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ABSTRACT Understanding human population distribution on the earth at fine scales is an increasingly
need to a broad range of geoscience fields, including resource allocation, transport and city planning,
infectious disease assessment, disaster risk response, and climate change. Many approaches have been
developed to spatially downscale census data to gridded population distribution datasets, which are preferable
to integration with natural and socio-economic variables. We present a novel population downscaling
approach that geographically weighted area-to-point regression kriging technique is used to downscale
census data to gridded population distribution datasets with multisource geospatial and social sensing data.
As a case study in Nanjing city, China we evaluated the effectiveness of the proposed population downscaling
approach. The experimental results demonstrated that the proposed approach generatedmore accurate details
of population distribution and higher accuracy than existing widely-used gridded population distribution
products. Hence, the proposed population downscaling approach is a valuable option in producing gridded
population distribution maps.

INDEX TERMS Gridded population distribution, census data, geospatial data, social sensing data, geo-
graphically weighted area-to-point regression kriging, downscaling, geographical information science.

I. INTRODUCTION
Human population is a critical indicator in human-
environment interactions [1]–[3]. Accurate human population
distribution is one of the most important variables for a
broad range of geoscience fields, such as resource alloca-
tion [4], [5], transport and city planning [6]–[8], infectious
disease assessment [9]–[11], disaster risk response [12], [13],
and climate change amongst others [14], [15]. Population
distribution data provide explicit population knowledge that
where and how many people spatially distribute within a
region of interest [16], [17]. Generally available informa-
tion on human population is demographical data, describing
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population counts, structure and other information within
each defined statistical unit (e.g., administrative unit, post-
code zone and census tract). Census data are the main source
of demographical data and they have some limitations in
geoscience applications [16]–[18]. First of all, census data
only provide a single value of population counts for each
census unit; hence, it cannot specify the spatial population
distribution within each census unit and reflect the internal
population variation. Furthermore, the unit of census data
is sometimes inconsistent with the unit of socioeconomic
variables and the zone system of natural variables (e.g., layers
derived from remote sensing images), which is known as the
change of support problem. Thus, the redistribution of census
data is strongly required to generate gridded population distri-
bution data [3], [4], [8]. Gridded population distribution data
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have three advantages over census data [18]. First, gridded
population data are generated by downscaling each unit of
irregular census data to several fine regular grid cells or pixels
within the census unit and it provides the detailed spatial
distribution of population counts within each census unit
using these fine regular grid cells. Second, gridded population
data are stored using the raster format and are facilitate to
compute when comparing with the census data using vector
format. Third, gridded population data with raster format
are easy to integrate with other geoscience variables in both
raster-format and vector-format. For other raster geoscience
variables, the simple resample and scale transformation pro-
cesses can be taken to meet the consistent requirement of
data spatial resolution. For other vector geoscience variables,
the aggregation process can be employed to summarize the
values of grid cells within each vector unit. Consequently,
gridded population data are becoming increasingly used in
various applications to replace census data [1], [3].

Over the past few decades, various approaches have been
developed to downscale the irregular census data to gridded
population distribution maps at fine scales. The simple areal
weighting method was earlier proposed to assume the pop-
ulation counts of a grid cell is proportional to its land area
and redistribute population counts to an uniformly contin-
uous surface within each census unit, as used in Gridded
Population of the World (GPW, version 2-4) [19]–[21]. The
simple areal weighting method did not use ancillary data
except census data and its spatial boundaries, leading to its
limited accuracy for large census units. Subsequently, many
dasymetric mapping methods were developed to incorporate
ancillary data to improve the details of gridded population
maps. The Global Rural-Urban Mapping Project (GRUMP)
incorporated the rural-urban extents derived from satellite
nightlight data into the areal weighting method [2]. The
LandScan global database, refreshed annually, used a mul-
tivariate dasymetric modeling method with ancillary infor-
mation extracted from geographic data and remote sensing
data [22], [23] Jia, et al. [24] proposed a dasymetric method
based on the heuristic sampling by integrating tax parcel data.
Azar, et al. [25] used a classification and regression tree to
model the relationship between impervious surface ratio and
population for improving the gridded population mapping.
With substantially multisource geospatial data (e.g., satel-
lite nightlight data, land cover [26], OpenStreetMap-derived
data [27], and topography) as inputs, WorldPop population
distribution project developed a semi-automated dasymetric
method based on random forest regression to produce grid-
ded population maps at both 30 arc-seconds (∼1 km at the
equator) and 3 arc-seconds (∼100 m at the equator) spatial
resolutions [1].

