance or even instability. In the
presence of the system uncertainties, He et al. [28], [29]
proposed a boundary control approach for a flexible marine
riser. Yang et al. [30] constructed a class of disturbance
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observers to approximate external disturbances of the surface
vessels. Ghommam et al. [31] used Lyapunov direct method
and backstepping technique to design a class of surface vessel
path tracking controller, where the unmeasured state of the
system was solved by nonlinear state observer. Yu et al. [32]
proposed a sliding mode controller for surface vessels. How-
ever, all these approaches need to be based on accurate mathe-
matical models. Compared with other approaches, in the field
of control engineering, neural networks (NN) is one of the
most effective method to deal with system uncertainties. With
the help of NN approximation, it is not necessary to spend
much effort on system modeling in case such modeling pro-
cesses are always highly difficulty and time consuming. For
example, backstepping technique and adaptive neural control
are used to solve the control problem of a class of uncertain
nonlinear systems [33]-[36]. The sliding mode approach was
combined with neural network in backstepping design for
uncertain nonlinear systems [37]-[39]. Although the above
references use neural networks to deal with system uncer-
tainties, the disadvantage is that once the number of network
nodes increases, the adaptive parameters will increase, which
is not conducive to real-time control. Therefore, we utilize
a NN minimum parameter learning technique to overcome
above defects.

This paper investigates trajectory tracking control for sur-
face vessels with full-state constraints, uncertainties and input
saturation. The main contributions of this paper are summa-
rized as follows:

1) Compared with [20], a novel iBLF is employed for
MIMO surface vessel full-state constraints control
design to deal with constraints directly, without con-
verting constraints into upper bounds of tracking errors.
In addition, the full-state constraints approach based
on iBLF is extended to the study of input saturation
approach.

2) The uncertainties of the surface vessels are approxi-
mated by RBF neural network. Compared with [19],
the ideal weight matrix estimation of the neural net-
work is converted into a single parameter estimation,
which reduces the adjustment of adaptive parame-
ters and accelerate the solving process of adaptive
law.

3) [19] and [20] consider the output and state constraints
for surface vessels, but they did not consider the phys-
ical constraints of the system actuators. Therefore,
we adopt a dynamic auxiliary analysis system to pre-
vent actuators input signal saturation.

4) It is proven that all signals in this closed-loop system
are bounded according to Lyapunov method.

The organization of this paper is as follows. In Section II,
the problem formulation and preliminaries are given.
In Section III, a iBLF-based backstepping control design
combined with neural network sliding mode approach is
proposed for the surface vessels with state constraints, input
saturation and uncertainties. The closed-loop system sta-
bility is analyzed as well. In Section IV, the simulation
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FIGURE 1. Frames and states of the surface vessel.

studies demonstrate the effectiveness of the approach. The
last section concludes the work in this paper.

Il. PROBLEM FORMULATION AND PRELIMINARIES

A. PROBLEM FORMULATION

A surface vessel in the horizontal plane is shown
in Fig. 1 [26]. The origin O of inertial frame O-XyYpZy
is fixed to the Earth, and can be chosen as any point on
the earth’s surface. The OX( axis and the OY( axis point
to north and east, respectively. OZ, axis points towards the
center of the earth. The body-fixed frame A-XYZ is a moving
coordinate frame which is fixed to the surface vessel. The
origin A of the body-fixed frame is located at the gravity
center of the surface vessel. The AX axis points to the head
of the surface vessel. The AY axis points to right and is
perpendicular to AX axis, and AZ axis is perpendicular to the
plane of XAY. Then the three-degrees-of-freedom motion of
surface vessel vectorial model is

7 = R{)v
My +Cv)v+Dwv =1t+d() (D

where § = [x,y,¥]7 € R3; in the earth-fixed frame x, y
and i are the position and the heading angle, respectively;
v = [uvr]’ € R3, u, v and r are surge, sway, and yaw
velocities, respectively; R(yr) is the rotation matrix given by

cosyy —siny O
R(y) = | siny cos ¥ 0 2)
0 0 1

M e R3*3 is the unknown symmetric positive inertia matrix;
C(v) € R**3 is the unknown centripetal and Coriolis torques
matrix; D(v) € R3*3 is the unknown hydrodynamic damping
matrix. T = [11, 72, 13]7 is the control vector produced by the
propulsion system, consisting of control forces 77 in surge, 12
in sway and moment t3 in yaw. Due to the physical constraints
of actuators can be described as follows.

Timax> Tci = Timax
Ti =\ Tci» Timin < Tei < Timax 1= 1,2,3 3)
Timins  Tei < Timin

where Tjua and Tjyi, are the maximum and the minimum
generalized control forces that the surface vessel’s propul-
sion system can produce, respectively. T, = [T,1, Tc2, 3]t
is the control vector in surge, sway and yaw.

VOLUME 7, 2019

d(t) = [di(t), da(t), d3(1)]T denotes the disturbance vector
in surge, sway and yaw.

For convenience, let x; = 75, x = v, then (1) can be
described as

X1 = R(xx2
X2 = M7 [~Cxp)xs — Dxo)xa + T +d(1)] (4

where x1 = [x11, x12, x1317, X2 = [x21, x22, 32317

The two main aspects of control objectives are as follows:

1) The system state x1(¢) can tracks the desired trajectory
na = Xa1 = [xa11. Xa12, xa131" = [xa, ya. Yal’.

2) Full-state constraints are satisfied. Under the control
input, the state of the surface vessel system does not exceed
the predetermined limit. The control objective is mathemati-
cally described as tl_l)rgo [lx1(t) —xq1(t)|| = ®,and & € RT is
an adjustable small constant, where x1(¢) € Qy1,X2(¢) € Qx2.
The constraint sets are Q21 = {x;; € R, |x1i| < ketis
i=1,2,31t>0 C RQu = {x2 € R, |x2] < keai,
i=1,2,3,t > 0} C R3 where kci;, keoi € RT represent
constraint constants.

