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ABSTRACT Simultaneous Localization andMapping (SLAM) combining visual and inertial measurements
has achieved significant attention in the community of Robotics and Computer Vision. However, it is still
a challenge to balance real-time requirements and accuracy. Therefore, this paper proposes a feedback
mechanism for stereo Visual-Inertial SLAM (VISLAM) to provide accurate and real-time motion estimation
and map reconstruction. The key idea of the feedback mechanism is that the frontend and backend in the
VISLAM system can promote each other. The results of the backend optimization are fed back to the Kalman
Filter (KF)-based frontend to reduce the motion estimate error caused by the well-known linearization
of the KF estimator. Conversely, this more accurate motion estimate of the frontend can accelerate the
backend optimization since it provides a more accurate initial state for the backend. In addition, we design
a relocalization and continued SLAM framework with the feedback mechanism for the application of
autonomous robot navigation or continuing SLAM.We evaluated the performance of the proposed VISLAM
system through experiments on public EuRoC dataset and real-world environments. The experimental results
demonstrate that our system is a promising VISLAM system compared with other state-of-the-art VISLAM
systems in terms of both computing cost and accuracy.

INDEX TERMS Kalman filter, nonlinear optimization, visual and inertial sensor fusion, visual-inertial
simultaneous localization and mapping.

I. INTRODUCTION
Visual Odometry (VO) [1], [2] and Visual Simultaneous
Localization and Mapping (VSLAM) [3], [4] techniques,
as the solutions of localization and mapping in GPS-denied
environments, have been extensively studied in many appli-
cations to computer vision, Augmented and Virtual Real-
ity (AR&VR), and mobile robotics [5]. However, the pure
vision-based VO/VSLAM methods are sensitive to the chal-
lenging scenarios, such as textureless surfaces, motion blur,
occlusions and illumination changes [6]–[9]. To address
these problems, Visual Inertial Odometry (VIO) or Visual
Inertial Simultaneous Localization and Mapping (VISLAM)
techniques [10] fuse Inertial Measurement Unit (IMU) data
to the VO/VSLAM system and achieve more robustness and
higher accuracy even in the above challenging scenarios.
Most existing VIO/VISLAM approaches focus on monocular
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systems (e.g., MSCKF [11], ROVIO [12], OKVIS [13], [14],
VIORB [15], VINS-Mono [16], Maplab [17],
PL-VIO [18] and SR-ISWF [19]). Although the scale in
monocular VIO/VISLAM systems can be observed from
the IMU’s accelerometer, it is usually imprecise since the
dominant gravity vector is unable to be subtracted accurately
from the noisy acceleration measurements [20]. However,
stereo vision-based VIO/VISLAM methods [20]–[35] can
provide additional scale information by employing an epipo-
lar constraint and achieve higher accuracy [36].

The stereo vision-based VIO/VISLAM is generally
divided into two methodologies [10]: filtering-based
(e.g., PIRVS [30], S-MSCKF [31] and Trifo-VIO [34])
and optimization-based (e.g., ICE-BA [33] and VINS-
Fusion [35]). The comparison in [10], [37] found that the
latter has more potential than the former in terms of local-
ization accuracy, while the former has advantages in terms of
computing cost. To balance the real-time requirements and
accuracy, we propose a feedback mechanism that combines
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the filtering-based and optimization-based approaches into
oneVISLAMsystem. Inspired by the idea of [38], we feed the
optimized state produced by the backend back to the frontend
to correct the state estimation. In return, these more accurate
states obtained from the frontend can accelerate the optimiza-
tion process of the backend. In a word, the feedback mecha-
nism makes the frontend and backend in the VIO/VISLAM
system be able to promote each other, and thus, improves the
efficiency and the accuracy of VIO/VISLAM.

On the other hand, according to the sensor fusion type,
VIO/VISLAM can also be further categorized into either
loosely-coupled or tightly-coupled approaches. Loosely-
coupled approaches fuse two separate estimators (one for
processing images and the other one for IMU measure-
ments) to obtain the final relative motion, whereas tightly-
coupled approaches joint the vision and IMU measurements
into one estimator to find the optimal estimates. Generally,
tightly-coupled approaches are more accurate and robust
than loosely-coupled approaches [18]. Therefore, we use the
tightly-coupled method for our VISLAM system.

