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ABSTRACT To improve the overall economy of the wind-energy storage power station, a direct control
strategy is proposed to track the deviation of the wind power plan. Compared with the traditional strategy
of wind power fluctuation mitigation, the control strategy in this paper can change the charge and discharge
power of energy storage in real-time according to the deviation of wind power and the state of charge
(SOC). When the power of wind power changes suddenly, the strategy can make the valid judgment and
prevent control failure, so that Grid-connected power of wind farm in extreme cases can also meet the
requirements of the safe and stable operation of the power system. The strategy uses the discrete Fourier
transform (DFT) to analyze the power deviation of the wind farm in the frequency domain and obtains
power compensation requirements for different time scales. Energy storage equipment with corresponding
characteristics is used to classify control of deviation of wind power. The compensated power deviation can
meet the requirements in market competition. At the same time, the power exchange between storage systems
is carried out to optimize the state of charge in real-time and make the energy-type energy storage in shallow
charge/discharge state, which effectively reduces the repeated regulation of energy storage systems. Finally,
this paper establishes a comprehensive economic benefit model of the energy storage system. Combining the
MarkovChainMonte Carlomethod (MCMC) and backward scenario reduction technology generatemultiple
scenarios. The calculation results show that the proposed strategy can effectively track the deviation of the
wind power plan. Furthermore, prolong the service life of the energy storage system and improve the market
competitiveness of wind power.

INDEX TERMS Hybrid wind-energy storage (wind-ES) system, tracking wind power schedule output,
discrete Fourier transform (DFT), electricity market.

I. INTRODUCTION
A. MOTIVATION
The global energy system is transitioning to renewable
energy, and wind energy, as one of the most potential
renewable energy sources, has been used on a large scale.
In 2018, the cumulative installed capacity of wind power
in the world exceeded 600GW for the first time, and China
accounted for 36.8% [1]. When participating in power mar-
ket competition, the randomness and intermittence of wind
power make it unable to work strictly according to the plan
curve issued by dispatch. So then, they are thus facing
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the penalty of deviation. With the increasing penetration
of wind power, this problem becomes more prominent.
To achieve stable and substantial benefits, wind power enter-
prises must reduce the cost of power generation, promote
technological progress, and improve the reliability of power
supply. The energy storage system has the characteristics
of bidirectional charge and discharge, which can provide
fast response-ability for the power system. Moreover, being
crucial technical support means for wind power to partic-
ipate in market competition, which can adequately com-
pensate for the shortcomings of wind power output and
improve the controllability. Using energy storage equipment
for charging and discharging is one of the effective meth-
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ods to realize planned power generation, studied by many
scholars.

B. LITERATURE REVIEW
According to the timeliness of control, the control strate-
gies can divide into modeling control strategy and direct
control strategy. In the aspect of the direct control strategy,
reference [2] analyzes the energy storage scale needed to
minimize hourly wind forecast error in the case of pre and
post-compensation. Considering the SOC of energy stor-
age, [3] establish fuzzy control rules to allocate the charging
and discharging power of energy storage, and mitigate the
fluctuation of wind power. The control performance standard
for large scale wind farms is proposed in [4]. Based on
this, the regulated power of the energy storage system is
obtained by PI control, and control the power deviation of
most sampling points within. Also, compensation of wind
power deviation by frequency domain analysis method is
developed in [5]–[7], including discrete wavelet transform,
DFT et al. The direct control method has the advantages of
fast response speed, no convergence problem, practical and
straightforward. Correspondingly, when taken into account
multiple factors at the same time, the formulation require-
ments of the strategy will be higher.

In the aspect of the modeling control strategy, the planning
model based on the minimum deviation value of wind power
output is studied in [8], which considers the lifetime of the
battery energy storage system (BESS) and prediction errors.
Reference [9], [10] update time constants by a particle swarm
optimization method and propose a power-tracking method
with a flexible learning rate. Analyzing the prediction error,
reference [11] introduces the single objective optimization
that is to minimize the SOC at the adjacent time and the
power deviation between actual and planned values. Besides,
a multi-objective optimization model for wind smoothing is
presented in [12], including both the minimum of power vari-
ation between adjacent charging/discharging intervals and the
maximum of the time duration of each cycle control period.
The method of optimal modeling control can set optimization
objectives flexibly and has good universality. However, when
solving objectives is too many or too complicated, it may
cause response delay and control deviation.