Assumption 1: For any k.1; > 0, there exist positive vectors
Y1 = [Y11, Y12, Y131 and Ag = [Ago, Ao1, Ao2]”, satisfying
|xq1:(8)] < AO(i—l) < ke1i, such that, Ve > 0,1 = 1,2, 3.
The desired trajectory x4; and its time derivatives satisfy
[Xq1:()] < Y1;.

Assumption 2: The external disturbances d(t) is bounded,
and the Euclidean norm of disturbances vector satisfies
Al <d.

Remark 1: From the point of view of energy limitation,
the external disturbances acting on the surface vessel can be
considered as time-varying but bounded signals. Therefore,
Assumption 2 is reasonable.

B. PRELIMINARIES

Lemma 1 [40]: For any positive constant k., kp,, let Z; :=
{z1 €R: —kgy <721 <kp,} CRand N :=R! x Z; c RHH!
be open sets. Consider the following system

n = h(t,n) 3)

where n := [w,z1]7 € N,and h : Ry x N — R*! s
piecewise continuous in ¢ and locally Lipschitz in zj, uni-
formly in ¢, on Ry x N. Suppose that there exist functions U :
R! — Ry and V| : Z; — R, continuously differentiable
and definite in their respective domains, such that

Vi(z1) = oo aszi — —kq, or 20 — kp, (6)
rilol) <= U(w) < ya(l|ol)) @)
where y; and 3, are class Ky functions. Let
V(n) = Vi(z1) + U(w), and z;(0) belong to the set
21 € (—kgq,, kp,). If the inequality holds:
. 1%
V=—h<0 3
an

then z;(#) remains in open set 21 € (—Kkq,, kp,), ¥Vt € [0, 00).
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FIGURE 2. The control block diagram of the proposed approach.
Lemma 2 [22]: Considering the dynamic system as where ¢; = [ci1,¢i2, - -, c,-q]T is the center of the receptive

follows:

$(t) = —rd(e) + kp(t) ©)

where r and « are positive constants and p(¢) is a positive def-
inite function. Then, for any given bounded initial condition
H(19) > 0, we have ¢(t) > 0 for 1 > 1.

Lemma 3 [16]: The functionals Vy, ;,i = 1, -+, n, described
as Vi, (zi(0), qa, (1)) = [§' lok2do [k2 — (0 + qq;)*], satisty,

i
2.2
kaz)

< ¢
Vi= k% — x?
cl I

(10)
for |x1,i| < ke;.
(2) RBFNN: The RBFNN can approximate any nonlin-
ear function in a compact set with arbitrary precision.
In control engineering, the RBFNN is typical used to
compensate the unknown continuous packaged func-
tions because of its good capabilities in the function
approximation [41], [42].
For any unknown continuous function f(Z) : R? — R, where

Z=z1,22,.... 29| €z (1D
is the input vector, and 27 C RY is a compact set. Thus,
f@=WTHZ)+:2). ZecQy (12)

in which &(Z) denotes the approximation error, and
W* = (Wi WS, ., Wyl e RY is an optimal weight vector
described as

W* = arg min { sup |f (Z) — W'l (Z)’ (13)
WeRd | ZeQg

where W € RV represents the estimation of W* and N
is the number of neuron nodes in the hidden layer, and
HZ) = [hM(Z), hh(Z),...,hn(Z)]" € RN is chosen as
the Gaussian basis function vector, which has the following
exponential function:

2
Nzl

hi (Z) = exp [ -
1

:|, i=1,2,---N (14)
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field and b; is a positive scalar, and it is the width of the j th
neuron Gaussian function of the hidden layer.

1Il. CONTROL DESIGN

In this section, a trajectory tracking control law is presented to
achieve the control objective in Section II. The control design
process consists of three parts based on the backstepping
technique. First, the virtual control law is designed to satisfy
output constraints; Second, an actual control law is designed
to eliminate the velocity tracking error and satisfied full-
state constraints. The neural networks and sliding mode are
utilized to process system uncertainties; Third, we set up an
auxiliary analysis system to process input saturation. The
stability of the closed-loop system is analyzed as well. The
overall control block diagram is shown in Fig. 2.

A. FULL-STATE CONSTRAINTS
To directly deal with the system state constraints, the
iBLF-based control approach is used in system design. The
purpose is to make the system state variables x1(¢), x2(?)
satisfies the constraints of x;(¢) € Qyx1, X2(¢) € Q2.

Step I: Define the position error vector z; =
[z11. 212, z13]" s

z1(1) = x1(t) — xa1(7) (15)
Deriving (15) and substituting x1(¢) into (15) yields
21(1) = R(x1(0)x2(1) — Xa1 (1) (16)

where x,(¢) is a virtual control input. The derivative of the
component z1(¢) is written as

21i(1) = Ri(x1(0))x2(t) — Xq1i(1) 7)

The system state x(7) need to be constrained. We define
the following iBLF as

3 2l
Vx1(z1i, Xa1i) = Z/ 3
iz 70 Kk

cli

Ok .
Celi ~d®; (13)
—(©; +xq11)

VOLUME 7, 2019



Y. Wang et al.: Tracking Control With Input Saturation and Full-State Constraints for Surface Vessels

IEEE Access

where x1(¢) € 21, then Vi is a continuously differen-
tiable and decreasing positive definite function. The follow-
ing inequality holds.

1 3 3 1
§ : 2 2 : 2

z 71 = Vel < Zli,/(;
i=1 i=1

wk?ll
sdo  (19)
kZ; — (@z1; + sgn(z1)Aoi-1))

The derivative of V. with respect to time along the subsystem
trajectory zp is

3 3
. aViii. Vi .
Ve1(t) = 21 + XJ41i
e1(1) E oo 1i E oL dli
l—l z=1
21iZ oViii .
—Z Kot Z Wi (0)
— clt - xll i=1 9xq1i

Utilizing the approach of integration by parts and the trans-
formation of ®; = wzy;, i = 1, 2, 3, we have

3 3 2
) AT ) ki
= ' = ! <k2 -

where

v1i(z1i, xdu)) 2D

keti log (ke1i + z1i + xq1)(ke1i — xq1i)
2z1i  (keti — 210 — Xd1)(ke1i + Xa1i)

Let z;; = 0. In terms of the L’Hopital’s rule, there exists
zl—lglo vii(z1i, Xq15) = kfli/(kfli — xﬁli). Based on Assump-
tion 1, there is x1(t) € $21. Therefore, v1;(z1;, X41;) in the
neighborhood of zj; = 0 is defined and bounded.