In addition, in many applications such as environment
mapping and autonomous robot navigation, the system
should have the ability of relocalization in a previous built
map and continuing SLAM in the previous unknown parts of
the environment [29]. Thus, we also design a long-term relo-
calization framework with the proposed feedback mechanism
to detect the revisited environments and continue to map the
unvisited environments more accurately.

In summary, the main contributions of this work are as
follows:

• To the best of our knowledge, this paper is the first
tightly-coupled stereo VISLAM system that combines
filtering-based frontend and optimization-based back-
end through a feedback mechanism, resulting in a sig-
nificant improvement in accuracy and efficiency of the
6 DoF pose estimation.

• With the proposed feedback mechanism, we also design
a long-term relocalization framework that is able to
perform visual-inertial localization in a previous visited
environment as well as carry on map reconstruction in
an unvisited area.

• We compare the performance of the proposed system
with other state-of-the-art VIO/VISLAM systems on
both the EuRoc dataset [39] and real-world scenar-
ios. The experimental results demonstrate that our sys-
tem has a good performance on both accuracy and
efficiency.

The remainder of the paper is organized as follows. The
previous relevant literatures are presented in Section II.
In Section III, the proposed VISLAM system is described
in detail. Subsequently, in Section IV, the relocalization and
continued SLAM framework is introduced. Section V shows
the experimental results and the comparisons with other state-
of-the-art VIO/VISLAM methods. Finally, conclusions and
potential future works are given in Section VI.

TABLE 1. State-of-the-art VIO/VISLAM systems.

II. RELATED WORK
Much research has been conducted on VIO/VISLAM prob-
lem in the past few decades, we refer to the review paper [10]
to discuss the stereo VIO/VISLAM systems developed in the
last 10 years.

As mentioned in Section I, VIO/VISLAM approaches
can be classified into filtering-based and optimization-
based methods, and can be further divided into loosely-
coupled and tightly-coupled systems according to sensor
fusion type [38]. State-of-the-art VIO/VISLAM systems over
the last 10 years are listed in Table 1. Loosely-coupled
approaches such as [21] and Duo-VIO [28] estimate the
pose by the visual and IMUmeasurements separately. Conse-
quently, the accumulated drift in VO cannot be eliminated by
using the IMUmeasurements, resulting in a sub-optimal esti-
mate [38]. In contrast, the tightly-coupled methods such as
PIRVS [30], S-MSCKF [31], ICE-BA [33], Trifo-VIO [34],
VINS-Fusion [35] and [22]–[27], [29], [32], fuse the state
of the camera and IMU into one model to optimally exploit
the visual and inertial measurements, thus achieve higher
precision at the cost of increased computation. Furthermore,
for these tightly-coupled approaches, two methodologies
have been widespread: filtering-based (e.g., PIRVS [30],
S-MSCKF [31], Trifo-VIO [34], and [22], [23], [25]) and
optimization-based (e.g., ICE-BA [33], VINS-Fusion [35],
and [24], [26], [27], [29], [32]).

In the early stage of the VIO/VISLAM, filtering-based
methods dominate the main research focus, which operates
on the mean and covariance of the probabilistic distribution
based on the Kalman Filter (KF) framework [38]. Accord-
ing to the measurement information processing method, two
modern filtering-based solutions to the VIO/VISLAM prob-
lem are prevalent [25]: Extended Kalman Filter (EKF)-based
[23], [30] and Sliding Window Filter (SWF)-based meth-
ods [20], [22], [31], [34]. The state vector of EKF-based algo-
rithms contain both the pose of the body and a set of feature
positions, so on condition that these features are continu-
ously observed and included in the state vector, the estimated
pose relative to these features will not drift [38]. However,
EKF-based methods are inconsistent, i.e., the state uncertain-
ties are underestimated since the Jacobians in the linearized
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model of a VIO/VISLAM system have different observability
properties than the actual nonlinear system [25]. Besides,
the filter state includes only the most recent pose, a given
update step can never modify past poses even if later feature
measurements could constrain them, resulting in sub-optimal
estimations of both motion and feature positions. Compara-
bly, the SWF-based methods maintain and update a sliding
window of past camera poses in the state vector, and use the
feature measurements to impose probabilistic constraints on
these poses, thus keep computational complexity only linear
in the number of features by excluding feature positions from
the filter state vector [38], instead of cubic like EKF-based
approaches [34]. The S-MSCKF [31] can be considered as a
hybrid of EKF-based and SWF-based method in the sense
that it maintains a variable window of poses and applies
batch updates using all observations of each landmark. Thus,
the backbone of our frontend estimator utilizes the S-MSCKF
framework due to its computational efficiency and accurate
position tracking.