Recently, efforts have been made to refine the redistri-
bution process with a proliferation of social sensing big
data [28], including mobile phone data, taxi GPS trajec-
tories, geo-located tweets, positioning density of mobile
phone Apps, etc. The mobile phone location data, geolo-
cated call records to a signal tower of mobile phone

network, were used to model the dynamic gridded popu-
lation distribution [4], [7], [29]. Yu, et al. [30] combined
taxi GPS trajectories and satellite nightlight data to yield
the gridded population maps at 500 m in Shanghai, China.
Patel, et al. [31] used the density of geo-located tweets from
the social media application of Twitter in 1 × 1 km grid
cells as a covariate to improve the accuracy of gridded
population maps by the random forest regression algorithm.
The real-time Tencent user density, collected from Tencent’s
Apps with location-based service (e.g., the online map ser-
vice (https://map.qq.com/), the largest online social network
chatting Apps of QQ and WeChat in China, and other smart
phone Apps), was fused with points of interest to predict the
population distribution at the building scale [32].

Although a variety of gridded population downscaling
approaches have been developed and obtained relatively sat-
isfactory performances over the past decades, the spatial
dependence and spatial heterogeneity of geographical vari-
ables are often ignored in these approaches [3], [33]. The
spatial dependence or autocorrelation, the first law of geog-
raphy, indicates that spatial events are more influenced by
near events than distant events [34]. That is to say spatial
dependence of geographical variables is a function of dis-
tance [35]. Kriging interpolation methods are one type of
widely used methods for incorporating the spatial depen-
dence in spatial prediction [36], [37]. To deal with the change
of support problem, area-to-point kriging (ATPK), a rela-
tively new geostatistical method, was developed for spa-
tial prediction and downscaling by incorporating the spatial
dependence [38], [39] and it has been successfully applied
to downscaling different geographical variables [39]–[41].
However, the spatial dependence is not considered in most
of gridded population downscaling approaches. For exam-
ple, the widely used regression-based approaches only use
the attribution data of census data and covariates and their
spatial locations are not used [1], [25], [31]. The spatial
heterogeneity, the second law of geography, refers to the
non-stationarity or uncontrolled variance for geographical
variables [42]. It leads to the requirement of local models
as global models may be inadequate to capture the local
behaviors [43]. As the inevitable feature of spatial hetero-
geneity in geographical variables, geographically weighted
regression (GWR) was developed as an effective solution to
capture the local behaviors and generate the local coefficients
of regression for each unit [43], [44]. But, most of these
approaches built a global model in downscaling census data,
such as the random forest regression [1], [31] and the clas-
sification and regression tree [25]. Geographically weighted
area-to-point regression kriging (GWATPRK) is the combi-
nation of GWR and ATPK [45]. GWR is used to model the
local spatial trend component of correlated variables whereas
ATPK is used to model the residual component as it is spatial
dependent [45]. Although there are several advantages of
GWATPRK, little if any consideration has been given to
the application of GWATPRK to downscale socioeconomic
variables with irregular units. In addition, social sensing big
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data, especially the directly indicative data of people presence
from smart phone Apps with location-based service, have
demonstrated the large potential inmapping population distri-
bution [4], [30], [31], [46]. However, they are rare combined
with geospatial data derived from remote sensing data and
geographical information data to make full use of their own
merits.

Therefore, GWATPRK is employed to evaluate its feasibil-
ity in spatially downscaling irregular census data to gridded
population distribution count data at fine scales with multi-
source geospatial and social sensing datasets while consider-
ing the spatial dependence and spatial heterogeneity. A case
study in Nanjing city, China is taken to demonstrate the
effectiveness of the proposed method.

The remainder of this paper is organized as follows.
Section II describes the proposed method. Section III outlines
the case study, which is discussed in Section IV. Section V
presents the conclusions.