Assumption 3: From Assumption 1, we can furtherly
assume that there exists a positive real vector Ay =
[A](),A]],A]Q]T. a; satisfy |ay;| < Aj—1) < ke2iyi=1,2,3.

Design the virtual control law a1 () = [et11, ¢12, 0513]T

v1i(z1i, Xqa1i) =

k2, — x?
cll — X,
—Anzi + 7 Xd11 - Y11

2L112

k: x
—A12z12 + %Mu Y12 (22)
cl2

- x123 .
Xd13 * V13
cl3 _

oq:RT

k
—An3ziz + -

where Ay, i = 1, 2, 3 is positive design parameter.
Based on the above design, we have
2Lk 1)z2

3 2 2 3
Vxl(t)—_zkz ”21"'2 K2 _ 2

i=1 “cli i=1 cli — i

k>

(23)

where R (x1) is the i th line of R(x;1), and the coupling
term Zl 1 clthR (xl)zz/( i xlzl.) will eliminate in the
step 1L

Step II: Define the velocity error vector zo = [z21,
222, 22317 as

22(1) = x2(1) — o1 (1) (24)

VOLUME 7, 2019

The system state x»(¢) in step II needs to be constrained,
therefore, we define the iBLF candidate as

1
Vi = Ve 1, xa1) + Vo (220, a1i) + ZMZ2 (25)
where

'Bikc22i

k2 — (Bi + 1)

Vio = Z/

Vi2 in the set Qy is a continuously differentiable
and decreasing positive definite function. The inequality
holds

2
wk

kZ; — (wz2i + sgn(z20)A1(i-1))?

do  (26)

Under the Assumption 1 and Assumption 3, V] in the set
Q41 and €2y- is also a valid candidate for the iBLF. Deriving
V1 with respect to time along the error signal trajectory,
we get
k>

3 2 2 3
. Z 21iRi(x1)z2
l(t) Z k2 ) < 121 Z 61122 l 2

i=1 cli

3 k2 22i20i 3 AVioi
1521 .
+y A4y 8ax1’o:11+z2MZ2 27)

i i=1

Utilizing the approach of integration by parts and the
transformation of 8; = wzy;, we get

3
Z 0Vyoi
day;

i=1

2

i(z

c21 21'

— v2i(z2i, alz)) (28)

where

keai log (ke2i + z2i + 1) (keai — 1)
220 (keai — 200 — ai)(keoi + 1)

Let zp; = 0. In terms of the L’Hopital’s rule, we have

l1m vi(22i, a1;) = kczl/( i ai.).Based on Assumption 3,

vi(zai, 1) =

there is |a1i| < keoi. Therefore, y2i(z2i, a1;) in the neighbor-
hood zp; = 0 is also defined and bounded.
Differentiating z» with respect to time, we have

=Mt +d(t) — Cx2)xs — Dx2)x2] —&  (29)

In terms of the properties of generalized inverses of vectors
combining (27) and (29) whenz, = [0, 0,017, 2l I)* =0,
we get V| = —Z 1 (i Cllzll/kdl xlzi) < 0, which is
asymptotically stable by the Barbalat lemma. Considering
z # 10,0017, 2@t = 1, without consider-
ing the disturbances, input saturation and the uncertain-
ties of modelparameters, the control law is designed as
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follows.
3
k2, zuRT (x1)
_ clicll
T=f—Kn-) S5
-1 Keti li
2i(22i +Otl )] . Aoik% 23,
—(z )+Z( A = — il + 52
ke — 21 ke — x5
(30)
where f = —C(x2)x — D(x2)x2 — Ma is a continuous

function of x1,x; and &, K = KT € R33 s positive definite
design matrix, RiT is the ith line of RT, and 1y, € RT,
i =1, 2,3 is positive design parameter.

B. SYSTEM UNCERTAINTIES

In practice, the parameters M, C(v) and D(v) may be
unknown for a surface vessel, and the system is affected
by external disturbances d(¢), which make control law (30)
difficult to realize. Due to good approximation performance,
RBFNNSs are usually used to compensate for unknown con-
tinuous function f = [f1, f2, f3]T in control law. Then the i th
degree-of-freedom RBFNNs algorithm is

hi —exp(——”Xi_cinz) i=1,2, - ,m j=1,2,--m
i be] ’ ’ 1) 1) L) k] k) k]

(31)

fi=wiThi+e (32)

where X; and basis function b; = [hi1, hia, - - -, him]? are

the input and output of the i th network, respectively; ¢; and
w} are the i th neural network approximation error and ideal
weight, respectively.

Yin et al. [20] used the RBFNNSs to approximate the uncer-
tainties in the system. and the adaptive control of neural
network without model information is realized. The unknown
nonlinear function f € R? in each degree-of-freedom needs
to be approximated by neural network and estimated by adap-
tive parameters. However, too many parameters need to be
adjusted, which will increase the difficulty and complexity of
system performance adjustment and analysis, and also bring
inconvenience to real-time control.