With the development of computer technology and the
improvement of computer processing speed, optimization-
basedVIO/VISLAMhas beenwidely developed. Optimization-
based methods usually divide the whole SLAM framework
into a frontend and backend. The frontend is used for pose
estimation and map construction, whereas the backend is
responsible for loop closure detection and pose optimization.
The comparison in [10], [37] shows that optimization-based
methods have better accuracy than filtering-based methods
due to its capability to relinearize the state at each iteration,
which avoids integrated error from linearization. The VIS-
LAM system in [24] uses a keyframe-based and nonlinear
optimization-based VIO estimator [13] to estimate the state
of a Micro Aerial Vehicle (MAV). Since the VIO suffers from
slow drift over time, a local map based on the output of the
VIO is built in the background and then the drift is corrected
through relocalization against this local map. Besides, Bundle
Adjustment (BA) is used to further reduce errors and drift in
the odometry. The VISLAM system in [29] also builds on the
keyframe-based VIO method [13], but it uses image retrieval
techniques to detect the revisited locations and then performs
loop closures to reduce the drift. Besides, it has a simple but
effective multi-frame verification method for relocalization.
However, the former two systems need to repeatedly compute
the IMU integration when the linearization point changes.
The proposed framework in [26] uses two windows of con-
straints (i.e., a spatial and a temporal window) in the frontend
to refine the states by a nonlinear optimization, and routinely
maintains the map in the backend once a new keyframe is
inserted as well as detect loop. However, the circular tracking
of point features used in the frontend often results in dense
tracks. The VIO system in [27] estimates the camera pose,
velocity and IMU biases simultaneously by minimizing a
combined photometric and inertial energy function [4]. Dif-
ferent from the point features-based VIO frontend, it is fully
direct, i.e., the geometry is estimated in the form of semi-
dense depth maps instead of sparse keypoints. Although the

FIGURE 1. The proposed VISLAM system with feedback mechanism.

information utilization is high, the processing speed becomes
slower. The VISLAM method in [32] employs the Lucas-
Kanade optical flow algorithm to build the VO in the frontend
and uses nonlinear optimization in the backend to estimate
the state of camera and IMU. Although the accuracy and
robustness are excellent even on some textureless scenes,
it is unsuitable for tracking the motion in fast-moving scenes.
The ICE-BA [33] for VISLAM optimization generalizes the
BA to jointly optimize the visual and inertial measurements.
It re-uses the intermediate results of previous optimization to
avoid redundant new computation, thus increases the solver
speed remarkably and can be applied to most sliding window-
based VISLAM systems. Recently, a general optimization-
based VISLAM framework [35] was proposed that extends
the previous work [16] to adapt to multiple sensors, in which,
the state of the system and a representation of the environment
are estimated by local BA in one thread, and loops are closed
in lightweight manner in parallel thread.

Both filtering-based and optimization-based methods have
their merits, thus we tightly fuse both methods via a feed-
back mechanism to achieve a better accuracy, robustness and
efficiency.

