
Received September 14, 2019, accepted September 28, 2019, date of publication October 9, 2019, date of current version October 22, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2946392

A3CM: Automatic Capability Annotation
for Android Malware
JUNYANG QIU 1, JUN ZHANG 2, WEI LUO1, LEI PAN 1, SURYA NEPAL 3,
YU WANG 4, AND YANG XIANG 2, (Senior Member, IEEE)
1School of Information Technology, Deakin University, Geelong, VIC 3216, Australia
2School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, VIC 3122, Australia
3CSIRO, Data61, Sydney, NSW 1710, Australia
4School of Computer Science, Guangzhou University, Guangzhou 510006, China

Corresponding author: Yu Wang (yuwang@gzhu.edu.cn)

This work was supported by the National Natural Science Foundation of China under Grant 61802080 and Grant 61802077.

ABSTRACT Android malware poses serious security and privacy threats to the mobile users. Traditional
malware detection and family classification technologies are becoming less effective due to the rapid evolu-
tion of the malware landscape, with the emerging of so-called zero-day-family malware families. To address
this issue, our paper presents a novel research problem on automatically identifying the security/privacy-
related capabilities of any detected malware, which we refer to as Malware Capability Annotation (MCA).
Motivated by the observation that known and zero-day-family malware families share the security/privacy-
related capabilities, MCA opens a new alternative way to effectively analyze zero-day-family malware (the
malware that do not belong to any existing families) through exploring the related information and knowledge
from known malware families. To address the MCA problem, we design a new MCA hunger solution,
Automatic Capability Annotation for Android Malware (A3CM). A3CM works in the following four steps:
1) A3CM automatically extracts a set of semantic features such as permissions, API calls, network addresses
from raw binary APKs to characterize malware samples; 2) A3CM applies a statistical embedding method
to map the features into a joint feature space, so that malware samples can be represented as numerical
vectors; 3) A3CM infers the malicious capabilities by using the multi-label classification model; 4) The
trained multi-label model is used to annotate the malicious capabilities of the candidate malware samples.
To facilitate the new research of MCA, we create a new ground truth dataset that consists of 6,899 annotated
Android malware samples from 72 families. We carry out a large number of experiments based on the four
representative security/privacy-related capabilities to evaluate the effectiveness of A3CM. Our results show
that A3CM can achieve promising accuracy of 1.00, 0.98 and 0.63 in inferring multiple capabilities of known
Android malware, small size-families’ malware and zero-day-families’ Android malware, respectively.

INDEX TERMS Android malware, security/privacy-related capability, multi-label learning, malicious
capability prediction, zero-day-family malware.

I. INTRODUCTION
Currently Android has become the most popular mobile oper-
ating system, with 74.82%market share in February 2018 [1].
Unfortunately, the popularity of Android together with its
openness causes the number of Androidmalware skyrocketed
in both official and third-party Android app markets. It is
estimated that almost 12,000 new Android malware sam-
ples being detected per day in 2018 [2]–[4]. This growth in
Android malware has significantly compromised the func-
tionality of the devices and even the financial security

The associate editor coordinating the review of this manuscript and
approving it for publication was Fan Zhang.

of to both mobile phone users as well as the service
providers.

To preserve a healthy ecosystem for Android users,
the research communities and security vendors have proposed
various techniques to analyze malware [5]–[10]. Among
these efforts, Android malware family classification is a key
step for further analyzing and better understanding of mal-
ware, e.g., finding new risks or threat patterns, designing
new signatures, updating old signatures or locating mali-
cious codes [11]–[14]. To accelerate the family attribution
process, machine learning based malware family classifica-
tion techniques are designed to assign the most likely fam-
ily class label to the detected malware, which guides the

147156 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0001-8288-6180
https://orcid.org/0000-0002-2189-7801
https://orcid.org/0000-0002-4691-8330
https://orcid.org/0000-0002-3289-6599
https://orcid.org/0000-0002-9807-2293
https://orcid.org/0000-0001-5252-0831


J. Qiu et al.: A3CM: Automatic Capability Annotation for Android Malware

subsequent forensic analysis and threat assessment. How-
ever, in reality, the machine learning based family classi-
fication techniques have to be frequently retrained to deal
with the zero-day-family malware. Otherwise the latest zero-
day-family malware will be misclassified into an existing
malware family. In addition, there exist other inevitable chal-
lenges and limitations of multi-class family classification,
e.g., the number of Android malware families is increas-
ing rapidly, but a large proportion of families just have
one or few samples. The vanish of old families and the
emerge of zero-day-families poses another challenge for
the multi-class family classification. The existing family
division is inaccurate and typically carries little semantic
information [15].

To address the limitations faced by malware family classi-
fication, we propose a new research problem called Android
Malware Capability Annotation (MCA). To solve the MCA
research problem, we design a solution employing the
multi-label classification model to annotate the capabilities
of Android malware. In order to realize automatic capabil-
ity annotation for Android malware, the cornerstone is to
define the security/privacy-related capability and to create a
corresponding dataset with capability ground truth for valida-
tion. Thus we need to address the following two challenges
(denoted as C1 and C2):
C1: Data collection and ground truth. We are the first

to propose the MCA research problem. There is no dataset
publicly available with capability ground truth. To create such
a dataset, a reliable and trusted ground truth is indispensable.
Last but not the least, a cross-checking process is required to
verify the dataset.

C2: Annotation for the zero-day-family malware.
A challenging but crucial task of the real-worldmalware anal-
ysis is detecting and classifying zero-day-family malware.
The zero-day-family malware is difficult to be effectively
annotated in terms of the capability vectors due to the lack
of knowledge.

In summary, we make the following contributions to the
Android malware analysis in this paper:

• We present a novel research problem on automatically
identifying the security/privacy-related capabilities of
any detected malware, which we refer to as Malware
Capability Annotation (MCA).

• To facilitate the MCA research problem, based on the
existing open sourced Android malware datasets and
ground truth, we firstly create a well security/privacy-
related capability annotated dataset. The annotated
dataset will be released to the public in the hope of
stimulating future research.

• To address MCA research problem, we design a solu-
tion named A3CMwhich employs the semantic features
through reverse engineering of malware samples. And
then multi-label learning scheme is employed for the
automatic capabilities annotation.

A. ORGANIZATION
The rest of this paper is organized as follows. In Section II,
we review the related work about Android malware analy-
sis. Section III states the background information, the chal-
lenges and limitations and the proposed research problem.
Section IV introduces the creation process of the ground
truth dataset. We present the detailed A3CM technique in
Section V, followed by the experimental evaluation and anal-
ysis of A3CM in Section VI. Section VII presents the limi-
tation analysis. Finally, Section VIII gives the conclusions of
this paper.

II. RELATED WORK
Machine learning techniques have been widely used in cyber
security in recent years [4], [16]–[22]. Most of the machine
learning based malware analysis works fall into the cate-
gory of malware detection or family classification. In the
following, we briefly review the current research status about
Android malware detection and family classification.