To solve above problem, a single parameter online adjust-
ment is introduced to replace the weights of the neural net-
work to realize adaptive control based on single parameter.
Therefore, we take w; as the estimation weight vector of i th
neural networks. Let w; = w;" —w;, The Frobenius norm of w;"
satisfies |[W}||[F < Wimax, and we define a single parameter
as

& = max {|Iwy|% i =1.2.3] (33)

where £ € R, obviously & is an unknown positive con-
stant because ||wlf"|| is unknown Define & as an estimate
value of £, W = [ﬁ) 1s w{ , W3 ] as an estimate welgh matrix
0~f wW* = [w’l"T w;T,w3T] then we get & = £ — &,
W = W* — W. Define h(X) = [hT,hY hI1" as basis
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function, X = [xg s oel , T]T is the input vector to the neural

network. We can utilize the following operators [44].
- T
*oh(X) = WTThl , w;Thz, w;Th3:|

R T
Woh(X) = [W]hi, W} ho, W3Th3]

r T
h(X) 0 h(X) = h{hl,hghz,h§h3]

T
T T T
22022 = Z21221, 227222, 123Z23] (34)

The neural networks W o h(X) approximates W* o h(X),
thatis f = W oh approximates f = W* o h + e,
e = [e1, &2, e3]7. then we have f =f — f.

Assumption 4: For all X € Qy,the approximation error
&(X) is bounded by a positive constant ¢y . Thatis ||e]| < en.

We define the following functions as:

0, z2=1[0,0,01"
H = 35
(22) { 1, Otherwise 35)

Consider zo = [0, 0, 0] from a practical point of view,
once the system reaches the origin, control performance is
the best, that is not necessary to take control action for less
power consumption [43]. From (23) to (28), we can easily
get Vi < 0 without considering the neural networks. The
Barbalat lemma can be employed to prove the stability in this
case.

If the neural network approximates the unknown nonlinear
function to compensate for the control law, we need to con-
sider the Lyapunov function candidate as V = V; + &2 / 2r.
Here, the single parameter error energy function £ is intro-
duced to replace the weights estimation matrix of the neural
networks in the closed-loop system.

For the unknown parameter &, the adaptive law is designed
as follows.

. 3
£ =H @) [;7 gz%inh,-u2 = wrs] (36)

where r > 0,a > 0, o > 0. wr indicates that the
correction constant is used to prevent the estimate value from
increasing to the maximum, so as to enhance the robustness
of the closed-loop system.

Remark 2: From Lemma 2, when S (O) > 0, then for all
t > 0, we have s(t) > 0. In fact, utilizing 3; as an estimate of
& for E(O) > 0 is always reasonable in the actual situations.

The advantage of sliding mode control is used to overcome
the approximation error. Considering the backstepping con-
trol design step 11, the sliding mode variable structure control
is introduced as follows.

s=22 37
Derivation of equation (37) combined with (27), (29), (33)
and (36), the control law yields,

3
k> le (x1) | BN
T =H (20) —E CZ;—_)Cz—Kzz—@Zzéo(hoh)
i=1 cli 1i

—@)T O - ﬁSgn(m)} (38)

VOLUME 7, 2019



Y. Wang et al.: Tracking Control With Input Saturation and Full-State Constraints for Surface Vessels

IEEE Access

where (-) is the right term of the generalized inverse (z )t
in equation (30), and —7sgn(z») is a robust term to overcome
the neural network approximation error &, where 7j = ey +d,
sgn(zz) = diag(sgn(z21), sgn(z22), sgn(z23)).

Remark 3: Tt is worth noting that zo = [0, 0, 0]” implies
the perfect tracking performance of the systems output and
the control action should not be taken and the adaptive law
é‘ = 0.Forz, # [0, 0, O]T, the controller takes control action,
and the adaptive law begins to update online.

C. INPUT SATURATION

The input saturation is that system actuator can only provide
a limited range of control signals. Due to the physical limita-
tions of the vessel actuators, large control forces and moments
are difficult to achieve. Here, input saturation compensation
can be achieved by defining a auxiliary analysis system. The
auxiliary analysis system is defined as follows:

e€

HeHZf(ZZ“ (S)e +8 ||e|| -

¢=H@) [0,0, 07 ,

(39)

llel]| <o

where f (221, 8) = Yo, [z2i8i + 0.5878, e = [e1, ez, 317
is the state vector of the auxiliary analysis system, K, =
K Z eR33isa positive definite design matrix, § = t — 7,
and o > 0 is a small design constant. The auxiliary analysis
system (39) can avoid the singularity problem due to taking
¢ =1[0,0,0]" when |le|]| < 0.

Remark 4: The input saturation needs to satisfy the actual
physical conditions. That is, there is always a control input,
which enables the system to achieve output tracking with
input saturation.

Finally, we design the control law as follows.

3
k leR (xl) 1 2
Tc=H(Z2){—Z°1’2—2 Kzp — >—z&o(hoh)
= ko — Xy 2a

+Kpe — (23) () — ﬁsgn(zz)} (40)

where K=K Z € R3*3 is positive definite designed matrix.

According to the above three parts, we can conclude the
following theorem.

Theorem 1: Consider the surface vessel (1) in the pres-
ence of full-state constraints, input saturation, and unknown
uncertainties under Assumptions 1-4. If the initial conditions
satisfies x1(0) € Q1 := {x1; € R, |x1i| < ke1iyi = 1,2, 3}
x0) € Qo = {x € R |xil < keiyi = 1,2,3},
under the virtual control law (22), actual control law (40),
and adaptation law (36), then the following conclusions hold.

1) The tracking errors are bounded.
2) The system full-state constraints are never violated.
3) All signals in closed-loop system are bounded.

The stability of the closed-loop control system are respec-
tively discussed as follows.
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Proof:

A). When z5 # [0, 0,0]7.