C. LIMITATIONS AND CONTRIBUTIONS
The above control strategies provide abundant theoretical
support for reducing the deviation of the wind power plan,
but there are still several problems to be improved. First,
according to different time scale response characteristics of
wind power deviation, corresponding energy storage equip-
ment should be selected to realize accurate compensation of
deviation. Second, while ensuring the accuracy of control,
the number of charging/discharging times of energy storage
equipment should be reduced, and avoid deep charging and
discharging. Third, in order to guide investors in decision-
making, quantitative analysis of the return on the investment
economy of energy storage systems throughout the life cycle
should be carried out.

A direct control strategy is proposed in this paper to solve
the problems above. The contributions of this paper are sum-
marized as follows.

1) DFT is used to divide the wind power deviation into
three categories: high frequency, medium frequency,
and low frequency. Which gives full play to the char-
acteristics of energy storage equipment with different
time scales.

2) According to the varied demands of wind power, using
different energy storage equipment compensate in dif-
ferent layers. Meanwhile, the strategy divides control
zones and formulates corresponding control methods
for different wind power deviations to improve con-
trol accuracy, ultimately reduce the power deviation of
wind power and the repeated regulation between energy
storage.

3) The Markov Chain Monte Carlo method, combined
with backward scene reduction technology, is used to
generate wind power data of multiple scenarios. Based
on this, the investment return of the hybrid energy stor-
age system (HESS) in the whole life cycle is analyzed
to verify its economy.

D. PAPER ORGANIZATION
This paper organized as follows. Section II and Section III
introduce assessment requirements for wind power forecast-
ing and characteristics of energy storage, respectively. The
Markov Chain Monte Carlo method presented in Section IV.
Section V proposes the control method. The case study and
discussion are conducted in Section VI, and Section VII
concludes this paper.

II. WINDPOWER FORECASTING AND
ASSESSMENT REQUIREMENTS
The root-mean-square error (RMSE) used to define the accu-
racy of the wind power forecast, can better judge the devia-
tion degree of wind power prediction results and inspect the
accuracy of all-day prediction results.

RMSE-day =

√
n∑
i=1
(PAi − PPi)2

Cap
√
n

≤ ε (1)

In (1), PAi and PPi are the actual power and plan values at
time i, respectively; n is the number of sampling points within
the sampling interval;Cap is the unit-operating capacity of the
wind farm; ε is the control target.
According to [13], the deviation between the actual power

output of thermal power units and the day-ahead scheduling
curve should bewithin the 2.5% of planned power. The excess
part is the assessment of electrical energy, which will be pun-
ished. Under the background of the continuous development
of the power system, wind power will inevitably compete
with traditional energy. Hence, this paper also calculates the
deviation of wind power according to the assessment require-
ments of thermal power units.
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The output electricity of a 100MW wind farm on a typical
day is 1125.361 MW · h. The deviation curve between the
actual power and the planned power is shown in Fig. 1 (a)
(sampling interval is 1s), and the corresponding assessment
power is shown in Fig. 1 (b).

FIGURE 1. Wind power deviation curve and the assessment of electrical
energy. (a) The deviation curve between the actual value and the planned
value of wind power. (b) The assessment electrical energy of wind farm
before energy storage compensation.

The RMSE in a day is 10.44%, which meet the assess-
ment requirement that the RMSE of all-day forecast results
is no more than 20%[14]. We take the third resource
area as an example. When the wind farm transits from
the current benchmark feed-in tariff to the guidance price
in 2020, its daily electricity revenue will be reduced from US
$78313.2376 to US $60732.6772. Furthermore, its assess-
ment electrical energy accounts for 31%of the total electricity
generation, and the wind farm will also bear high penalties.

In summary, to reduce economic losses and increase the
competitiveness of wind power, wind farms must improve
tracking capability that actual power coincides with planned
power. For this reason, this paper proposes the control strat-
egy of the hybrid wind-ES power system, and the whole
system working diagram is below.