A. ANDROID MALWARE DETECTION
In 2013, a robust and lightweight classifier DroidAPIMiner
was designed for Android malware detection in [23].
Drebin [24] is a notable classic machine learning based static
analysis method that enables detecting Android malware
directly on the device. In [25], FeatureSmith was designed
to automatically engineer features from scientific papers for
Android malware detection. In 2017, a structured hetero-
geneous information network (HIN) was used for Android
malware detection [7], [26]. Zhang et al. [27] proposed a
Dalvik opcode graph based Android malware variants detec-
tion method using global topology features. Mariconti et al.
presented MaMaDroid [8], an Android malware detection
system based on modeling the sequences of API calls as
Markov chains. In [28], a novel Android malware detection
system with dynamic features was proposed facilitated with
ensemble learning. DroidEnsemble was proposed to extract
both string features and structural features to systematically
and comprehensively characterize the static behaviors of
Android apps and thus build a more effective Android mal-
ware detector [29]. Sun et al. [30] showed that it is possible to
reduce the number of permissions to be analyzed for Android
malware detection, while maintaining high effectiveness
and accuracy. A novel Android malware detector named
DroidFusion [31] based on a multilevel architecture that
enables effective fusion of machine learning classifiers for
higher accuracy was proposed. DroidFusion firstly generated
a model through training base classifiers at a lower level and
then applied a series of ranking-based algorithms on their
predictive accuracies at the higher level to obtain a final clas-
sifier. In 2019, an efficient Androidmalware detection system
was designed based on the method-level correlation relation-
ship of application’s abstracted API calls [32]. A combination
method for Android malware detection based on Control

VOLUME 7, 2019 147157



J. Qiu et al.: A3CM: Automatic Capability Annotation for Android Malware

Flow Graphs and machine learning algorithms was presented
in [33]. Kim et al. [34] proposed a multimodal deep learning
method for Android malware detection using various features
(extracted from AndroidManifest.xml, classes.dex and shared
library function files). A new concept of Complex Flows was
proposed to derive Android application behavior on device
sensitive data. Then an automated system was designed to
detect the malware using app behavior and app information
flows [35]. In 2019, a dynamic Android application classifi-
cation technique namedDroidCat was proposed to effectively
detect and categorize Android malware. The diverse and
novel dynamic features enabled the superior robustness of
DroidCat against several challenges, e.g., the complex use of
reflection, code obfuscation, run-time permissions, and other
evasion strategies [36].

B. ANDROID MALWARE FAMILY CLASSIFICATION
There exists many works on multi-class Android mal-
ware family classification [13], [37]–[40]. In [38], a novel
semantic-based approach was proposed to classify Android
malware via dependency graphs. To fight against transfor-
mation attacks, a weighted contextual API dependency graph
was extracted as program semantics to construct feature sets.
In 2017, Feng et al. proposed a technique for automatically
inferring semantic malware signatures for Android from a
small number of a malware family [13]. The key idea under-
lying the technique is to look for a maximally suspicious
common subgraph that is shared between all known samples
within a malware family. The work [39] addressed the con-
cept drifting problem in malware detection, which bridged a
fundamental research gap when dealing with evolving mali-
cious software. Alswaina and Elleithy [41] adopted machine
learning to analyze and identify the permissions requested
by malware. The Extremely Randomized Trees were used to
identify a small number of permissions that could be used
to attribute the malware into the malware families. In [42],
a set of semi-supervised techniques were introduced with
the ultimate goal of facilitating security experts to generate
the malware family signatures. A scalable framework was
proposed to mine massive of Android applications with the
main goal of detecting new malware samples, while reducing
false positive rate. The proposed framework was capable of
automatically clustering the Android applications into fam-
ilies and generating formal rules for detecting them with
100% recall and high precision. Fan et al. [43] proposed a
novel method that constructs the frequent subgraphs shared
by malware belonging to the same family. Then a system
named FalDroid was implemented to automatically clas-
sify the Android malware samples and identify the repre-
sentative malware samples. The identified malware samples
greatly accelerated themalware inspecting process. The expe-
rimantal results demonstrated that FalDroid outperformed the
state-of-the-art approaches. It offered considerable knowl-
edge for the detection and deep investigation of Android
malware and thus raised the level for malware to avoid
analysis.

There are several key distinctions between our work and
these related works:

1) The MCA research problem can be seen as a further
step of binary Android malware detection. Once a malware is
detected, then MCAwill perform further analysis, e.g., anno-
tating its security/privacy-related capabilities, which will
facilitate the security analysts to the subsequent malicious
code localization or signature generation.

2) Compared with multi-class family classification tech-
niques, MCA research problem can be regarded as an alter-
native way of family classification. Given a malware, A3CM
will annotate its security/privacy-related capabilities rather
than classify it into specific family.

3) Our work is formulated as neither a binary malware
detection problem nor a multi-class malware family classi-
fication problem. A detected Android malware may possess
several security/privacy-related capabilities, thus we address
a multi-label classification problem, which is more compli-
cated than binary detection or multi-class classification.

III. MALWARE CAPABILITY ANNOTATION
For deep analysis and further understanding of the detected
Android malware, many Android malware family classifi-
cation techniques are proposed to assign the corresponding
family class to the detected malware. However, there exist
inevitable challenges and limitations of multi-class family
classification:

1. The number of malware families has reached several
thousands until now [44], but a large proportion of families
just have one or few samples (58% of malware families in
Drebin dataset [24] have fewer than 5 samples). The sparsity
of malware samples provides limited knowledge to character-
ize the small-size-families.

2. The vanishing of old families and the emerging of
zero-day-families poses another challenge for the multi-class
family classification; the classification models need to retrain
regularly to keep up with the latest malware families land-
scape. Unfortunately, most of the existing works were
exhausted in dealing with the evolution of malware family.

3. The existing family division is inaccurate and typically
carries little semantic information. In other word, the exist-
ing family division is outdated and no longer represents
the current Android malware landscape. It cannot provide
detailed information on malware’s security/privacy-related
behaviors [15].

4. Given a candidate malware sample, different malware
family classification methods or tools produce inconsistent
results, thus is hard to categorize it into a specific family.
Currently, the mainstream method has to use the ‘majority
vote’ strategy among all the classification results to determine
the final family class [15].

Since the current malware family classification methods
have inevitable challenges and limitations, we may ask a
question: Can we annotate the malicious capabilities of a
malware directly rather than classify it into specific family?
In this way, for each Android malware sample, its capability

147158 VOLUME 7, 2019



J. Qiu et al.: A3CM: Automatic Capability Annotation for Android Malware

FIGURE 1. The flow diagram of the dataset creation.

vector can be annotated automatically with one or several
security/privacy-related capabilities.

Observations. Previous research witnesses that the mal-
ware family classes evolve over the time, e.g., the van-
ish of old families and the birth of zero-day-families
[39], [45]. However, during this evolving process, the sig-
nificant security/privacy-related capabilities of malware sam-
ples change far less frequently than that of the families.
Furthermore, the number of malware families (reach sev-
eral thousand until now [44]) is far more than that of
security/privacy-related capabilities (at most a dozen at
present).