1). Select the Lyapunov function candidate for the whole
closed-loop system consisting of (1), (33), (37), (39) as
Vo = Ve (z1i, Xa1i) + Vxo(22i, 1)

i Loy L
Pt T s TRt

Differentiating the equation in (41) with respect to time, and
substituting equations (27), (29), (35), (36), (37), (39) and
T=1.+3$6 into Vs yields

3 2 2

. Mk 7> Aik%s .25

Vz(t) = _Z l Cll ll - Z l C2l 22l
— cl

2
i _xu i—1 kap — X3

+Zz ZQE o(hoh)+ W*oh]

) KZz +z2 e +d — nSgn(zz)] +23Kpe

+238+ele+ —EZzzlnh,nz ~wé§ (42

For the auxiliary analysis system, we consider the follow-
ing two sides.
(a) When |le|| > o, in terms of (39) and Young’s inequal-
ity, we obtain
Té Tk 3 51— <875 475
e'e = —e ee—glzmzl—z +e

3
1
< —eTK.e - §_ ]: |22:8:] + EeTe (43)
1=

Expanding terms zg[W* o h] and zg[—zﬁ o(ho h)/2a2]
in equation (42), we obtain

Th]
23 [W* o h] = (221, 222, 23] W2Th2
Th3
3
=D 2w Th; (44)
i=1

| N
z§|: 2 a2k o (ho h):| = 525l 2. 23]

T
221 hi h
X 222 o hghz
223 h3Th3

’%
L
= -5 58 ) Glll? @)
i=1

In the light of equation (44) and Young’s inequality, taking
the maximum value & of ||w* | |2 we obtain

23 [W* o h] SZzzlhTh + a (46)

Continuing to utilize Young’s 1nequality, we obtain

i i & (47)
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Substituting (43), (45), (46) and (47) into (42), we obtain
3 2 3 2 2
. Ak 22 Aoik%.25
Va(t) < —Z—kzl cli 12’ - Z —kzl C_2’x22’ — 20 Kzp
i=1 "cli [ i=1 "2 2i

1 1
—i—EzzzH—Ee TKIKne +738 —e'K,e

w 3,
?E-i-ia

3 2 3 5, 22 2
< Z )“]lkclzzlz _ Z Mik %
= 2 2 2

i=1 kCll - xll i=1 kai — X

1
- [Amm(K) - 5} 2

1 1 w -~
- [Amm <Ke - 51{51{,,) - 5} ele — 352

(48)

1 (2
- Z |22ibil+5e"e — —& +
P 2 2

Based on Lemma 3, the following inequalities are easy to
be proven that

3 21i
_ Z )‘zllkcltzlz E_Z/ )\'llkcll®l 2d®i (49)
— kclt _xll i—1 Y0 clz —(®i+x41i)
3 .
A 2i k2 B
_Z 221 c2,721 < _Z/ 22’—02'&261/31. (50)
i=1 kc2l x21 i—1 Y0 kc2i —(Bi + 1)
then
Va(t) < —p1Va(®) + Ci (51)

where p; with C; are positive constants.

2 [minK) — 1]

mln()x 1 i) ) min()LZi),

p1 = min | ax(M) T (52)
2 [,\min (Ke - 5K,{K,,) -5 @
3 2
C g +7a (53)

where Amin(-) and Apax () are defined as the minimum and the
maximum eigenvalues of the matrix(-), respectively.

(b) When ||e|| < o, in terms of (39) and Young’s inequal-

ity, obtain
e =0 (54)
S KEKne < 3¢ K Kne + o KT Kall - (59)
05 < 22lo + 21181 (56)

Substituting (43), (45), (46) and (47) into (42), and utiliz-
ing (54)-(56), we obtain

. Mik2 22 O Aok 22
. i > i)
i=1 “cli i=1 "c2i 2i
1 N
—{—zg[——zﬁ o(hoh)+ W*oh]
— 23Kz +7) [e +d — fisgn(z2)] + 23 Kpe
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+208 + > ZSZZZ,IIh P — wéé

2 . 2
)‘hkclzzh )“211%21'12;‘ T T
) — 3 ) _ZZKZZ +12z2
i=1 kclt _xll i=1 kai X

1 1 [
— ¢ KiKne + o |IKKnl| + 11812 = &

2
—i—zéz—}- §612
2
. Z Aik cllzll o 23: kzikczngz
-z m_xn i—1 k4221_x21

- [xmin(K) — 118z

1 w -~
- Exmmm,{Kh)eTe — 752 +0?||K} Kl

1 3
+ 511811+ %52 128 (57)

2
Similarly, we use (49) and (50) to get

Va(t) < —paVa(t) + G2 (58)
where pp and C, are positive constants

min(Xy;), min(i;), M’

p2 = min Amax (M) (59)
Amin(K Kp), wr
2nwT 2 1 2, Ty 3,
C =07 ||Kp Kpll” + 811"+ =&°+ =a (60)
2 2 2
Synthesizing (51) and (58), we obtain
Va(t) < —pVa() + C (61)

where p = min(p1, p2), C = max(Cy, C»). To ensure p > 0,
the design parameters K, K, and K, satisfy the following
conditions:

Amin(K) > 1 (62)
1 1

Amin | Ko — =KTKp | > = (63)
2k 2

Multiplying both sides of inequality (61) by ¢”’, we obtain
d
E(Vz(t)e’”) < Ce” (64)
Integrating (64) over [0, ¢], (64) further becomes
C C C
0<Va®) = —+ (Vz(O) - —) e P < Va(0)e " + —
o o o
(65)

It’s well known that every term in (41) is positive, then the
following inequality holds:

3
1 2 / clz
= 7 = do;
2; ! Z ki o+

1

IA

Vat) < Va(O)e ' + % (66)
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,3,'](?2-
-z #dﬂi
Z » Z/ k3 — (Bi + 1)
—pt C
< Va(t) < Vo(0)e ™ + — (67)
0
1 C
Ez{ Mz < Va(t) < Va(0)e P + > (68)

From equation (41), we can obtain

3

21i(0) @ k li
oy =3 [T i
i=1 Y0 Ll, —(®; +x41i(0))
3 pzi0) N
D T w0
)y = B+ anO)

1 S BN 2 1] 5
+ 5 1201 + 5 [0 — €|+ le@IP  (69)
2 2r 2
Then, the compact set of the error signals z; and z, are
obtained as

1= {2 e Bzl < VW1 = 0}
2 i= {20 € Rll0]l = VW.1 = 0]

w
N {0 e R ol < |7 12 o]

Similarly, we have
1.y _x . C
5%‘ < Wa(t) < Va(0)e ' + — (70)
0

The compact set of the error signals £ is obtained
Qg == &0 e RIEO) = VWr.1 2 0]

where W = 2(V2(0) 4+ C/ p).