III. RESPONSE CHARACTERISTICS AND ECONOMIC
EVALUATION METHOD OF ENERGY
STORAGE EQUIPMENT
A. ANALYSIS OF ENERGY STORAGE
RESPONSE CHARACTERISTICS
To analyze the response characteristics of energy storage
equipment, we take the load fluctuation of a certain area on
a certain day as an example. Which converts power deviation
in the time domain to the frequency domain, the amplitude-
frequency characteristic curve is in Fig. 3. As can be seen
from the figure, the amplitude of the high-frequency part
is generally small and changes rapidly, which requires the
energy storage to charging and discharging quickly. While
the fluctuation of the low-frequency part is massive, and
requires a long-time charging and discharging of the energy
storage equipment. Thus, faced with the different response
characteristics in the frequency domain, single energy stor-
age is difficult to meet the multi-time scale compensation
demand. Energy storage devices can divide into power-type
and energy-type depending on the different response charac-
teristics. The former has high power density and long cycle

FIGURE 2. Power control process diagram of the wind storage system.

FIGURE 3. The frequency-domain analysis of the load fluctuation curve.

life, but low energy density. Which is suitable for compensat-
ing power deviation at seconds and minute levels, while the
latter is just the opposite. In this paper, HESS composed of
supercapacitors and lithium-ion batteries is used to comple-
ment each other.

B. SOC
SOC refers to the percentage of the remaining electricity of
the energy storage system to its nominal capacity (with a
value of 0 to 1). The following formula calculates the residual
capacity of the energy storage equipment at time i:
Charging:

EESS (ti) = EESS (ti−1)−
PS (ti)1tηc

3600
(2)

Discharging:

EESS (ti) = EESS (ti−1)−
PS (ti)1t
3600ηd

(3)

The state of the energy storage systems can expresse as:

SOC(ti) =
EESS (ti)
Ecap

(4)

where EESS (ti) is the remaining capacity of the energy storage
system at time i, PS (ti) is the setting power of the energy
storage system at time i, charging is negative, and discharging
is positive. ηc and ηd are charging and discharge efficiency of
the entire energy storage system, respectively. Ecap is the total
capacity of energy storage systems.

The life of the energy storage system is related tomany fac-
tors. The depth of discharge (DOD) indicates the percentage
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TABLE 1. The statistics of the average identification time of our
mechanism.

TABLE 2. The division of three kinds of fluctuations.

of battery discharge to battery rated capacity, and its unit is the
percentage. This paper considers that energy-type storage is
greatly affected by DOD. The smaller the depth of discharge
is, the greater the number of cycles the energy storage system
is, as shown in Table 1 [15]. The cycle life of power-type
storage is relatively long, and the main influencing factor is
the number of charge-discharge conversions.

C. ECONOMIC EVALUATION METHOD OF ENERGY
STORAGE SYSTEM
The cost of energy storage is still high, so it is necessary to
evaluate the income level of the energy storage project.

1) MATHEMATICAL MODEL OF COST
The cost part of the energy storage power station the infras-
tructure mainly includes the one-time investment construc-
tion cost, operation maintenance, and replacement cost. The
total lifetime cost for the energy storage system is:

CLCC = (Cinv + Crenew)+ CO&M
(1+ r)T − 1
(1+ r)T r

= (PessCP + Ecap(Cbop + Ccap)

+ n(PessCp + EcapCcap)

+PessCyw
(1+ r)T − 1
(1+ r)T r

) (5)

In the formula, Pess is the rated power of energy stor-
age. Ecap is the rated capacity of energy storage. Cp is
the cost of unit power. Ccap is the unit capacity cost of
energy storage equipment. Cbop is the unit capacity cost of

auxiliary equipment. Cyw is the average annual operating
cost per unit of power of energy storage equipment. T is
the operating cycle of the energy storage power station. r is
the discount rate. n is the number of replacements within the
cycle life, which needs to be determined by the life estimation
of energy storage equipment.

According to Section III, the key factors affecting energy
type and power-type energy storage life are not the same.
Therefore, this paper uses the ‘‘rain-flow’’ cycle counting
algorithm and the equivalent cycle life method to calculate
the battery life [16]. The life of supercapacitor is the ratio of
the maximum number of charging /discharging to the number
of actual charging/discharges per day.