Based on the observations, we pursue the ability to identify
the malicious capabilities of the detected malware rather than
classify them into specific families. Suppose that a malware
sample collects users’ private information and sends premium
a SMS message to subscribe services secretly. We annotate it
with Malicious SMS charge and Information stealing labels.
And this multi-label will be converted to a binary label
indicator vector. Such a vector is defined as the malware’s
Capability Vector.

IV. THE CREATION OF NEW MALWARE CAPABILITY
DATASET
Currently, many open source Android malware datasets
available for the research community, e.g., Drebin dataset
[24], AMD dataset [15], VirusShare.1 We can also label the
malicious apps based on the feedbacks of online service
VirusTotal.2 However, to the best of our knowledge, there
is no annotated capability malware dataset available for the
research community. Fig. 1 shows the flow diagram of our
dataset creation. The three steps for creating the dataset are
explained in details as follows.

A. RAW DATA COLLECTION
In this step, we collect the rawAndroidmalware samples with
the corresponding family labels. In this paper, the collected
malware samples come from two publicly available sources:
1)Drebin Dataset.3 Drebin contains 5,560 Android malware
samples from 179 different malware families in the period

1https://virusshare.com/
2https://www.virustotal.com/#/home/upload
3https://www.sec.cs.tu-bs.de/ danarp/drebin/

of August 2010 to October 2012. 2) AMD Dataset.4 AMD
is a carefully-labeled and well-studied dataset that includes
comprehensive profile information of malware. Currently,
AMD contains 24,553 samples, categorized in 71 malware
families ranging from 2010 to 2016.

For the Drebin and AMD dataset used in our paper, they
have been widely used in many papers [30], [33], [46]–[48].
The most important is that these two datasets provided
fine-grained family attribution ground truth information,
which is indispensable for the creation of our dataset with
malicious capability annotation.

B. GROUND TRUTH ANNOTATION
After the malware samples with family labels have been
collected, the key building block is to annotate the
security/privacy-related capabilities for each malware sam-
ple. However, it is very difficult and infeasible to annotate
the capabilities for every malware sample.

In this work, the security/privacy-related capabilities
are annotated according to the families. In other words,
we hypothesize that the Android malware samples within
the same families share the same capabilities. The referenced
ground truth capabilities for Android malware families come
from the report5 [49].Wewill label the trainingmalware sam-
ples with the security/privacy-related capabilities as shown
in Table 1.

TABLE 1. The list of the security/privacy-related capabilities.

In the capability annotation process, some collected mal-
ware families are not annotated in the referenced ground
truth report, and sometimes there are no malware samples
available for certain annotated families in the ground truth
report. Taking a conservative approach, we only keep the
Android malware families with well capability annotation in
the ground truth report.

C. DATA CROSS-CHECK
To form the final annotated dataset, we cross check the
reliability of the ground truth and validate the data sam-
ples accordingly. Two Android malware professionals helped
to verify and validate our dataset. The profile information

4http://amd.arguslab.org/
5https://forensics.spreitzenbarth.de/android-malware/

VOLUME 7, 2019 147159



J. Qiu et al.: A3CM: Automatic Capability Annotation for Android Malware

FIGURE 2. The overview of our proposed A3CM framework.

provided in the AMD dataset6 can be used to validate the
correctness of the ground truth for some malware families.
The ground truth for the remaining malware families can be
verified through the manual analysis according to [15].

V. THE PROPOSED ACAAM TECHNIQUE
To address the MCA research problem, we propose a solu-
tion, Automatic Capability Annotation for Android Malware
(A3CM). Fig. 2 illustrates the overview of A3CM. In the
following subsections, we will elaborate on the technical
details about each part of A3CM.

A. FEATURE EXTRACTION
In this work, to maintain the capability annotation efficiency,
we employ static analysis technique rather than the dynamic
analysis to analyze the Android malware. Reverse engineer-
ing is performed to disassemble the raw binary Android APK
files, and then the static features are parsed to characterize the
Android malware. We extract semantic features as suggested
inDrebin [24] to represent theAndroidmalware samples. The
semantic information about the extracted features is presented
in Table 2. The feature sets in the top 4 rows are extracted
from the AndroidManifest.xml file within the APK (Android
application package), while the bottom 4 rows are from the
disassembled classes.dex file. To extract the above semantic
features, we need to disassemble the raw binary APK sam-
ples. In this work, Androguard is used to parse AndroidMan-
ifest.xml and to disassemble classes.dex bytecodes [50].

B. FEATURE EMBEDDING
Having extracted the string features for each malware,
we construct the joint vector space and then embed the string
features of each malware to obtain the numerical vectors.

6http://amd.arguslab.org/behaviors

TABLE 2. The detailed description of the extracted features.

We utilize the TF-IDF [51] algorithm to construct the feature
vectors. More specifically, we use TfidfVectorizer in the
open source package scikit-learn [52] to construct the feature
vectors of each malware.

C. MULTI-LABEL CLASSIFICATION
Given the representation vector and the annotated capability
vector, the annotated capability dataset can be denoted asX =
[x1, x2, ..., xn], where xi ∈ Rp represents the feature vector
for each malware sample, n is the number of samples, and
p is the feature dimensions. Let Y = [Y ki ] be the capability
vectors for malware samples, and Y ki ∈ {0, 1} with Y

k
i = 1

indicating the presence of the k-th capability for malware i.
In the above context, more than one capabilities can be

simultaneously assigned to one malware sample. This is
known as a multi-label classification [53] problem in the
machine learning community. Currently, various methods
have been proposed to address the multi-label classifica-
tion problem. And these methods can be roughly divided
into two categories: Problem Transformation Methods and

147160 VOLUME 7, 2019



J. Qiu et al.: A3CM: Automatic Capability Annotation for Android Malware

Algorithms AdaptationMethods [53]. In this paper, we use
Linear Support VectorMachine and Decision Tree to perform
the multi-label classification task for Problem Transforma-
tion Method and Algorithms Adaptation Method, respec-
tively. Meanwhile we also design a Deep Neural Network
(DNN) [54], [55] to perform the multi-label capability anno-
tation task.

D. CAPABILITY ANNOTATION FOR THE
CANDIDATE MALWARE
When the multi-label annotation model has been trained,
it can be used to annotate the security/privacy-related capa-
bilities of the testing samples. For the given testing malware
sample, it will be disassembled, and the semantic features
will be firstly extracted to characterize the malware, then
it will be mapped into a vectorized representation. Then
the testing sample’s vector is fed to the trained annotation
model to produce the Capability Vector indicating the anno-
tation results. Each dimension of the output Capability Vector
denotes the presence of the corresponding capability. For
instance, the malware possesses the ith malicious capability
if the value of ith dimension of Capability Vector is 1. If the
value of jth dimension of Capability Vector is 0, then we con-
sider the malware doesn’t have the jth malicious capability.
The annotation results can further assist the following deep
analysis of the malware, e.g., malicious code localization.