III. THE PROPOSED VISLAM SYSTEM BASED ON
FEEDBACK MECHANISM
The proposed tightly-coupled stereo VISLAM system,
as shown in Fig. 1, includes three modules: (1) the filtering-
based frontend VIO, (2) the optimization-based backend with
loop closure, (3) the state feedback. The frontend VIO is
based on the S-MSCKF (Stereo Multiple State Constraint
KF) VIO [31], fusing the visual and IMU measurements
in a tightly-coupled way to efficiently estimate the 3D
pose, velocity, bias. The backend uses the keyframe-based
VISLAM [35] to optimize the state in a sliding window, and
following the approach in ORB-SLAM2 [3], performs global
BA to reduce the drift when the loop closure was detected.
To make the frontend estimation have a higher precision,
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FIGURE 2. The marginalization mechanism.

we feed the state after the local or global BA optimization in
the backend back to the frontend. Moreover, the state update
by the feedback also provide a more accurate initial state
for the backend, resulting in a faster optimization. In the
following, we describe these modules in detail.

A. FRONTEND VIO
The backbone of the frontend VIO is S-MSCKF [31] whose
key idea is to maintain and update a sliding window of cam-
era poses using feature track observations without including
features in the state vector. Instead, 3D feature positions are
estimated through multi-view triangulation and subsequently
marginalized, which reduces the computational cost consider-
ably andmake its complexity linear in the number of features.

Different from the update mechanism of S-MSCKF [31],
we use all the map points that are observed by the camera
frames (at least two camera frames) in the sliding window to
update the EKF state. This is because in textureless scenarios
(e.g., corridor), the number of the detected map points is
inherently less, the observation can bemore accurate by using
the constraints of all themap points.Whereas, in the scenarios
with rich texture, we limit the number of the map points to
800 for saving computing resources. The map point observed
by more frames is more likely to be selected for EKF update
since it provides more constraints between frames.

Additionally, to make the sliding window contain more
long-term constraints, the keyframe selection strategy in [3]
is used to marginalize the camera state (one camera state at
each time step). When the number of camera state in the
sliding window reaches the preset threshold N and a new
image is captured, we will determine the previous frame
whether is a keyframe. If the previous frame is a keyframe,
then the oldest state is removed; otherwise, the previous state
is removed. Therefore, we can ensure the previous N − 1
frames in the sliding window are keyframes. Note that the
latest frame is always kept in the sliding window since it has
the newmeasurements information. Fig. 2 shows the working
scenarios of the above marginalization approach.

FIGURE 3. VI local BA. The oldest frame is fixed during optimization to
serve as a prior information.

B. BACKEND OPTIMIZATION
When a new keyframe is detected in the frontend and the
backend is idle, the states in the sliding window (including
N − 1 keyframes and the current frame which may not be a
keyframe) will be transferred to the backend to perform the
nonlinear optimization. In this section, an unified formulation
of the visual and inertial measurements [16] is used to jointly
optimize the full state in the sliding window.

To accelerate the optimization, we remove the prior term
from the object function of VINS-Mono [16], and define the
visual-inertial BA as:

χ∗ = argmin
χ

 ∑
(i,j)∈K

∥∥rIij∥∥26ij
+

∑
i∈K ,l∈Ci

∥∥rCil∥∥26Cil

 (1)

where rIij and rCil are the IMU and visual measurement
residual respectively, 6ij and 6Cil are the corresponding
covariance matrices, K is the set of all keyframes, and Ci
is the camera measurements at keyframe i. As the camera
can observe multiple landmarks, we let l ∈ Ci represent a
landmark l is seen at keyframe i. Detailed definitions of the
residuals are the same with the definitions in [16], [40].

The local BA optimizes the last N frames in the sliding
window and all map points seen by thoseN frames. However,
as in Fig. 3, the states of the oldest keyframe serving as the
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prior information, are fixed during optimization to obtain a
consistent and smooth result with the global map since the
prior information was removed in (1).

C. FEEDBACK MECHANISM
The EKF-based frontend VIO can estimate the frame state
efficiently. However since the accumulation of the lineariza-
tion errors and the absence of the loop closure, the error of
the state estimate will accumulate as time goes on. If the
state provided in the frontend drifts too much, the local BA is
prone to fall into the local minimum as the function of visual
measurement is non-convex. Thus we introduce the feedback
mechanism to constrain the error of the state estimated from
the frontend VIO, and conversely accelerate the optimization
in the backend.