2) MATHEMATICAL MODEL OF INCOME
Energy storage revenue takes into account the direct or indi-
rect benefits of configuring energy storage systems, includ-
ing daily electricity revenue, capacity income, penalty-free
amount, environmental benefits, and battery recovery bene-
fits. Daily income can expresse as:

Sday = Sele,d + Scap,d + Spunish,d + Seb,d + Srec,d

= mdES,out +
1

365
mcapPess + Spunish,d

+Eess,out
n∑
i=1

QiBi +
λ

365
×

r(1+ r)T

(1+ r)T − 1

×

n∑
i=1

(Eemmental,iρi/σ ) (6)

where, md and ES,out is the discharging price, discharging
electric quantity of energy system.mcap is the annual capacity
electrovalence. Ees,out is the daily discharging volume for the
energy storage system . Qi is the emission of pollutant i from
conventional coal-fired power generation. Bi is the unit cost
of the environmental load of the pollutant i. n is the total
emissions of pollutants. λ is the number of recoveries in the
life cycle .Ee is the capacity of the battery. mmental,i is the
price for mental i. ρ is the content of metal i in battery per
unit weight . σ is the specific energy of the battery.

3) COMPREHENSIVE ECONOMIC BENEFIT
During the entire life cycle, the difference between the total
revenue and the total investment cost of HESS is the net profit
of the whole life cycle, as follows:

ST =
t∑
i=1

Sday,i
(1+ r)T − 1
(1+ r)T r

− CLCC (7)

In (7), t is the number of days that wind farms generate
electricity in a year.

IV. MCMC
Calculating the comprehensive economic benefits of the
whole life cycle requires multiple simulation scenarios.
In order to approach the actual value, this paper uses the
MCMC method and backward scene reduction technology
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FIGURE 4. The flow chart of the MCMC method.

to generate multiple scenes [17], [18]. Define the maximum
output value of the wind farm to be Pmax and the mini-
mum to be zero. State i indicates that the power falls in
(Pmax · (i− 1)/N ,Pmax · i/N ]. The steps are as follows:

The MCMC method has generated N scenarios. Firstly,
we calculate the Kantorovich Distance (KD) between each
scene and the remaining scene and multiply the minimum
KD for each stage by the probability of the scene. Next,
we need to seek scenei and scene k , which correspond to the
minimum above. Finally, we select the scene with a lower
probability to cut, then, update the scene probability. We will
repeat the iteration until the number of scenes reduces to the
target scene.

V. CONTROL STRATEGY
A. CONTROL OBJECTIVES AND METHODS
This strategy takes time i as the starting point and 15 minutes
forward as the sampling interval, and uses DFT to study
the power deviation of wind power. The wind power devi-
ation that directly reflects the current sampling point i can
define as:

PDev,i = PAi − PPi (8)

The deviation fluctuation will separate into three types
in this paper, to prolong the operating life and give play to

FIGURE 5. Classification curve of wind power deviation fluctuation.

the characteristics of energy storage. First, the deviations are
classified into three categories according to different response
time, and we use DFT to complete the conversion from the
time domain to the frequency domain:

PE (k) =
N−1∑
n=0

PDev(n)e−j2πkn/N (9)

In (9), PDev,i is the time domain signal of power deviation
in the sampling period, which is to subtract the planned value
from the actual value of wind power at a certain time. PE is
the signal of the frequency domain. n and k are sampling
serial numbers in the time domain and frequency domain,
respectively. N is the total number of samples during the
sampling period.

The division of the three kinds of fluctuations is below.
The first kind of fluctuation: the characteristic of this type

is high fluctuation frequency, small amplitude, and repeated
zero-crossing.

The second kind of fluctuation: the change is fast, and the
variation amplitude is small on the whole, which is compen-
sated by power-type energy storage.

The third kind of fluctuation: the fluctuation is slow, but
the amplitude is the largest, and the period is the longest,
compensated by energy-type energy storage.

After obtaining the deviation fluctuation in the frequency
domain, the deviation fluctuation in the frequency domain is
separated by filtering principle. Finally, the deviation in the
frequency domain is converted to the time domain by Inverse
Discrete Fourier Transform (IDFT), which can expresse as:

PDev(n) =
N−1∑
k=1

PE (k)
N

ej2kπn/N (10)

The classification results of power deviation fluctuations
are as follows:

In order to avoid frequent action of the energy storage
system, the first kind of fluctuation is regarded as the dynamic
dead zone of control. Moreover, the energy storage system
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does not issue control instructions. The second and third kinds
of fluctuations are used as controlled inputs, and Passeval’s
theorem calculates the demand values of various kinds of
energy storage power compensation:

P(f1, f2) =

√√√√√ f1∑
f2

|PE (k)|2 (11)

In (11), f1, f2 represents the upper and lower bounds of the
frequency band, respectively.