VI. EXPERIMENTS AND ANALYSIS
A. EXPERIMENTAL SETTINGS
In this section, we present the experimental results and dis-
cussions of A3CM. To evaluate the effectiveness of A3CM,
we measure the performance of A3CM, and compare A3CM
with the malware family classification baseline. To be more
specific, we design the experiments towards answering the
following research questions:

- RQ1: How effective is A3CM at annotating the capa-
bility vectors of zero-day-family malware?

- RQ2:What is the annotation performance of A3CM on
the malware samples belonging to large-size-families?

- RQ3: What is the A3CM’s annotation performance
on those malware samples belonging to small-size-
families?

- RQ4: What information we can obtain from the anno-
tation results of A3CM?

- RQ5: How about the performance if combining the
static analysis and the dynamic behavioral features?

B. ANNOTATED DATASET AND EVALUATION MODELS
Dataset. In our collected security/privacy-related capability
dataset, the samples belonging to some capabilities are lim-
ited. To validate the effectiveness of our proposed framework,
as a proof-of-concept, we select four common and represen-
tative security/privacy-related capabilities (including Botnet
attack, Unauthorized root access, Malicious SMS charge
and Information stealing) with sufficient malware samples

TABLE 3. The distribution of the focused four security/privacy-related
capabilities.

TABLE 4. The architecture information of the neural network.

to perform the following experiments. The distribution of
the focused four capabilities of the dataset is summarized
in Table 3.

Classifiers. To perform the classification task of A3CM,
we employ Decision Tree (DT) and Support Vector
Machine (SVM) classifiers implemented in scikit-learn [52],
[56]. The optimal parameters of DT and SVM are determined
using the grid search strategy. TheDNN is implemented using
keras7 library and the detailed structural information of DNN
is presented in Table 4.

Metrics. In this work, we employ the following metrics
[57], [58] to evaluate the performance of A3CM:

- Hamming loss: It evaluates how many times a
malware-capability is misclassified, i.e. a capability not
belonging to the malware is annotated or a capability
belonging to the malware is not annotated. The smaller
the value of hamming loss means better annotation
performance.

1
K

1
n

n∑
i=1

K∑
k=1

(Y ki 6= Ŷ ki ) (1)

- Accuracy score: It is also called classification accuracy
or exact match ratio. It computes the percentage of
malware whole predicted capability vectors is exactly
the same as their corresponding ground truth capability
vectors. This metric tends to be overly strict when the
size of label vector is large.

1
n

n∑
i=1

I(Yi = Ŷi) (2)

- Precision score: A standard metric as shown in Eq.3,
where TP is the number of true positives and FP the
number of false positives.

P = TP/(TP+ FP) (3)

- Recall score: Another standard metric as shown in
Eq.4, where FN is the number of false negatives. The
best value is 1 and the worest value is 0.

R = TP/(TP+ FN ) (4)

7https://keras.io/

VOLUME 7, 2019 147161



J. Qiu et al.: A3CM: Automatic Capability Annotation for Android Malware

TABLE 5. An example about how to compute the capability annotation performance of the baseline malware family classification results. The final
annotation performance (e.g., accuracy score, hamming loss, precision score, etc.) will be calculated according to the 3rd column (Ground truth capability
vector) and the 5th column (Capability vector corresponding to the predicted family label).

FIGURE 3. The Precision score, Recall score and F1 score comparisons between A3CM and the baseline malware multi-class family
classification on zero-day-family malware using SVM.

- F1 score: F1 score is a combination of TP, TN, FP and
FN. It can reflect the classification effectiveness of
the model in a more comprehensive way. Equation 5
provides the formula for the computation of F1 score.

F1 = 2 ∗ P ∗ R/(P+ R) (5)

C. ANNOTATION PERFORMANCE ON ZERO-DAY-FAMILY
MALWARE SAMPLES
To simulate the performance of A3CM on zero-day-family
malware samples, we train the annotation model using mal-
ware samples belonging to specific families while we test
the model on malware samples belonging to other families.
Specifically, we use 5,993 malware samples from 62 families
as training set and other unseen 906 samples from the rest
10 families as the testing set. In this way, we can calculate the
capability annotation performance metrics. To obtain reliable
results, the annotation results are averaged over 100 runs of
the annotation model.

Currently, there is no similar work addressing the MCA
research problem. To fully evaluate the effectiveness of our
proposed A3CM, we employ the malware family classifica-
tion method as the baseline. (Specifically, we select SVM
and Decision Tree as the classifiers to perform the multi-class
malware family classification). This is due to the fact that dif-
ferent malware families share some security/privacy related
capabilities. Given an unknown malware sample, malware
family classifiers will classify it into the family that has the
most similar capability vector with it. Then we compute the
performance based on the joint capabilities between predicted
families and the ground truth families, as shown in Table 5.

In Table 6, we present the hamming loss and accuracy
score of A3CM on zero-day-family malware samples using

TABLE 6. The hamming loss and accuracy score of A3CM and the
baseline malware family classification method on zero-day-family
malware samples using SVM, DT and DNN.

TABLE 7. The hamming loss and accuracy score of A3CM on known
malware samples using SVM, DT and DNN.

SVM and DT. Our proposed A3CM achieve 30% and 12%
accuracy improvement using DT and SVM, respectively. The
reason is that the trained baseline multi-class malware fam-
ily classification model can only learn knowledge from the
known families’ training data, and generalize marginally well
on the zero-day-families’ data. In addition, the DNN achieves
the highest 56% accuracy score. Thus it is reasonable to
state that DNN has greater power in annotating the malicious
capabilities of the zero-day-family malware samples.

Fig. 3 reports the comparison results of precision score,
recall score and F1 score between A3CM and the baseline
malware family classification method using SVM. Our pro-
posed A3CM beats the baseline method on all the metrics.
We further explore the reason of the performance gap

147162 VOLUME 7, 2019



J. Qiu et al.: A3CM: Automatic Capability Annotation for Android Malware

TABLE 8. The precision score (PS), recall score (RS) and F1 score of A3CM on known malware samples using SVM, DT and DNN.

TABLE 9. The precision score (PS), recall score (RS) and F1 score (F1) of A3CM and the baseline malware multi-class family classification on
small-size-families’ malware using Decision Tree.

between A3CM and the baseline multi-class malware fam-
ily classification method on the zero-day-family scenario.
Firstly, due to the baseline model is trained on the known
families’ malware sample while tested on zero-day-families’
data, the model cannot learn valid information to anno-
tate the unseen malware samples. Secondly, for our pro-
posed A3CM, although the training data and testing data
are with different family labels, the training families and
testing families’ malware data share certain capabilities. Thus
the capability annotation model can learn effective knowl-
edge from training data to identify different capabilities.
In summary, the performance of A3CM is promising in
annotating the security/privacy-related capabilities on the
zero-day-families’ malware.