II. METHOD
A. FLOWCHART OF GWATPRK-BASED GRIDDED
POPULATION DISTRIBUTION MAPPING
GWATPRK-based gridded population mapping method
implements in six main steps: 1) preprocess the collected
geospatial data and social sensing data to prepare the inputs
of generating covariates (including projection transformation,
clip vector data and raster data to match the spatial extent of
census data, and other operations); 2) generate covariates at
fine grid scale in terms of geospatial data and social sensing
data (i.e., positioning density of Tencent users); 3) generate
covariates at census unit scale by aggregating the gridded
covariates to each census unit; 4) perform GWR on census
population data (dependent variable) and covariates (indepen-
dent variables) firstly and then implement ATPK on the resid-
ual component of GWR; 5) combine the ATPK results at the
fine grid scale and the volume-preserved GWR results to pro-
duce the GWATPRK-based gridded population counts distri-
bution maps; 6) assess the accuracy of the GWATPRK-based
gridded population counts distribution maps, as shown
in Figure 1.

B. GWATPRK
Let p (ui) ; i = 1, . . . ,m and p

(
vj
)
; j = 1, . . . , n to be the

m irregular census data and the n population grid cells in the
study area, respectively. GWATPRK can be formulated as a
combination of spatial trend component and residual compo-
nent. Thus, the general form of the prediction of population
grid cell vj by GWATPRK model can be expressed as

p
(
vj
)
= m

(
vj
)
+ e

(
vj
)

(1)

where m
(
vj
)
is the spatial trend component at grid cell vj and

e
(
vj
)
is the residual component at grid cell vj.

C. ESTIMATION OF SPATIAL TREND BY GWR
To consider the spatial heterogeneity, GWR is applied
to model the relationship between population data and

FIGURE 1. Flowchart of GWATPRK-based gridded population distribution
mapping.

correlated covariates. The spatial trend component of grid
cell vj can be predicted by

m
(
vj
)
= β0

(
vj
)
+

∑K

k=1
xk
(
vj
)
βk
(
vj
)

(2)

where β0(vj) is the GWR intercept, βk
(
vj
)
is the GWR coef-

ficient of covariate k at grid cell vj, and xk
(
vj
)
is the value of

covariate k at grid cell vj.
Due to the lacking of population data at the fine grid scale,

the population prediction of fine grid cells in (1) is impossi-
ble [45]. To benefit from detailed information of covariates
at the fine grid scale, the invariable assumption of regres-
sion coefficients at different scales can be taken in GWR
model [45], [47] like the existing gridded populationmapping
using random forest regression [1], [31] and classification and
regression tree [25]. Thus, the coefficients of β0 (·) and βk (·)
in (2) can be replacedwith the coefficients of GWRcalculated
at the irregular census unit scale, that is

p (ui) = β0 (ui)+
∑K

k=1
xk (ui) βk (ui)+ e (ui) (3)

where β0 (·) and βk (·) are the coefficients of GWR at the
census unit scale, xk (ui) is the value of covariate k at census
unit ui, and e (ui) is the residual component at census unit ui.

After theGWRoperation on population data and covariates
at the census unit scale, the GWR coefficients can be yielded
for each census unit from (3). The direct rasterization on
these GWR coefficients is implemented to obtain the gridded
GWR coefficients at the fine grid cell scale. The spatial trend
component at grid cell vj can be linear weighted by (2) in
terms of the rasterized GWR coefficients and covariates at the
fine grid scale. Note that gridded GWR results cannot meet
the estimated total population constraint of GWRwithin each
census unit (i.e., the volume preserving property) whereas
ATP results can meet this constraint. Thus, the min-max
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normalization was used to scale the gridded GWR results
to yield the volume-preserved GWR results that meet the
estimated total population constraint within each census unit.

D. ESTIMATION OF RESIDUAL BY ATPK
It is similar to the spatial trend component in (1), the residual
component in (1) is also impossible to estimate for each
fine grid cell directly. Indirectly, the residual component at
fine grid cells can be downscaled by ATPK from the known
residual component of GWR in (3) because GWR residuals
often have spatial dependence [45]. By considering the spatial
dependence, the residual component in (1) can be estimated
by ATPK as

ê
(
vj
)
=

∑l

i=1
λ (ui) · e (ui) (4)

where e (ui) is the known GWR residual component in (3)
at census unit ui, λ (ui) is the ATPK weights of residual
component at census unit ui and λ (ui) is obtained by solving
following kriging system

∑l

i=1
λ (ui)C̄

(
ui, ui′

)
+ µ

(
vj
)
= C̄

(
ui, vj

)
∑l

i=1
λ (ui) = 1

(5)

where C̄
(
ui, ui′

)
is the area-to-area covariance between two

areal census units of ui, ui′ , C̄
(
ui, vj

)
is the area-to-point

covariance between census unit ui and the fine grid cell vj,
l is the number of neighboring census units round the central
census unit under consideration. Note that ATPK needs a
variogram of residual component at fine grid scale and it can
be estimated by a deconvolution technique from the residual
component in (3) at the census scale [40], [48], [49].