When a keyframe is detected in the frontend, its corre-
sponding states will be transmitted to the backend to perform
the nonlinear optimization. After the optimization, the opti-
mized results will be fed back to the frontend to update the
state. However, the current state of the frontend is different
from the optimized state since the frontend and backend are
performed in different threads. As shown in Fig. 4, the current
state of the frontend can be classified into two parts: (1) the
old state that has been transferred into the backend, and (2)
the new state. We use two methods to update the state: (1)
The common KF update rule for the old state, and (2) the
nonlinear optimization method for the new state. The update
methods are detailed in the following section.

1) OLD STATE UPDATE
As shown in Section III-B, the state in the sliding window for
the backend optimization includesN poses in the IMU frame.
Thus we first transform the optimized results, i.e. poses P̂Ik =
(IGq̂k ,

Gp̂Ik ), k = 1, . . . ,N , from the IMU frame to camera
frame, as

C
Gq̂k =

C
I q⊗

I
Gq̂k

Gp̂Ck = C(IGq̂k )
T IpC +

Gp̂Ik (2)

where P̂Ck = (CGq̂k ,
Gp̂Ck ) is the optimized pose in the camera

frame, (CI q,
IpC ) is the extrinsic parameters between the IMU

frame and the camera frame,⊗ is themultiplication of quater-
nions, and C(·) is the function of converting quaternion to the
corresponding rotation matrix. Then the optimized camera
state P̂Ck and its covariance matrix6Ck are used to update the
old camera state PCk and its covariance matrix P6 estimated
from the frontend VIO according to the KF update rule as:

Hk = I

rk = P̂Ck − PCk
Kk = P6HT

k (HkP6HT
k +6Ck )

−1

P∗Ck = PCk + Kkrk
P∗6 = (I − KkHk )P6(I − KkHk )T + Kk6CkK

T
k (3)

where P∗Ck and P∗6 are the updated camera state and its
covariance.

2) NEW STATE UPDATE
Generally, when the backend nonlinear optimization finished,
the frontend has received new frames. Based on the marginal-
ization mechanism (see Section III-A), the new frames con-
tain one or more keyframes (mostly one keyframe in our real
test) and the current frame (maybe or maybe not a keyframe).
For these new frames, we use the nonlinear optimization to
improve their estimations. As shown in Fig. 4, when the
backend optimization is performed, the state estimation of
the last keyframe PCN is accurate enough. Thus, to save the
computation resources, we only use the last keyframe and
the new frames for optimization through minimizing the
objective function which is the same with (1). Note that the
last keyframe as the prior information is fixed during the
optimization, and the local map points are firstly updated
according to the optimized state obtained from the backend,
then theywill be fixed to only optimize the new camera states.

IV. RELOCALIZATION AND CONTINUED SLAM
FRAMEWORK WITH FEEDBACK MECHANISM
In many practical applications such as autonomous naviga-
tion of mobile robot or augmented reality, relocalization in
a previously built map or seamlessly continued SLAM in
new parts of the previous environment is a desirable property
for the SLAM system. Thus with the proposed feedback
mechanism, we design a relocalization and continued SLAM
framework which is shown in Fig. 5. The proposed frame-
work contains frontend VIO, backend optimization and feed-
back mechanism, which are similar to the proposed VISLAM
system. The processes of relocalization and continued SLAM
are as follows.

A. RELOCALIZATION
The frontend VIO estimates and updates the state that
includes the current IMU state and N camera poses as the
Section III-A does. The backend optimization is similar to
the one in Section III-B. The different is that the local map
points were obtained from the previously built map instead
of the frontend, and this local map points are fixed during the
optimization. As is shown in Fig. 6, when current frame is a
keyframe, we use the DBoW2 [41] to align current framewith
the keyframe in the built map. Then N keyframes before and
after the aligned keyframe are selected to update the localmap
points by retrieving the points corresponding to the keyframes
in the built map. Besides, the map points of the previous local
map, which are observed by the frames (at least two frames)
in the current sliding window, are reserved. However, when
current frame is not a keyframe, the local map points will not
be updated and directly used to optimize the camera and IMU
state. This is because the local map points already include the
subsequent map points which are sufficient for optimization.
The state vector in the backend is defined as:

χ =

xI1 , · · · , xIN , λ1, · · · , λm︸ ︷︷ ︸
fixed

 (4)
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FIGURE 4. State feedback to frontend.