D. ANNOTATION PERFORMANCE ON KNOWN
MALWARE SAMPLES
To answer the second research question, we evaluate the
performance of our proposed capability annotation on known
malware samples. The created dataset with capability ground
truth is randomly selected into the training set (contains
4,823 samples) and the testing set (contains 2,076 samples)
with the ratio of 7 to 3. In this way, we can calculate the
capability annotation performance metrics. From the results
reported in Tables 7 and 8, we can see that the performance is
inspiring with the F1 score greater or equal to 0.96. The pro-
posed security/privacy-related capability annotation solution
A3CM is effective in annotating the knownmalware samples.
The annotation performance of Linear SVM is superior to that
of DT. A plausible reason is that our feature representations
for malware samples are very sparse and high-dimensional,
while Linear SVM is powerful in dealing with such sparse
data.

Meanwhile, as a baseline method, we perform the malware
multi-class family classification experiment using the same
training and testing sets, while the multi-label capability vec-
tors are replaced with single family labels. We employ DT
classifier to deliver the final classification results as shown
in Fig. 4. As we can see, the classification results of some

TABLE 10. The hamming loss and accuracy score of A3CM and the
baseline multi-class family classification on small-size-families’ malware
using DT, SVM and DNN.

FIGURE 4. The F1 score of the multi-class family classification on known
malware samples using Decision Tree.

families are satisfactory (the F1 score is close to 1.0). How-
ever, it is clear to see that the classification performance of a
large proportion of family classes is extremely poor. The rea-
son could be that these families are uncommon, thus it is hard
to collect enough training samples. Thus the performancewill
further decline when more families are added.

As mentioned in the previous section, multi-class mal-
ware family classification cannot work effectively on those
family classes with little samples. In this paper, we define
those families with less than 100 malware samples as small-
size malware families. Next we will compare the annotation
performance of A3CM and the baseline multi-class malware
family classification on small-size-families.

E. DEEP ANALYSIS OF THE IDENTIFIED CAPABILITIES
Table 10 and Table 9 present the comparative results on
small-size-families’ samples betweenA3CMand the baseline

VOLUME 7, 2019 147163



J. Qiu et al.: A3CM: Automatic Capability Annotation for Android Malware

TABLE 11. The top 10 significant features contributed to the security/privacy-related capabilities annotation of the first Case, the left column is the top
features and the corresponding feature scores for the Botnet attack capability, while the right column reports the top features and the corresponding
feature scores for the Information stealing capability.

TABLE 12. The top 10 significant features contributed to the security/privacy-related capabilities annotation of Case 2, the left column is the top features
and the corresponding feature scores for the correctly annotated Malicious SMS charge capability, while the right column reports the top features and the
corresponding feature scores for the missing annotated Information stealing capability.

malware family classification method. We can see that the
annotation performance of our proposed A3CM is superior
to that of the baseline malware family classification on small-
size-families’ malware. To investigate the reason of the per-
formance gap, we check those malware samples which were
incorrectly annotated. We find that almost all the malware
samples within families containing less than 10 samples were
incorrectly annotated by the baseline malware family classi-
fication. It implies that a sufficient number of samples per
family is required to guarantee the performance of multi-class
malware family classification. However, due to different mal-
ware families share certain security/privacy-related capabili-
ties, the impact of small-size-family can be mitigated by the
sharing capabilities. So A3CM can work more effectively.
In summary, on the small-size-family scenario, the annota-
tion performance of A3CM with DNN is better than that of
the baseline multi-class malware family classification, with
an approximately 17% accuracy improvement.

From the above mentioned experimental results, we can
draw the following conclusions: firstly, the malware fam-
ily classification technique is ineffective when dealing with
those uncommon families with few malware samples. With
the rapid increase of malware family class, the malware
family classification will be far from practical. Secondly,
the proposed malware capability annotation solution A3CM
is effective in annotating the capabilities for the known mal-
ware samples. Thus, our proposed frameworkMCA has more
potentials than the malware family classification technique.

In this part, we present that how the above annotation
results assist the further analysis of the malware. We report
the top 10 influential features, sorted by their absolute values

of the product of feature values and the corresponding feature
weights, for 3 distinct malware samples annotated by the
Linear SVM.

Case 1. The first example is a malware sample (hash name
3c6dfa528d0e26d35bd96fd92f41fca3eb95d6a56cb9f631b68
831a965b5e4b6) belonging to the BaseBridge family. In the
feature engineering part, we extract 54 string features (includ-
ing Used permissions, Suspicious API calls, Requested
permissions) through static analysis. This sample has Bot-
net attack and Information stealing capabilities, which is
also correctly annotated by A3CM using Linear SVM.
In Table 11, we report the top 10 significant features for
each predicted capability. There exist 6 identical top features
for both two capabilities. Thus A3CM searches and locates
the 16 potential malicious codes in the disassembled code
project, the security analysts then give priority to audit these
16 potential localization instead of the total 54 localization.

Case 2. In this case, we select an example with the
Malicious SMS charge capability being correctly annotated,
while Information stealing capability being missed anno-
tated. The sample belongs to Steek family and its hash name is
6d0ef0a20210eba44135968b044bec5221282d2f03a55216c4
f1feb7813e4fa8. The left column of Table 12 demonstrates
the top 10 features of the truly annotated Malicious SMS
charge capability. It is noted that the two sensitive SMS
involved APIs are listed as top 2 features. The right column
in Table 12 presents the top 10 important features of the
missing annotated Information stealing capability. We can
identify 16 unique features from Table 12, which indicates
16 suspect malicious codes localization in the disassembled
code project. Therefore the security analysts can manually

147164 VOLUME 7, 2019



J. Qiu et al.: A3CM: Automatic Capability Annotation for Android Malware

TABLE 13. The top 10 significant features contributed to the security/privacy-related capabilities annotation of Case 3, the left column is the top features
and the corresponding feature scores for the Unauthorized root access capability, while the right column reports the top features and the corresponding
feature scores for the Information stealing capability.

TABLE 14. The top 10 significant features contributed to the wrongly annotated Botnet attack capabilities of Case 3.

prioritize to check these indicated codes localization for
locating the truly malicious codes.

Case 3. The third example is a malware sample (hash
name e34f4d6e0b6c3ca9afdcdbf918db5263) with the fam-
ily class label GingerMaster. Through the static analysis,
103 features, such as, security permissions, sensitive API
calls, etc. were extracted to characterize the capabilities of
this sample. This sample is correctly annotated by A3CM
to have Unauthorized root access and Information stealing
capabilities, while misclassified to have Botnet attack capa-
bility. In Table 13, we present the top 10 features essen-
tial to the correctly predicted Unauthorized root access and
Information stealing capabilities. Several suspicious APIs
and permissions are listed which indicate the authorized
root access, e.g., setWifiEnabled, WRITE_APN_SETTINGS,
CHANGE_NETWORK_STATE or WIFI_STATE. Table 14
shows the top 10 key features which account for the incor-
rectly annotation of the Botnet attack capability. Totally there
are 20 unique top ranked features, which means 20 indicated
potential malicious code localization. Thus the security ana-
lysts can focus on these 20 code snippets to confirm whether
they are malicious or not.