After the two process of GWR and ATPK, the population
prediction of grid cell vj can be calculated by (1).

III. CASE STUDY
To evaluate the performance of GWATPRK-based population
counts distribution mapping method, a case study in Nanjing
city, China was carried out to produce the gridded population
distribution maps at two scales of the WGS 84 geographical
coordinate system (i.e., 30 arc-seconds (∼1000 m at the
equator) and 3 arc-seconds (∼100 m at the equator)).

A. STUDY AREA AND DATA
The study area, Nanjing city (31◦14′ –32◦37′ N, 118◦22′ –
119◦14′ E), locates in the lower Yangtze River basin. Nanjing
city is the capital of the Jiangsu province in eastern China and
it has 11 districts and 130 administrative street zones with a
total population of 8.24 million in 2015. It is a representative
city of the rapidly growing and globalizing in the Yangtze
River Delta economic zone. The gridded population distribu-
tion data at fine scales are useful to the urban planning and
development of Nanjing city; hence, it is selected as the case
study area.

The census data in 2015 of Nanjing city were collected
from the yearbook and the official website of each district.

Ancillary data that may have correlation with population
distribution were collected from different ways to derive
covariates [3]. They included points of interest (POIs), roads,
water, digital elevation model (DEM), Luojia 1-01 night-
time light image, impervious surface ratio, height of build-
ings, and positioning density of Tencent users, as shown in
Figure 2. The covariates were derived from the ancillary data
as follows.

(1) POIs are geographical points that identify the signif-
icant places of human activity [50]. POIs in Nanjing were
acquired from one of the biggest online maps in China
(https://map.qq.com/) on 6 July 2017 [50] and the total num-
ber was 306,517, as shown in Figure 2(a). POIs were used to
derive the covariate of gridded kernel density maps at two
scales of 30 arc-seconds and 3 arc-seconds by the Kernel
Density tool in ArcMap 10.2 software.

(2) Roads were obtained from OpenStreetMap (http://
download.geofabrik.de/index.html), as shown in Figure 2(b).
Roads were employed to derive two covariates of road density
and road accessibility at the two scales by the Line Den-
sity and Euclidean Distance tools in ArcMap 10.2 software,
respectively.

(3) Water was obtained from OpenStreetMap, as shown
in Figure 2(c). The gridded water accessibility maps at the
two scales were derived as a covariate by the Euclidean
Distance tool in ArcMap 10.2 software.

(4) DEM data with the spatial resolution of 30 m
(see Figure 2(d)) were the ASTER GDEM data and
were collected from Geospatial Data Cloud platform
(http://www.gscloud.cn/). DEM and its derived slope data
were aggregated to yield two covariates at the two scales.

(5) Luojia 1-01 nighttime light image, acquired on July
15, 2018, was used as a covariate, as shown in Figure 2(e).
Luojia 1-01, launched on June 2, 2018, is a CubeSat (6U)
sized earth observation satellite designed by the Wuhan Uni-
versity and it features an image with about 130 m ground
resolution [51]. Luojia 1-01 nightlight images have been
proved to be more potential in population mapping than the
Suomi National Polar-Orbiting Partnership Visible Infrared
Imaging Radiometer Suite images (NPP-VIIRS) [51]. There-
fore, a Luojia 1-01 nighttime light image was chosen as a
covariate at the two scales. The original Luojia 1-01 night-
time light image was first conveted to an image at the scale
of 3 arc-seconds by projection transformation and then the
converted Luojia 1-01 image was aggregated to an image at
the scale 30 arc-seconds.

(6) An impervious surface ratio image at 10 m spatial
resolution in our previous work was selected to produce a
covariate, as shown in Figure 2(f). The impervious surface
ratio image was derived from S2A images taken on April 2,
2017 [50] and it was converted and aggregated to yield two
images at the two scales.

(7) Height image of buildings was used as a covariate,
as shown in Figure 2(g). The building Esri shapefile with
the attribute of height in 2015 was collected from Jiangsu
Land Surveying and Planning (http://www.jslsp.com/).
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FIGURE 2. Ancillary data. (a) POIs, (b) Roads, (c) Water, (d) DEM, (e) Luojia 1-01 nighttime light image, (f) Impervious surface ratio, (g) Height image of
buildings, and (h) Positioning density image of Tencent users.