FIGURE 5. Relocalization and continued SLAM framework based on the state feedback
mechanism.

where xIk , including pose GpTIk , velocity
GvTIk and biases of

acceleration bTa and gyroscope bTg , is the IMU state at the
time that the k th image is captured, N is the total number of
keyframes, m is the total number of map points in the sliding
window, and λk is the inverse depth of the k th map point, and
is fixed during the optimization since the previous built map
has been optimized. Thus, only the IMU state needs to be
optimized.

After the backend optimization, the optimized state will be
fed back to frontend VIO to correct the state in the frontend
according to the feedback mechanism in Section III-C.

B. CONTINUED SLAM
When it lasts for a long time that the current frame is unable to
be aligned with the frames of the previous built map, or when
the SLAM is interrupted due to the low battery power and
is needed to go on, the continued SLAM module will work.

As shown in Fig. 5, when the relocalization failed for a long
time, the backend of our proposed VISLAM system will start
and create a new map. If the relocalization succeeded during
the new SLAM, the new map can be merged to the previous
built map by transforming all key frame poses in the new
map to the previous map frame. After the merging, the loop
closure technique can create additional constraints between
the map parts which further improves the consistency of the
trajectories.

V. EXPERIMENTS
We evaluate the proposed VISLAM system both on the
EuRoC dataset [39] and real-world scenarios. We first com-
pare the proposed system qualitatively and quantitativelywith
other state-of-the-art systems on the public EuRoC dataset
to show the accuracy and efficiency. Then we evaluate the
relocalization module on the EuRoc dataset. Finally, the per-
formance of our algorithm is validated again in both indoor
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FIGURE 6. Backend optimization of the relocalization and continued SLAM framework.

and outdoor real-world environment using the sensor of Intel
RealSense depth camera D435i.

A. EVALUATION ON EUROC DATASET
The EuRoC dataset has 11 sequences, which was recorded by
a MAV in three different indoor environments. According to
the illumination, texture and motion dynamics, the sequences
are classified as easy, medium and difficult levels. The dataset
provides stereo images at 20Hz, IMUmeasurements at 200Hz
and ground truth at 200Hz. We successfully perform our
algorithm on all sequences of EuRoC dataset in real-time.

In this experiments, we compare the proposed algorithm
with S-MSCKF [31], a state-of-the-art filtering-based VIO,
and VINS-Fusion [35], a state-of-the-art optimization-based
VISLAM that can work with three different combinations of
sensors (only the combination of stereo cameras and IMU
is used for comparison in this paper). We use the SLAM
trajectory evaluation tool [42] to calculate the Absolute Tra-
jectory Errors (ATE). Fig. 7 qualitatively shows the compar-
ison between the ground truth and the trajectories estimated
by our and other start-of-the-art algorithms on MH_01_easy,
MH_03_medium and MH_05_difficult sequence. For quan-
titative analysis, the Root Mean Square Errors (RMSE)
of ATE for all sequences in EuRoC dataset are shown
in Table 2.

From Table 2, we can see that our method outperforms
VINS-Fusion and S-MSCKF in most of the sequences. The
S-MSCKF method performs worst on average. This is
because it has no loop closure and optimization to correct the
estimated error caused by linearization. The results obtained
from the proposed method without feedback are similar to
that achieved by the VINS-Fusion method since they have
the similar backend optimization to reduce the estimated

error. However, our method with feedback reduced the error
of 50% compared with the VINS-Fusion. This is because the
feedback mechanism makes the frontend VIO estimate more
accurately, and the accurate result obtained from frontend,
in return, makes the backend optimization obtain a more
accurate result.