B. EVALUATION CRITERIA
The control strategy proposed aims to raise the output dis-
patch ability of wind farms to the same level as the ther-
mal power unit through the HESS. Which can be seen by
Section II, it is not enough to meet the traditional assessment
index of wind power forecast.

The evaluation standards for wind power control perfor-
mance should be able to suppress the deviation of the present
output.We allow for a small amount of deviation, considering
the violent local fluctuation caused by the randomness of
wind power output. This paper consults the assessment crite-
ria of the two regulations on the grid-connected thermalmotor
group, definites the indicator of 10min RMSE is RMSE−10min,
and the indicator of 1min wind power deviation limit is
WPLD−1min. The former is used to assess the extent, which
the actual output power of wind farms deviates from the
planned value. While the latter is used to evaluate the effect
of short-term compensation and control the accumulation of
deviations.

1) RMSE−10 min
Transform the expression of the formula (1) to get the evalu-
ation indicator K1:

K1 = 2−

{
1
n

n∑
i=1

(
PDev,i
Cap

)
2
}
/ε21 (12)

In (12), ε1 is the root mean square value of the power con-
trol deviation of the wind farm for 1min throughout the year
(10% of the maximum power deviation), which is assessed
every 10min.

2) WPLD−1 min
The standard is related to the real-time deviation of wind
farms. When the actual output power is higher than the
planned value, the average value of the power deviation in
one minute is less than an upper limit valueWPLD,high. On the
contrary, it is larger than a lower limit value WPLD,low. The
upper and lower limits are calculated as follows:

WPLD,high =
(Phigh − PPi)2

n1

n1∑
i=1

1
PDev,i

(13)

WPLD,low =
(Plow − PPi)2

n2

n2∑
i=1

1
PDev,i

(14)

In the formula, Phigh = PPi + 3ε1 , Plow = PPi − 3ε1;
n1 is the number of sampling points when the actual output
of a wind farm in 1min is greater than the planned value and
n2is the opposite. The evaluation index K2 can be obtained by
transforming the formula of (13) and (14):

K2 = 2−

∣∣∣∣ n∑
i=1

PDev,i

∣∣∣∣∣∣∣∣ n∑
i=1

1
PDev,i

∣∣∣∣ · Cap · 9ε21 (15)

For each point of assessment, the eligibility criteria are:
1) K1 ≥ 100%
2) K2 ≥ 100% and counted valid minutes, only when

30mins in a row are eligible.

C. CONTROL ZONE
In order to achieve better control effect, this strategy sets
two thresholds, the partition conditions of each control area
shown in the figure below.

1) DYNAMIC DEAD ZONE
PEDi is the dynamic dead zone of the time i, i.e., the first
type of fluctuationmentioned above.Which takes time i as the
starting point and 15 minutes ahead as the sampling interval,
and is obtained by time-frequency conversion, filtering and
frequency-time conversion of the original power deviation
curve. The compensation demand value calculated by DFT
control at a certain time is PiR. When

∣∣PiR∣∣ ≤ |PEDi|, energy
storage equipment does not charge or discharge. However,
when the wind farm output is more than 20% of its rated total
production, it participates in primary frequency modulation.
The following formula determines the output power:

1Pi = −Kw1f = −
PAi
δwfref

1f (16)

In the formula,1Pi is the change of active power at time i;
δw is the droop gains, generally 0.04-0.06, the minimum is
0.02, this paper takes 0.04; 1f is the deviation of frequency,
takes 0.03HZ; fref is the rated frequency of power systems,
takes 50HZ.

The first type of fluctuation, whose amplitude exceeds
1MW, will be used as control input together with the other
two types of fluctuations.

2) NORMAL REGULATION ZONE
After entering the normal regulation area, the regulation of
energy storage is decided by K1 and K2 together. Which can
divide into three cases according to Figure 6: a) Excellent
control effect, energy storage equipment can meet control
requirements without action. b) Good control effect, but there
is the risk of substandard. We set up the action cycle T to
reduce the number of actions of energy storage equipment.
That is, after the energy storage device action once, no more
action within cycle T. c) DFT distributes the power of energy
storage equipment.
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FIGURE 6. Division and judgment of control areas.