F. ANNOTATION PERFORMANCE COMBINING THE STATIC
ANALYSIS AND DYNAMIC BEHAVIORAL FEATURES
To cover more characteristics of malware, in the experimental
part, as a comparison approach, we combine both the static
features and the dynamic behavioral features with the aim
to address the malicious capability annotation of malware
with native code or dynamic loading library. In the exper-
iment, we added a Subsection to present the performance
of security/privacy-related capability annotation using both

TABLE 15. The hamming loss and accuracy score of A3CM on
zero-day-family malware samples using SVM, DT and DNN using both the
static analysis and dynamic behavioral features.

the static and the dynamic behavioral features. Specifically,
each Android malware is firstly executed in the DroidBox8

dynamic analysis Sandbox for 3 minutes, and the dynamic
behavioral information (e.g., network data, file read and
write operations, started services and loaded classes, infor-
mation leaks via network, circumvented permissions, cryp-
tographic operations, listing broadcast receivers and sent
SMS and phone calls) is tracked and logged during the
execution process [28]. Besides, the Strace is used to log
the system calls while the Android application is executed.
These extracted behavioral features are vectorized and then
fused with the static analysis feature vectors. The fused
vectors are input to train and test the SVM, Decision Tree
and DNN classifiers. The security/privacy related capabil-
ity annotation performance on three scenarios (annotation
on zero-day-family malware, annotation on known malware
and annotation on small-size-families’ malware) is presented
in Table 15, Table 16 and Table 17. It can be seen that
combining both the static analysis and dynamic behavioral
features do facilitate the security/privacy-related capability
annotation performance on both scenarios. Compared with

8https://github.com/pjlantz/droidbox

VOLUME 7, 2019 147165



J. Qiu et al.: A3CM: Automatic Capability Annotation for Android Malware

TABLE 16. The hamming loss and accuracy score of A3CM on known
malware samples using SVM, DT and DNN using both the static analysis
and dynamic behavioral features.

TABLE 17. The hamming loss and accuracy score of A3CM on
small-size-families’ malware samples using SVM, DT and DNN using both
the static analysis and dynamic behavioral features.

the annotation performance merely using the static analy-
sis features in Subsection C and Subsection D, adding the
dynamic behavioral features will derive 1% to 6% accu-
racy improvement. However, since the dynamic analysis is
time consuming (in this paper, each Android application is
executed 3 minutes in the Sandbox). From the efficiency
perspective, the static analysis features are used in real-
deployment.

G. WHY A3CM WORK
In this subsection, we briefly present why A3CM works
based on the experimental results. Firstly, A3CM predicts the
security/privacy-related capabilities of the detected malware
instead of categorizing it to any families. Thus A3CM is able
to deal with the unknown or zero-day-family malware.

Secondly, A3CM extracts semantic features, such as suspi-
cious API calls, requested permissions, to predict the capabil-
ities. The security/privacy-related capabilities are related to
the malicious behaviors of malware samples, while malicious
behaviors are performed through certain suspicious APIs,
permissions, and systems calls. Thus it is possible to capture
the patterns of security/privacy-related capabilities using the
semantic features.

VII. LIMITATIONS ANALYSIS
In this paper, we attempt to address a novel and challeng-
ing research question: How to automatically annotate the
security/privacy-related capabilities for the detected Android
malware. However, due to the lack of sufficient data with
ground truth. Our solutions to the research issue the following
limitation: In the experiments, our dataset is aggregated based
on two open source datasets, and the ground truth is captured
from a security blog released by security expert Michael
Spreitzenbarth. Our limitations lie that the ground truth is
on family granularity. The latest malware with ground truth
should be included to cover the current landscape of the
Android malware.

VIII. CONCLUSION AND FUTURE WORK
In this paper, we propose a new technique to automati-
cally identifying the security/privacy related capabilities of
any detected malware, which named Malware Capability
Annotation (MCA). Then we propose a new MCA solu-
tion, Automatic Capability Annotation for Android Malware
(A3CM) to automatically predict the capabilities of newly
detected Android malware. A3CM can annotate the capa-
bilities of malware using the semantic features extracted
from the raw software package. The multi-label classification
techniques are employed to capture the relations between
semantic features of malware and capability vectors. To the
best of our knowledge, A3CM is the first work that can
infer the Android malware’s capability vectors. We also cre-
ated the first Android malware dataset with the capability
ground truth. Our method achieves satisfactory performance
in inferring the capability vectors of knownAndroidmalware,
small-size-families’ malware and zero-day-families’ Android
malware, respectively. Compared with traditional malware
family class classification methods, our work is able to anno-
tate the security/privacy-related capabilities for those zero-
day-families’ malware.

In the future, we will extend the malware dataset to cover
the latest landscape of the malware and investigate more
reliable security/privacy-related capability ground truth.

REFERENCES
[1] StatCounter. (2018). Mobile Operating System Market Share Worldwide.

Accessed:Mar. 19, 2018. [Online]. Available: http://gs.statcounter.com/os-
market-share/mobile/worldwide

[2] G. Suarez-Tangil and G. Stringhini, ‘‘Eight years of rider measurement
in the Android malware ecosystem: Evolution and lessons learned,’’
CoRR, vol. abs/1801.08115, pp. 1–18, Jan. 2018. [Online]. Available:
http://arxiv.org/abs/1801.08115

[3] N. Sun, J. Zhang, P. Rimba, S. Gao, Y. Xiang, and L. Y. Zhang, ‘‘Data-
driven cybersecurity incident prediction: A survey,’’ IEEE Commun. Sur-
veys Tuts., vol. 21, no. 2, pp. 1744–1772, 2nd Quart., 2018.

[4] L. Ma, X. Liu, Q. Pei, and Y. Xiang, ‘‘Privacy-preserving reputa-
tion management for edge computing enhanced mobile crowdsensing,’’
IEEE Trans. Services Comput., vol. 12, no. 5, pp. 786–799, Sep./Oct.
2019.

[5] J. Qiu, W. Luo, L. Pan, Y. Tai, J. Zhang, and Y. Xiang, ‘‘Predicting the
impact of Android malicious samples via machine learning,’’ IEEE Access,
vol. 7, pp. 66304–66316, 2019. doi: 10.1109/ACCESS.2019.2914311.

[6] L. Liu, O. de Vel, Q.-L. Han, J. Zhang, and Y. Xiang, ‘‘Detecting and
preventing cyber insider threats: A survey,’’ IEEE Commun. Surveys Tuts.,
vol. 20, no. 2, pp. 1397–1417, 2nd Quart., 2018.