To evaluate the efficiency of the proposed algorithm,
the average time of processing one frame, the CPU load
and the memory utilization of our algorithm, S-MSCKF
and VINS-Fusion are measured with the laptop equipped
with Intel Core i7-6600U CPU @ 2.6 GHz × 4 and an
8GB RAM. As shown in Table 3, the S-MSCKF has a highest
efficiency since it is only based on EKF algorithm, but it
achieves the worst accuracy as shown in Table 2. Com-
pared with VINS-Fusion, the proposed algorithm performs
more efficiently. This is because our method performs the
local window optimization only when a keyframe, instead
of every frame (VINS-Fusion), is detected, which saves a lot
of computation resources. Besides, our feedback mechanism
makes the optimization converge more rapidly as the frontend
provides a more accurate initial state. In addition, we remove
the marginalization term in our objective function (see (1)) to
make local optimization faster while ensuring the accuracy.
Thus our system maintains higher efficiency with sufficient
accuracy.

B. RELOCALIZATION TEST
To evaluate the performance of our relocalization and con-
tinued SLAM framework, we still use the EuRoC dataset
since some sequences are recorded in the same scene. In this
experiments, the proposed method and two state-of-the-art
VSLAM systems, i.e., Maplab [17] and ORBSLAM2 [3],
creat the global map in the MH_01 and V1_01 sequences,
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FIGURE 7. Comparison between the ground truth and the trajectories estimated by our algorithm, S-MSCKF and VINS-Fusion method, which is viewed
from the gravity direction.

TABLE 2. RMSE of the trajectories estimated by our algorithm, S-MSCKF and VINS-Fusion on EuRoC dataset. The best results are given in bold.

TABLE 3. Efficiency comparison of our algorithm, S-MSCKF and VINS-Fusion on EuRoC dataset.

FIGURE 8. The estimated trajectory in indoor environment.

and then perform their corresponding relocalization module
on MH_02 and V2_02 sequences respectively. Table 4 shows
the translation and orientation RMSE of relocalization. The

experimental results demonstrate that the proposed relocal-
ization framework with feedbackmechanism outperforms the
other two methods on both translation and orientation accu-
racy. Besides, compared with the relocalization framework
without feedback mechanism, the relocalization framework
with feedback reduced the error of translation 27.66%, ori-
entation 40.83% for MH sequence and translation 23.19%,
orientation 16.33% for V sequence. This also verified that
the feedback mechanism can improve the state estimation
accuracy.

C. REAL-WORLD EVALUATION
We perform the experiments in both indoor (an office)
and outdoor (a park) environment. In indoor environment,
we hold the sensor device by hand and walk in normal pace,
start and end at the same location after two circles. As shown
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FIGURE 9. The estimated trajectories in outdoor environment.

TABLE 4. Translation and orientation RMSE of relocalization module on EuRoc dataset.

in Fig. 8, the estimated trajectory has no noticeable drifts
when we circle in the office. The end-to-end error is 0.26 m
with respect to the total length of 121.11 m× 2, it is just the
0.11% of the total trajectory length.

In outdoor environment, we use another GPS device with
positioning accuracy ≤ 5 cm to obtain the ground truth.
We also hold the sensor device and walk in normal pace
around a park and an office building. We perform the state
estimation using our algorithmwith and without the feedback
mechanism and compare the results with GPS. For quanti-
tative analysis, we walked three paths around the park and
the office building respectively. The estimated trajectories are
shown in Fig. 9 and the translation RMSE are show in Table 5.
As same as the dataset experiment, the method with feedback
achieves better results than the method without feedback on
all paths.

VI. CONCLUSION
In this paper, we presented a feedback mechanism for
tightly-coupled stereo VISLAM, which makes the filtering-
based frontend and optimization-based backend in the

TABLE 5. Translation RMSE of outdoor test.

VIO/VISLAM system be able to promote each other, and thus
improves the estimation accuracy of the frontend VIO and
the convergence speed of backend optimization. Moreover,
a relocalization and continued SLAM framework with the
feedback mechanism was introduced to make our system can
be applied in real robot navigation.

Point feature-based VISLAM is prone to fail in textureless
scenes or motion blurred images. In future work, we will
consider the line feature or use the deep learning technique
to extract more robust feature for better accuracy and robust-
ness. We also aim to extend our framework with GPS to
achieve locally accurate and globally aware pose estimation
for outdoor application.
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