The shapefile of building height was first rasterized to an
image at 10 m spatial resolution and then it was converted
and aggregated to yield two height images at the two scales.

(8) The real-time Tencent user positioning density image,
requested by Tencent’s Apps of smart phones, was collected
to yield a social sensing covariate, as shown in Figure 2(h).
Tencent company is one of the biggest companies in China.
It has the largest online social network chatting Apps of QQ
andWeChat in China and there are over 94.6% of the Chinese
people who installed Tencent social network chatting Apps
in 2015 [52]. Once the installed Tencent’ Apps were used,
their geographical locations could be recorded to calculate
the number of people who have used these Apps within a
cell (∼1000 m at the equator) during a time interval. This
information was used to yield the real-time Tencent user
positioning density image and it could be directly crawled
from the website: https://heat.qq.com/. The real-time Tencent
user positioning density image has been used several appli-
cations [32], [52]. Compared with aforementioned geospatial
data, the social sensing data of Tencent user positioning den-
sity is able to directly indicate the detailed presence of people

with the locations. Such social sensing data therefore were
used to test its potential in gridded population distribution
mapping. We crawled the real-time Tencent user positioning
density images every five minutes from https://heat.qq.com/
between September 1 to September 30 in 2018. To avoid the
effect of population mobility, the final positioning density
image at the scale of 30 arc-secondswas calculated by averag-
ing all the real-time Tencent user positioning density images
in this month. The positioning density image at the scale
of 30 arc-seconds was converted to the positioning density
image at the scale of 3 arc-seconds.

The above generated geospatial and social sensing covari-
ates at each scale were aggregated to census units. The
Pearson correlation coefficients between census data and
aggregated covariates at the scale of 30 arc-seconds were
calculated in Table 1. It can be found from Table 1 that the
six covariates including density of POIs, density of roads,
Luojia 1-01 nighttime light image, impervious surface ratio
image, height image of buildings, and positioning density
of Tencent users have relatively higher Pearson correlation
coefficients with census data than other four covariates of
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TABLE 1. Pearson correlation coefficients between census data and
covariates.

distance to roads, distance to water, DEM, and slope. Thus,
the six covariates with relatively high Pearson correlation
coefficients were chosen as covariates in building the model
of GWATPRK.

The widely-used gridded population counts data in 2015
including GPW version 4 at the scale of 30 arc-
seconds (http://sedac.ciesin.columbia.edu/data/collection/
gpw-v4/sets/browse), LandScan at the scale of 30 arc-
seconds (https://landscan.ornl.gov/landscan-datasets), and
WorldPop at the two scales of 30 arc-seconds (https://www.
worldpop.org/geodata/listing?id = 17) and 3 arc-seconds
(https://www.worldpop.org/geodata/listing?id = 16) were
employed to compare with the GWATPRK-based gridded
population distribution results. In addition, the GWR result
at the scale of 30 arc-seconds was generated to compare with
GWATPRK for using the same ancillary data.

Accuracy assessment of each gridded population counts
distribution map featured a suite of metrics, including the R2,
the root mean squared error (RMSE) and the mean absolute
error (MAE). During the accuracy assessment, each gridded
population counts distribution map was first aggregated to
census units to get the population sum of each census unit
and then it was used to compare with the actual census data
to calculate above metrics.

B. EXPERIMENTAL RESULTS
Figure 3(a)-(e) present the five gridded population counts
distribution maps in Nanjing city at the scale of 30 arc-
seconds obtained from GPW version 4, WorldPop, Land-
Scan, GWR and GWATPRK, respectively. Figure 3(f) and
(g) are the gridded population counts distribution maps at
the scale of 3 arc-seconds for WorldPop and GWATPRK,
respectively. Figure 3(h) shows the census data of Nanjing
city in 2015. The seven maps in Figure 3(a)-(g) show that
high population counts mainly distribute in the downtown
areas (e.g., Gulou and Xuanwu districts), which is basi-
cally consistent with the census data and real population
distribution status. In the five maps at the scale of 30 arc-
seconds, GPW map and WorldPop map are similar and have
relatively homogeneous spatial distribution pattern whereas
other three maps of LandScan, GWR and GWATPRK are