[7] S. Hou, Y. Ye, Y. Song, and M. Abdulhayoglu, ‘‘HinDroid: An intelligent
Android malware detection system based on structured heterogeneous
information network,’’ in Proc. 23rd ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining (KDD), 2017, pp. 1507–1515.

[8] E. Mariconti, L. Onwuzurike, P. Andriotis, E. De Cristofaro, G. Ross,
and G. Stringhini, ‘‘MaMaDroid: Detecting Android malware by building
Markov chains of behavioral models,’’ in Proc. 24th Annu. Netw. Distrib.
Syst. Secur. Symp. (NDSS), San Diego, CA, USA, Feb./Mar. 2017, pp. 1–
15. [Online]. Available: https://www.ndss-symposium.org/ndss2017/ndss-
2017-programme/mamadroid-detecting-android-malware-building-
markov-chains-behavioral-models/. doi: 10.14722/ndss.2017.23353.

[9] T. Wu, S. Wen, Y. Xiang, and W. Zhou, ‘‘Twitter spam detection: Sur-
vey of new approaches and comparative study,’’ Comput. Secur., vol. 76,
pp. 265–284, Jul. 2018.

[10] S. Wen, M. Sayad Haghighi, C. Chen, Y. Xiang, W. Zhou, and W. Jia,
‘‘A sword with two edges: Propagation studies on both positive and nega-
tive information in online social networks,’’ IEEE Trans. Comput., vol. 64,
no. 3, pp. 640–653, Mar. 2015.

147166 VOLUME 7, 2019

http://dx.doi.org/10.1109/ACCESS.2019.2914311
http://dx.doi.org/10.14722/ndss.2017.23353


J. Qiu et al.: A3CM: Automatic Capability Annotation for Android Malware

[11] Y. Feng, S. Anand, I. Dillig, and A. Aiken, ‘‘Apposcopy: Semantics-based
detection of Android malware through static analysis,’’ in Proc. 22nd ACM
SIGSOFT Int. Symp. Found. Softw. Eng. (FSE), 2014, pp. 576–587.

[12] G. Meng, Y. Xue, C. Mahinthan, A. Narayanan, Y. Liu, J. Zhang, and
T. Chen, ‘‘Mystique: Evolving Android malware for auditing anti-malware
tools,’’ inProc. 11th ACMAsia Conf. Comput. Commun. Secur. (AsiaCCS),
2016, pp. 365–376.

[13] Y. Feng, O. Bastani, R. Martins, I. Dillig, and S. Anand, ‘‘Automated
synthesis of semantic malware signatures using maximum satisfia-
bility,’’ in Proc. 24th Annu. Netw. Distrib. Syst. Secur. Symp. (NDSS),
San Diego, CA, USA, Feb./Mar. 2017, pp. 1–15. [Online]. Available:
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/
automated-synthesis-semantic-malware-signatures-using-maximum-
satisfiability/. doi: 10.14722/ndss.2017.23379.

[14] A. Narayanan, M. Chandramohan, L. Chen, and Y. Liu, ‘‘A multi-view
context-aware approach to Android malware detection and malicious code
localization,’’ Empirical Softw. Eng., vol. 23, no. 3, pp. 1222–1274, 2017.

[15] F. Wei, Y. Li, S. Roy, X. Ou, and W. Zhou, ‘‘Deep ground truth analysis
of current Android malware,’’ in Proc. Int. Conf. Detection Intrusions
Malware, Vulnerability Assessment. Cham, Switzerland: Springer, 2017,
pp. 252–276.

[16] J. Zhang, Y. Xiang, Y. Wang, W. Zhou, Y. Xiang, and Y. Guan, ‘‘Network
traffic classification using correlation information,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 24, no. 1, pp. 104–117, Jan. 2013.

[17] J. Jiang, S. Wen, S. Yu, Y. Xiang, and W. Zhou, ‘‘Identifying propaga-
tion sources in networks: State-of-the-art and comparative studies,’’ IEEE
Commun. Surveys Tuts., vol. 19, no. 1, pp. 465–481, 1st Quart., 2017.

[18] Y. Wang, W. Meng, W. Li, Z. Liu, Y. Liu, and H. Xue, ‘‘Adaptive machine
learning-based alarm reduction via edge computing for distributed intru-
sion detection systems,’’ Concurrency Comput., Pract. Exper., vol. 31,
no. 19, 2019, Art. no. e5101.

[19] L. Tang, W. Ma, M. Grobler, W. Meng, Y. Wang, and S. Wen, ‘‘Faces are
protected as privacy: An automatic tagging framework against unpermitted
photo sharing in social media,’’ IEEE Access, vol. 7, pp. 75556–75567,
2019.

[20] R. Kumar, X. Zhang, W. Wang, R. U. Khan, J. Kumar, and A. Sharif,
‘‘Amultimodal malware detection technique for Android IoT devices using
various features,’’ IEEE Access, vol. 7, pp. 64411–64430, 2019.

[21] S. Wang, Q. Yan, Z. Chen, B. Yang, C. Zhao, and M. Conti, ‘‘Detecting
Android malware leveraging text semantics of network flows,’’ IEEE
Trans. Inf. Forensics Security, vol. 13, no. 5, pp. 1096–1109, May 2018.

[22] G. Tao, Z. Zheng, Z. Guo, and M. R. Lyu, ‘‘MalPat: Mining patterns of
malicious and benign Android apps via permission-related APIs,’’ IEEE
Trans. Rel., vol. 67, no. 1, pp. 355–369, Mar. 2018.

[23] Y. Aafer, W. Du, and H. Yin, ‘‘DroidAPIMiner: Mining API-level features
for robust malware detection inAndroid,’’ inProc. Int. Conf. Secur. Privacy
Commun. Syst. Cham, Switzerland: Springer, 2013, pp. 86–103.

[24] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and
C. Siemens, ‘‘DREBIN: Effective and explainable detection of Android
malware in your pocket,’’ in Proc. Netw. Distrib. Syst. Secur. Symp.
(NDSS), vol. 14, 2014, pp. 23–26.

[25] Z. Zhu and T. Dumitraş, ‘‘FeatureSmith: Automatically engineering fea-
tures for malware detection by mining the security literature,’’ in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur. (CCS), 2016, pp. 767–778.

[26] S. Hou, Y. Ye, Y. Song, and M. Abdulhayoglu, ‘‘Make evasion harder:
An intelligent Android malware detection system,’’ in Proc. IJCAI, 2018,
pp. 5279–5283.

[27] J. Zhang, Z. Qin, K. Zhang, H. Yin, and J. Zou, ‘‘Dalvik opcode graph
based Android malware variants detection using global topology features,’’
IEEE Access, vol. 6, pp. 51964–51974, 2018.

[28] P. Feng, J. Ma, C. Sun, X. Xu, and Y. Ma, ‘‘A novel dynamic Android
malware detection system with ensemble learning,’’ IEEE Access, vol. 6,
pp. 30996–31011, 2018.