3) EMERGENCY CONTROL ZONE
It needs to ensure the real-time and practical of the strategy
when the change of wind power is rapid. After entering
the extreme control area, according to the maximum output
and power deviation ratio of each energy storage element
distribute the regulating power. However, when the power
deviation between the before and after moments is too large,
that is

∣∣PDev,i − PDev,i−1∣∣ > PEE . In this case, the sampling
time of DFT needs to be shortened. PEE takes the absolute
value of 10% maximum power deviation.

D. STRATEGY AND PROCESS
This paper presents a control strategy to realize the planned
generation. The strategy aims at compensating for the devia-
tion of wind power. The specific steps are as follows:
1) The time i is the starting point and rolling sampling

15 min forward. The original power deviation is sep-
arated, with the first type of fluctuation as the dynamic
dead zone, and the remaining two types of fluctuations
as the control input.

2) Control zones are judged based on compensation
demand value and deviation value. DFT calculates the
adjustment amount of different energy storage devices.
Then, we determine the SOC of each energy storage
equipment.

3) Power exchange does not perform when the SOC
of energy-type and power-type energy storage is in
the normal charge and discharge region. When both
of them are in the state of over-discharged or over-
charged, to avoid damaging the energy storage system,
it is necessary to interact with the power of the sys-
tem. When only one of them is in the state of over-
discharged or over-charged, charging and discharging
control is depending on both the SOC of each energy
storage and the present state of charge/discharge.

The flow chart is as follows.

VI. CASE STUDIES
A. CASE SCENARIO
In order to verify the effectiveness of the proposed hybrid
Wind-ES control strategy, a typical day’s load data of a
100MW wind farm is tested on MATLAB. The total time of
data studies is 24 hours, and the sampling interval is 1s. The
entire control process is done in seconds, if the last instruction
has been completed or more than one second, the control
system can execute the next instruction. The energy storage
capacity is optimized according to the literature [19].

FIGURE 7. The control flow chart of tracking wind power generation plan.

The setting of simulation parameters: the capacity of the
lithium-ion battery is 19 MW · h, the maximum charging/
discharging power is 12 MW, and the charging/discharging
efficiency is 95%. The capacity of the supercapacitor
is 7 MW · h, the maximum charging/discharging power is
21 MW, and the charging/discharging efficiency is 98%; the
initial SOC for both is 0.5.

The normal range of SOC for energy-type energy storage
is set to 0.2-0.8, while power-type energy storage broadens to
0.1-0.9.

B. OVERALL CONTROL EFFECT
Figure 8 shows the effect of tracking wind power generation
plans and the curves before and after the control. The origi-
nal wind power deviation fluctuates greatly, up to 32.8MW.
After control, the deviation changes slowly in the range of
±5MW , which shows the excellent results of tracking power
generation real-time schedule. Table 3 and Figure 9 show the
evaluating indicators before and after control. The passing
rate of the assessment points after the adjustment has been
significantly improved, and all meet the requirements of wind
power control accuracy. Which sufficiently proves the cor-
rectness and effectiveness of the proposed strategy.

Figure 10 shows the charge/discharge power curve and the
corresponding SOC curve for each energy storage device.

It can see from Figure 10 that power-type energy stor-
age with small capacity but high charging/discharging power

VOLUME 7, 2019 147175



B. Li et al.: Direct Control Strategy of Real-Time Tracking Power Generation Plan

FIGURE 8. Control effect curve in all-day. (a) Actual power, planed power,
and actual grid-connected power curve. (b) Power deviation before and
after control.

FIGURE 9. Changes of indicators before and after control. (a) Control
effect of the indicator K1. (b) Control effect of the indicator K2.

regulates frequently. When the actual output maintains a
large deviation for a long time, we use energy-type energy
storage to charge/discharge, for restoring the adjustment mar-
gin of power-type energy storage quickly and preparing for

TABLE 3. Evaluation index and qualification rate of before and after
control.