similar and have relatively heterogeneous spatial distribution
pattern of population. On visual inspection of Figure 3(a)-(e),
LandScan, GWR and GWATPRK maps provide more pop-
ulation distribution details and more accurate distribution
on low population counts (<100 in one pixel) than GPW
and WorldPop maps because low population counts mainly
distribute in mountain areas (see Figure 2(e)) in LandScan,
GWR and GWATPRK maps whereas GPW and WorldPop
maps do not have these distributions. When examining Land-
Scan, GWR and GWATPRK maps in Figure 3(c)-(e), their
distribution is very close except that LandScan map has more
scattered pixels with high population counts than GWR and
GWATPRK maps. For the two maps at the scale of 3 arc-
seconds, it can be observed from Figure 3(f) and (g) that the
overall population counts of pixels are significantly lower
than those of the five maps at the scale of 30 arc-seconds
and that GWATPRK generated more population distribution
details than WorldPop, especially in urban center and subur-
ban areas.

TABLE 2. Accuracy comparison of seven population maps.

Table 2 shows the accuracy assessment for the seven
gridded population distribution maps. For the three gridded
population products at the scale of 30 arc-seconds, GPW has
the lowest accuracy, followed by LandScan, and WorldPop
is higher than GPW and LandScan, which is consistent with
the accuracy assessment results in a previous study [18].
With the multisource geospatial data and social sensing data
as inputs, GWR has higher accuracy than the three existing
products at the scale of 30 arc-seconds while its accuracy is
slightly lower than GWATPRK. The accuracy of GWATPRK
is obviously greater than existing gridded population prod-
ucts. Specifically, the R2 of two GWATPRK results are over
0.99, the R2 of GWATPRK for the scale of 30 arc-seconds
is 0.4177 higher than the average R2 of GPW, WorldPop
and LandScan, and the R2 of GWATPRK for the scale of 3
arc-seconds is 0.324 greater than that of WorldPop product.

IV. DISCUSSION
A. INTERCOMPARISON OF SEVEN GRIDDED
POPULATION MAPS
The performance of GWATPRK was further discussed and
compared for the spatial distribution details of population
counts in a subarea of urban center marked by a black
rectangle in Figure 3(h). Figure 4(a)-(e) are the GPW,
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FIGURE 3. Gridded population distribution maps of Nanjing in 2015. (a) GPW version 4 (30 arc-seconds), (b) WorldPop (30 arc-seconds), (c) LandScan
(30 arc-seconds), (d) GWR (30 arc-seconds), (e) GWATPRK-based method (30 arc-seconds), (f) WorldPop (3 arc-seconds), (g) GWATPRK-based method
(3 arc-seconds), and (h) Census data of Nanjing in 2015.

WorldPop, LandScan, GWR and GWATPRK results at
the scale of 30 arc-seconds in the subarea, respectively.
Figure 4(f) and (g) are the WorldPop and GWATPRK results
at the scale of 3 arc-seconds in the subarea, respectively.
Figure 4(h) is the high-resolution remote sensing image in the
subarea. For the five results (30 arc-seconds), Figure 4(c)-(e)
have more spatial distribution details of population counts
than Figure 4(a) and (b). Specifically, Figure 4(a) and (b) have
smoother spatial distribution of population counts than other
three results and the spatial pattern shape of high popula-
tion counts (>5000) in GPW looks like a circle while the
shapes in other four results are close to the real shape of
the administrative boundary in the downtown area. In Qixia
district center marked by the upper blue circle and Jiangning
district center marked by the lower blue circle in Figure 4,
GPW did not predict the high population counts for the two
centers and both WorldPop and LandScan only predicted the
high population counts in the center of Jiangning district,
whereas GWR and GWATPRK predicted the high popula-
tion counts in the two centers. When examining GWR and
GWATPRK results in Figure 4(d) and (e), GWR produced