(2) In terms of (65), let V»(0) + C/,o b € RT, and
we have V»(¢) < b, Vt > 0. According to the definition of
the BLF, it can conclude V() — oo. When |x1;|] — o0
and |xp;] — oo, i = 1,2, 3. Because of the boundedness
of V(t), we know that |x1;| # kc1; and |xpi| # keoi,which
always remain in the constraint sets 2, and Qy,. Similarly,
based on Lemma 1, x{(¢) and x,(¢) are kept in their respec-
tive constraint sets 2,1 and €2, under the initial conditions
x1(0) € Q41 and x2(0) € Qy0, Vi > 0.

(3) By choosing the appropriate parameter Aj; to satisfy
the initial condition |a;(0)] < ki, |a1i(t)| < ke can be
obtained under the control law. It has been proved in 2) that
there is |xa;| < ke2i, Where |xp;| = |z2; + ay;], so we get
lo1i(®)| < keoi, @ = 1,2,3, V& > 0 under Assumption 3.
From (36), it can be in turn verified the boundedness of
adaptive laws é From (65) we can conclude that auxiliary
design variable e is bounded, and converge to a compact
set asymptotically. The proof of Theorem 1 above shows
that input saturation exists when the auxiliary design system
satisfy the condition ||e|| > o.If ||e|| < o, it means that there
is no input saturation, then we get § = [0, O, 01%,s07 = 7,
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and the control input 7 is bounded. Thus, t. is bounded.
Consequently, all signals in closed-loop system are bounded.

Remark 5: The constraint constants k.j; and k.p; consid-
ered here can be given according to the actual operation
requirements of the system. Furthermore, the state constraint
constants need to satisfy condition k.1; > |x41il, ke2i > |1il,
i=1,2,3.

B). Once zo = [0, 0, O]T,WhiCh means the control effect
has reached the best, the control action will not be taken.

Based on (36), (39) and (40), it is easy to know that
the adaptive law £ = 0, the auxiliary design variable
e = [0,0,0]7 and the control law T, = [0, 0, 0]7, such that
the Lyapunov functions V3 in (41) can be rewritten as

Vy = ko de; 71
2 Z/ % <O+xd1,>2 7D

11

Differentiating the equation (71) with respect to time, then
substituting (17) and (21) yields

3 2 2 3
V Al[kclth kclzzllR (x1)z2
VZ:‘Z +Z P (72)

i=1 "cli i=1 cli — i

Substituting z = [0, 0, 017 into (72), we obtain
3 2 .2
. Mik7 .z
Va=-) :—kz‘ Al <0 (73)

i=1 "cli i

It’s easy to get Vo (1) < V»(0), V¢ > 0 from the property of V>.
Based on (71), we obtain

1 3 3 21i
SDITECOEDS /
i=1 i=1

0; kczll
de; < V2(0) (74
—(®; +xd11)2

clt

where V>(0)=Y"3_, f&i® g, k2hd® JK2; = (©i+x41/(0).
The compact set of the error z; is obtained as

21 = {20 e Rz 0]] < vV2V20),1 = 0]

Similarly, it is easy to prove that the closed-loop system
signals are bounded and the state does not violate the con-
straints according to the discussion in A).

The proof is ended for the discussions about two institu-
tions.

IV. SIMULATIONS
In this section, to validate the proposed control approach,
a simulation is carry out on the tested vessel CyberShip II
[45], [46]. We divide the simulation into two parts. Part I: the
desired position trajectory is an ellipse. Part II: The desired
position trajectory is similar to [19], it is a more general
trajectory.

The desired position trajectories of Part I and Part II are
chosen as follows
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Let xg1 = [xq11,x%a12,%a13)" = ng = [xq,ya. ¥al’,
where Part I: x; = 100cos?, yg = 50sint, ¥y = tan™! %,
Part II: x4 = 5sin 0.5¢,y; = 10cos 1.1¢, ¢y = % sint.

The system model parameters are given as below.

The inertia matrix M

nii 0 0

M= 0 my my

0 m3 m33
myp = m—X;
myp =m—Y;
my =m-—Y;
m3y = mxg — Nj

m33 = I, — N;

The centripetal and Coriolis torques matrix C(v)

0 0 c13
C(v) = 0 O c23
cz1 e 0

c13 = —(m—Y;)v — (mxg — Yp)r

c3 = (m— X;)u
c31 = (m—Y;)v + mxg

c3p = —(m— Xp)u
and the hydrodynamic damping matrix D(v)

dip 0 0
0 dy d
0 dz ds3

di = =Xy — Xuultt] — Xyutt®
dyp = =Y, = Yy|v| = Yilr|
dyy = =Y, = Yy [v| = Yy 1|
dzp = —Ny — Nyy|v| — Npy|r|
d33 = —N; — Ny |v| = Ny |7

where m = 238, x, = 0.046, X;, = -2, Y, = -10,
Yy =0,N;, =0,N; = —1, X, = —0.7225, X,,,, = —1.3274,
Xy = —5.8664 Y, = —0.8612, Y,, = —36.2832, ¥,, = 0,
Y, =0.1079,Y,, =0, Y, =0, N, = 0.1052, N,,, = 5.0437,
Ny =0,N, = —=0.5,N,, =0, N, =0.

Part I: The initial values of the surface vessel are chosen
as 7(0) = [101,—1,0]7 and v(0) = [5,—0.5,—0.3]".
The constraints are k,; = [102,51,3.3]7 and ko =
[10.2, 6, 0.8]7, respectively. The disturbance vector is chosen
asd(r) = [0.25sin(¢), 0.25 sin(z), 0.25 sin(z)]” . The width of
the neuron Gaussian function of the hidden layer b;; are all
50. The center ¢ in (31) are all 9 x 512 matrices, whose
elements are 1 and —1. The updated parameters in (36) are
@ = 1,r = 0.1 and a = 1. The initial value of adaptive
single parameter is selected as 5(0) = 400. The upper bound
of approximation error is chosen as ey = 0.2.