FIGURE 10. The operation of the hybrid energy storage system.
(a) Charging and discharging power of the hybrid energy storage
system (b) SOC curve of the hybrid energy storage system.

the subsequent unforeseen large power deviation. When the
energy-type energy storage reaches the SOC limit, charging
and discharging is mainly by power-type energy storage,
which gives full play to the characteristics of the high power
density of power-type energy storage. As shown in Table 4,
this strategy can realize the shallow charging/discharging
usage mode of energy storage, and effectively improve the
operating life of energy storage.

C. ECONOMIC ANALYSIS
The entire life of the energy storage project is set at 10a.
The discount rate r is 8% without considering the decrease
in the installation cost of the energy storage system. The
economical parameters of each energy storage project are
listed in Table 5. The emission factor of standard coal thermal
power generation refers to the literature [20], energy storage
battery recovery-related data refers to reference [21].
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TABLE 4. Charging and discharging times of energy storage.

TABLE 5. Economic parameters of energy storage [22].

TABLE 6. Valuation of relevant economic parameters.

In this paper, we use the Markov Chain Monte Carlo
method to generate 1000 scenes, and then use backward
scene reduction technology to reduce the total number of
scenes to 60. The data of 60 typical days (5 days per month)
are simulated. Assuming that the annual utilization hours
of the wind farm are 2500h, the calculated data and related
economic parameters are as shown in Table 6. Moreover,
the energy storage system does not need to replace in the
period T, according to Table 6.

In summary, the economic parameters (see Tables 5 and 6)
are substituted into the cost-benefit model of energy storage,
and the calculation results are shown in Table 7. The net
income in the whole life cycle is US 749684.29$. The results
show that the control strategy proposed in this paper can bring
profits to wind farms, with certain theoretical significance
and practical application value.

D. COMPARATIVE ANALYSIS OF DIFFERENT ALGORITHMS
In order to evaluate the effectiveness of the proposed strategy,
this paper compareswith the algorithm of tracking plan power
generation, which is proposed in reference [4]. Table 8 shows
the assessment and error analysis of wind power under two
control algorithms. σmax is the maximum prediction error.
From Table 8, the output performance of the wind farm has

been significantly improved under the two control strategies.

TABLE 7. Calculation results of cost-benefit.

TABLE 8. Assessment and error analysis of wind farm in different modes.

The wind power grid-connected values are mainly consistent
with planned values. However, it can clearly see that the
strategy proposed in this paper has a better control effect on
the output power. The maximum power deviation fluctuation
after compensation can be controlled within±5 MW, and the
passing rate of the appraisal index can reach 100%.

VII. CONCLUSION
The evaluation standard of wind power control performance
is divided into 1 min and 10 min in this paper, which are more
in line with the characteristics of wind power output than
the traditional assessment standard. Based on the evaluation
standard, we propose the charging and discharging control
strategy to regulate energy storage power.

The simulation analyses on the hybrid wind-ES power
system illustrate the effectiveness of the proposed strategy
and validate that it performs feasible in the economy. On the
one hand, the control strategy solves the problem that the
control of power exchange between wind and energy storage
systems is too tight, which causes the repeated regulation
of energy storage. After controlled, the daily root mean
square error decreases from 10.44% to 1.19%. The maxi-
mum prediction error decreases from 32.84MW to 4.96MW.
The strategy has controlled the power deviation within a
small range, which meets the grid-connected requirements
of thermal power units, so that wind power output meets
the market competition requirements. On the other hand, the
strategy considers the operation characteristics and life of
different energy storage equipment and reduces the assess-
ment electrical energy under the same demand. Through the

VOLUME 7, 2019 147177



B. Li et al.: Direct Control Strategy of Real-Time Tracking Power Generation Plan

calculation and analysis of the study case, it can be seen that
the annual return on investment, static payback period and
the net present value of the project are 15.16%, 6.6years,
US 694152.119$, respectively, which prove that wind farm
has a better economic benefit after equipping energy storage
system.

The wind storage combined system is regarded as a fre-
quencymodulationmechanism.We can take the power devia-
tion of the connection line exchange between thewind storage
combined system and the power system, and frequency devi-
ation as the influencing factor, when the power generation in
the power system is not equal to the power consumption, the
wind storage combined system can be used both as a energy-
consuming system and as a power generation system, which
can play the role of energy storage in frequency modulation
and promote the frequency recovery of the power system.
This is the direction for further research.
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