a few under-estimated results (e.g., some gray pixels) and
some over-estimated results (e.g., the lower blue circle area).
The building height information of the lower blue circle
area in Figure 2(g) shows that the average height of this
circle area is lower than that of the downtown area. That
is to say the average population count of this circle area in
GWR results should be lower than that of the downtown area.
While the circle area presents a large area high population
counts, which is obviously over-estimated. GWATPRK result
in Figure 4(e) has less over-estimated and under-estimated
results than GWR result because the ATPK result of GWR
residual component was combined with gridded GWR esti-
mations to decrease these over- and under-estimated results.
The result in Figure 4(g) shows significantly more population
distribution details than those of Figure 4(a)-(f). Especially,
Figure 4(g) presents more relatively high population counts
in the upper blue circle area than Figure 4(f). The upper
blue circle contains the business center (e.g., office buildings,
Outlets and other shoppingmalls) and the Xianlin higher edu-
cation mega center (more than fifteen university campuses).
Therefore, this area has real high population counts, which
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FIGURE 4. Gridded population distribution maps within a subarea of Nanjing in 2015. (a) GPW version 4 (30 arc-seconds), (b) WorldPop
(30 arc-seconds), (c) LandScan (30 arc-seconds), (d) GWR (30 arc-seconds), (e) GWATPRK-based method (30 arc-seconds), (f) WorldPop
(3 arc-seconds), (g) GWATPRK-based method (3 arc-seconds), and (h) High-resolution remote sensing image.

can also be proved by the high building density from the
high-resolution remote sensing image in Figure 4(h). The
lower blue circle has the business center (e.g., Baijiahu shop-
ping center and Jiulonghu shopping center) and Jiangning
higher education mega center (more than sixteen university
campuses); hence it has real high population counts (see
another evidence from the high-resolution remote sensing
image in Figure 4(h)). Therefore, GWATPRK generatedmore
spatial details and more accurate spatial distribution of popu-
lation counts than other methods. One of the most important
reasons for the apparent improvements of GWATPRK is that
GWR generated local regression coefficients to capture the
local behaviors by considering spatial heterogeneity while
ATPK used the spatial dependence to redistribute the residual
component of GWR instead of deleting it like WorldPop to
decrease the over- and under-estimated grids in GWR.

B. IMPACT OF ANCILLARY DATA
The ancillary data play a critical role in predicting spatial
details for downscaling census data to gridded population
distribution maps. The GPWmainly used the census data and
a few ancillary data, resulted in the worst performance among
thesemethods. ComparedwithGPW, LandScan appliedmore
ancillary data derived from remote sensing images and had
better performance than GPW in both visual and quantitative.
Although Worldpop employed random forest regression and
more multisource geospatial data to produce higher accuracy
than GPW and LandScan, its spatial distribution details of
population are less than LandScan. Compared with GPW,
LandScan, and WorldPop, the another important reason for
the significant improvements of GWATPRK is largely due
to the fact that GWATPRK made full use of both multi-
source geospatial and social sensing covariates, especially the
covariate of positioning density of Tencent users. Compared

with WorldPop used substantial geospatial data, GWATPRK
employed more detailed and new ancillary data in improving
the accurate spatial detail prediction of population. POIs used
in GWATPRK were obtained from one of the biggest com-
mercial online maps in China (https://map.qq.com/), which
provides more POIs than OpenStreetMap whose POIs were
used in WorldPop. Meanwhile, Luojia 1-01 nighttime light
image used in GWATPRK is finer than NPP-VIIRS night-
time image used in WorldPop. Last, GWATPRK employed
the positioning density of Tencent users, a new type of
social sensing data, which provides useful information on
the detailed presence of people. Comparing the positioning
density of Tencent users in Figure 2(h) with the GWATPRK
result in Figure 3(e), it can be found that their spatial pattern
is very close to each other. It suggests that the positioning
density of Tencent users play a crucial role in predicting the
population distribution details, Hence, social sensing data
(e.g., the positioning density of Tencent users) have large
potential to predict gridded population distribution maps.

Although GWATPRK with both geospatial data and social
sensing data generated more accurate gridded population
distribution maps than existing gridded population prod-
ucts, the availability of fine ancillary data is a critical fac-
tor. For example, the positioning density of Tencent users
mainly indicates the information on the detailed presence of
Chinese and other areas (over China) may be not applied.
But, other alternative social sensing data (e.g., geo-located
tweets [31]) can replace it. In future, the proposed method
will be employed to generate gridded population count distri-
bution maps over some large areas in China.

V. CONCLUSION
This paper presents a new population downscaling
approach. It aimed to take advantage of geographically
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weighted area-to-point regression kriging technique to con-
sider the spatial dependence and spatial heterogeneity in
downscaling census data to gridded population distribution
datasets. Meanwhile, it used both geospatial data and social
sensing data to improve its performance. Increased accuracy
and more spatial distribution details of population were gen-
erated. Therefore, the new population downscaling approach
is an effective option for predicting the gridded population
distribution data at regional to global scales from census data,
geospatial data, and social sensing data.
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