Case I: The proposed approach removes input saturation.
The design parameters are selected as A;; = 5, A2 = 10,
Az = 1, A1 = 20, App = 15, A3 = 10,
K = diag{150, 200, 20}.

D(v) =
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FIGURE 3. Surface vessel state x;;, X1, and x;3 tracking desired x4,
Xd12: X413 in Case 1, 2, 3.

5 5 2, casel
100 —p === 7, case2
—_ —— 2, casel
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N
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E 000501 i
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N
.50 Q L L L
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115 1) 2, casel
5 z, case2
5 0.01 — z‘acases
£ o
2 0
N
5 I I I
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o) 45 4.554.65 10 15 20

t(s)
FIGURE 4. The results of the tracking errors z;y, z;,, z;3 in Case 1, 2, 3.

Case 2: The proposed approach is tested. The design
parameters are selected as Aj; = 5, A;p = 8, A;3 = 1,
A1 o= 15, A = 20, A3 = 5, K, = diag{l, 1,1},
K, = diag{10, 10, 10}, ¢ = 1, e(0) = [150, 150, 150]” and
K = diag{200, 300, 10}. The range of the forces and moment
is 71 € [—180, 180], 7o = [—370, 370] and 3 € [—90, 90].

Case 3: A standard backstepping approach is tested with-
out input saturation. The Lyapunov function of (41) is
replaced by V> = %le zZ1 + %z{ Mz, + %é 2 The virtual law
is designed as &) = RT(—Kz1 + %41), and control law is
designed as T = —ﬁzﬁ o(hoh)— Kz — RT(xg)zl —
nsgn(zy), where K1 = {5,10, 1} and K = {150, 200, 20}.
The remaining parameters are the same as Case 1.

The simulation results are shown in Figs. 3-7. The surface
vessel can track the reference trajectory with a high preci-
sion, and never violates the constraints. That is, the system
state x1(r) € 2y and xp(f) € 2y in Case 1 as shown
in Figs. 3 and 5. However, the proposed method in Case 1 does
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FIGURE 5. Surface vessel state x51, X5, X»3 tracking desired a1, ¢y, 13
in Case 1, 2, 3.
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FIGURE 6. The results of the tracking errors z,;, z5,, z,3 in Case 1, 2, 3.

not consider input saturation, the control signal T exceeds the
upper and lower limits as shown in Fig. 7.

In Case 2 we consider the input saturation problem under
constraints as shown in Figs. 3 and 5. Similarly, the surface
vessel can also track the reference trajectory, and system state
x1(¢) and x,(¢) never violates the borders of the constraints.
Compared with Case 1, the auxiliary analysis system com-
pensate for the input saturation. The control signal do not
exceed the upper and lower limits as shown in Fig. 7.

In Case 1, 2 and 3, RBFNN (based on a single parameter)
approach is used to compensate for nonlinear terms in the
control law. In Case 1 and Case 2, the tracking errors z1(¢)
and z;(¢) are all bounded, and converge to near zero as shown
in Figs. 4 and 6. Tracking errors z1; and z12 in Case 3 are
larger than those in Case 1 and Case 2. In addition, there is
no input saturation in Case 3. From Fig. 7, it shows that the
control signal t; exceeds the limits. Compared with Case 3,
we can conclude that our proposed control approach (with
input saturation) is effective.
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FIGURE 7. Surge control force z;, sway control force 7,, and yaw control
torque 3 in Case 1, 2, 3.

For Case 3, the simulation results of the standard back-
estepping approach without input saturation and full-state
constraints as shown in Figs. 3, 5 and 7. From Figs. 3 and 5,
we can see that although the surface vessel can also track the
desired trajectory, the system state x11, xj2 and xp; violates
constraints and can not satisfy control objectives.

Part II: In this part, we choose the initial values of the sys-
tem as 7(0) = [0.5, 9.5, 0.087]7 and v(0) = [—0.2, 1.5, 0]7,
respectively. The constrains are k,; = [8, 15, 217 and
ko = [15,15,3.5]7, respectively. We select the same sim-
plified model of real environment disturbance as in [30].

The disturbance vector is set as

d(t) = [d(1), da(t), d3(1)]"
1.3 +2.0sin 0.02¢ + 1.5sin 0.1N
= | —0.942.0sin(0.02r — 7 /6) 4+ 1.5sin 0.3tN
—sin(0.09¢ + 7 /3) — 45in 0.01Nm

The parameters of RBFNNs are selected as b; = 50,
@ = 0.1,r = 0.1,a = 1and ey = 0.5. The center ¢;
in (31) are all 9 x 512 matrices, whose elements are 1 and —1.
The initial value of adaptive single parameter is selected as
é(O) = 20. Similarly, we still consider three cases which are
the same as Case 1, Case 2 and Case 3 in Part 1.

The parameters selection in Case 1 are A;; = 15,
A2 = 20, A3 = 2, A1 = 30, Ap = 25, Ap3 = 20 and
K = diag{300, 400, 10}.

The parameters in Case 2 and other settings are 11; = 10,
A2 = 30, A3 = 5, A1 = 15, App = 20, Ap3 = 20,
o = 1 K = diag{5, 5,5}, K, = diag{20, 20, 20}, e(0) =
[50,50,501"K = diag{350, 450, 15}, 71 € [—450, 450],
1) = [—650, 650] and 73 € [—180, 180].

The parameters selection in Case 3 are K| = {15, 20, 2}
and K = diag{300, 400, 10}. The remaining parameters are
the same as Case 1.

The simulation results are shown in Figs. 8-14. From Fig. 8,
it is observed that the control law in Casel, 2, 3 are all
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FIGURE 9. Surface vessel state x;, X1, and x;3 tracking desired x41;,
Xd12: X413 in Case 1, 2, 3.

able to control the vessel to track the reference trajectory.
Furthermore, in Case 1, 2, 3, the state curves of the desired
and actual positions and yaw angles are shown in Fig. 9,
which shows that the actual vessel position (x = x11, y = x12)
and yaw angle ¢ = xj3 can track the desired trajectory
na = [x4,yd, I/Id]T with a good precision without violating
the constraints. Figure 10 shows the boundedness of tracking
error signals z1 = [z11, 212, 213]T in three cases.

Similarly, in Case 1, 2, 3, the state curves of the desired
and actual velocity including surge, sway and yaw are shown
in Fig. 11, which shows that the actual vessel surge velocity
u = Xx21, sway velocity v = x2 and yaw velocity
r = xp3 can track the desired &1 = [o11, @12, (x13]T ata good
precision without violating the constraints. Figure 12 shows
the boundedness of tracking error signals zo = [z21, 222, 7223]7
in three cases.

Remark 6: It is worth noting that the control law designed
based on the standard backstepping approach in Case 3
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FIGURE 10. The results of the tracking errors z;1, z1,, z;3 in Case 1, 2, 3.
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FIGURE 11. Surface vessel state x,;, X553, Xp3 tracking desired «yq, a1y,
o3 in Case 1,2, 3.

satisfies the full-state constraints through the control param-
eters, but does not guarantee that the vessel state satisfies the
constraints in theory. In other words, the transient and steady
state of the surface vessel tracking state does not satisfies the
constraints theoretically.

The simulation of control law in three cases are presented
in Fig. 13, which shows that the generalized control forces are
reasonable. Compared with Case 1 and Case 3, the auxiliary
analysis system used in Case 2 effectively handles input
saturation, and the control signal does not exceed the limits.

Similarly, in Case 1, 2 and 3, RBFNN (based on a single
parameter) is used to approximate the unknown nonlinear
term composed of system model parameters in the control
law, which is faster and more efficient than RBFNN to com-
pensates the control law as shown in Fig. 14.

Remark 7: An effective neural network (NN) is selected
to approximate the unknown nonlinear continuous function.
Meanwhile, with the increase of the number of nodes and the
dimension of approximation function of the neural network,
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itis necessary to adjust the weights in the NN, which requires
a lot of calculation, requires longer running time to gener-
ate control signals, and also brings difficulties to practical
application. According to the inherent property of the square
of the NN’s base vector, the ideal weight matrix estimation
of the neural network is converted into a single parameter
estimation, which accelerates the solution of the adaptive law,
reduces the computational complexity and approximates the
unknown nonlinear continuous function faster and better.
Remark 8: Theorem 1 shows that the signals of the closed-
loop system remain bounded under the given constraint sets
by selecting the desired trajectory and setting the initial values
in the compact set 2,1 and 2x;. Further, it can be concluded
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that the error signals z, zp and £ uniformly ultimately
bounded in the compact set dependent on constants C
and p. The size of the final convergence set of error signals

lim [|z1]] < /2%, lim |lz2]| < \/2—C N lim [|z2]| <
t—00 P t—o0 p t—00

2c L E < [2C ]
T an, and tl_l)Holo |§| < /=5 can be reduced by decreas

ing constant C and increasing constant p. In order to reduce
C, it is necessary to select smaller parameters o, 8, @, a and
Kj. In order to increase p, it is necessary to select larger
parameters Ay;, A2, @r, K and K, — %K,{Kh, i=1,2,3,
and increasing constant is helpful for a fast convergence.
However, if @ r is too small, it may result in an increase in the
adaptive parameter estimate é and a reduced robustness of the
closed-loop system. If we choose too large A1;, Ap; to improve
the robustness and get better tracking performance, then too
large A1; will cause the upper bound function Aj(;—1) to be
large, which may lead to the state constraint |oy;| < ki
to be satisfied. In addition, too large Aj; and Ao; may lead
to increased control input and unmodeled dynamics. Then,
an increase in control input may cause the excessive differ-
ence between the designed input signal T, and the saturation
output signal 7, that is, if the saturation limits Tj;,qy and Tipin
are too small, there may be no control parameters to satisfy
both state constraints and input saturation. We make «; > 0
represent the maximum feasible difference between the preset
actual control input signal t,; and the saturation output signal
7; to ensure the controllability of surface vessels (1) under the
input saturation (3). Furthermore, the controllability condi-
tion under input saturation is described as §; = |t; — 7| < i,
which is used as a condition for the design of control systems.
In practice, the value of k; needs to be set according to the
system actuator parameters and requirements.

To maximize the tracking performance and balance the
parameters of feasibility. We introduce the relevant param-
eter adjustment approach for Cases 1 and 2. The feasibility
conditions of the parameters are |xgz1| < Aoi-1) < kctis
max |oyi| = Ari—n(Ai) < keai, (ki > 8i(A1i, A2i)). We con-
vert the detection approach of feasibility solution condition
into a nonlinear constrained optimization problem. The opti-
mal control parameters A1;, Ap; are obtained by detecting the
feasibility solution conditions under given state constraints
ke1is kepi and initial values, so that the output tracking per-
formance can be maximized when full-state constraints are
satisfied with input saturation.

V. CONCLIUSION

In this paper, the backstepping technique has been augmented
with a iBLF, RBFNN:g, sliding mode and the dynamic auxil-
iary analysis system to realize trajectory tracking for a fully
actuated surface vessel subjected to full-state constraints,
input saturation and system uncertainties.

First, a control system with constraints is constructed
by constructing iBLF instead of the log-type BLF, which
can effectively deal with the system constraints directly and
prevent the system state from violating the constraints.
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Second, the RBFNNs approximation is introduced to
approximate the unknown parameters of the system to com-
pensate for the control law, and the ideal weight matrix
estimation of the neural network is converted into a single
parameter for adaptive adjustment. In this way, the number of
adaptive parameters is reduced, and so is the calculation com-
plexity. Therefore, the real-time performance is improved.
In addition, a sliding mode is introduced to overcome the
approximation error term.

Third, considering the physical constraints of actuators, a
dynamic auxiliary analysis system is employed to deal with
input saturation.

Finally, All signals in the closed-loop system are proved to
be bounded using Lyapunov theory. Simulation results verify
proposed control approach. In future, input time-delay should
be discussed for trajectory tracking control of surface vessels
with full-state constraints and input saturation.
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