[29] W. Wang, Z. Gao, M. Zhao, Y. Li, J. Liu, and X. Zhang, ‘‘DroidEnsem-
ble: Detecting Android malicious applications with ensemble of string
and structural static features,’’ IEEE Access, vol. 6, pp. 31798–31807,
2018.

[30] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-An, and H. Ye, ‘‘Significant
permission identification for machine-learning-based Android malware
detection,’’ IEEE Trans. Ind. Informat., vol. 14, no. 7, pp. 3216–3225,
Jul. 2018.

[31] S. Y. Yerima and S. Sezer, ‘‘DroidFusion: A novel multilevel classifier
fusion approach for Android malware detection,’’ IEEE Trans. Cybern.,
vol. 49, no. 2, pp. 453–466, Feb. 2019.

[32] H. Zhang, S. Luo, Y. Zhang, and L. Pan, ‘‘An efficient Android malware
detection system based on method-level behavioral semantic analysis,’’
IEEE Access, vol. 7, pp. 69246–69256, 2019.

[33] Z. Ma, H. Ge, Y. Liu, M. Zhao, and J. Ma, ‘‘A combination method for
Android malware detection based on control flow graphs and machine
learning algorithms,’’ IEEE Access, vol. 7, pp. 21235–21245, 2019.

[34] T. Kim, B. Kang, M. Rho, S. Sezer, and E. G. Im, ‘‘A multimodal deep
learning method for Android malware detection using various features,’’
IEEE Trans. Inf. Forensics Secur., vol. 14, no. 3, pp. 773–788, Mar. 2019.

[35] F. Shen, J. Del Vecchio, A. Mohaisen, S. Y. Ko, and L. Ziarek, ‘‘Android
malware detection using complex-flows,’’ IEEE Trans. Mobile Comput.,
vol. 18, no. 6, pp. 1231–1245, Jun. 2019.

[36] H. Cai, N. Meng, B. G. Ryder, and D. Yao, ‘‘DroidCat: Effective Android
malware detection and categorization via app-level profiling,’’ IEEE Trans.
Inf. Forensics Security, vol. 14, no. 6, pp. 1455–1470, Jun. 2019.

[37] L. Deshotels, V. Notani, and A. Lakhotia, ‘‘DroidLegacy: Automated
familial classification of Android malware,’’ in Proc. ACM SIGPLAN
Program Protection Reverse Eng. Workshop, 2014, Art. no. 3.

[38] M. Zhang, Y. Duan, H. Yin, and Z. Zhao, ‘‘Semantics-aware Android mal-
ware classification using weighted contextual API dependency graphs,’’
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur. (CCS), 2014,
pp. 1105–1116.

[39] R. Jordaney, K. Sharad, S. K. Dash, Z. Wang, D. Papini, I. Nouretdinov,
and L. Cavallaro, ‘‘Transcend: Detecting concept drift in malware classifi-
cation models,’’ in Proc. 26th Usenix Secur. Symp. (USENIX Secur.), 2017,
pp. 625–642.

[40] W. Wang, M. Zhao, Z. Gao, G. Xu, H. Xian, Y. Li, and X. Zhang, ‘‘Con-
structing features for detecting Android malicious applications: Issues,
taxonomy and directions,’’ IEEE Access, vol. 7, pp. 67602–67631, 2019.

[41] F. Alswaina and K. Elleithy, ‘‘Android malware permission-based multi-
class classification using extremely randomized trees,’’ IEEE Access,
vol. 6, pp. 76217–76227, 2018.

[42] A. Atzeni, F. Díaz, A. Marcelli, A. Sánchez, G. Squillero, and A. Tonda,
‘‘Countering Android malware: A scalable semi-supervised approach for
family-signature generation,’’ IEEE Access, vol. 6, pp. 59540–59556,
2018.

[43] M. Fan, J. Liu, X. Luo, K. Chen, Z. Tian, Q. Zheng, and T. Liu, ‘‘Android
malware familial classification and representative sample selection via
frequent subgraph analysis,’’ IEEE Trans. Inf. Forensics Security, vol. 13,
no. 8, pp. 1890–1905, Aug. 2018.

[44] G. Suarez-Tangil and G. Stringhini, ‘‘Eight years of rider measurement in
the Android malware ecosystem: Evolution and lessons learned,’’ 2018,
arXiv:1801.08115. [Online]. Available: https://arxiv.org/abs/1801.08115

[45] P. M. Comar, L. Liu, S. Saha, P.-N. Tan, and A. Nucci, ‘‘Combining
supervised and unsupervised learning for zero-day malware detection,’’
in Proc. IEEE Int. Conf. Comput. Commun. (INFOCOM), Apr. 2013,
pp. 2022–2030.

[46] X. Chen, C. Li, D.Wang, S.Wen, J. Zhang, S. Nepal, Y. Xiang, and K. Ren,
‘‘Android HIV: A study of repackaging malware for evading machine-
learning detection,’’ IEEE Trans. Inf. Forensics Security, to be published.

[47] W. Li, Z. Wang, J. Cai, and S. Cheng, ‘‘An Android malware detection
approach using weight-adjusted deep learning,’’ in Proc. Int. Conf. Com-
put., Netw. Commun. (ICNC), Maui, HI, USA, Mar. 2018, pp. 437–441.

[48] E. M. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb, ‘‘MalDozer:
Automatic framework for Android malware detection using deep learn-
ing,’’ Digit. Invest., vol. 24, pp. S48–S59, Mar. 2018.

[49] M. Spreitzenbarth. (2016).Current Android Malware. Spreitzenbarth Con-
sultants. Accessed: Mar. 22, 2018. [Online]. Available: https://forensics.
spreitzenbarth.de/android-malware/

[50] A. Desnos. (2011). Androguard. [Online]. Available: https://github.com/
androguard/androguard

[51] J. Ramos, ‘‘Using tf-idf to determine word relevance in document queries,’’
in Proc. 1st Instructional Conf. Mach. Learn., vol. 242, Dec. 2003,
pp. 133–142.

[52] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
‘‘Scikit-learn: Machine learning in Python,’’ J. Mach. Learn. Res., vol. 12,
pp. 2825–2830, Oct. 2011.

[53] G. Tsoumakas and I. Katakis, ‘‘Multi-label classification: An overview,’’
Int. J. Data Warehousing Mining, vol. 3, no. 3, p. 13, 2006.

[54] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, ‘‘Greedy layer-wise
training of deep networks,’’ in Advances in Neural Information Processing
Systems. Cambridge, MA, USA: MIT Press, 2006, pp. 153–160.

VOLUME 7, 2019 147167

http://dx.doi.org/10.14722/ndss.2017.23379


J. Qiu et al.: A3CM: Automatic Capability Annotation for Android Malware

[55] W.-X. Liu, J. Cai, Y. Wang, Q. C. Chen, and D. Tang, ‘‘Mix-flow schedul-
ing using deep reinforcement learning for software-defined data-center
networks,’’ Internet Technol. Lett., vol. 2, no. 3, p. e99, 2019.

[56] P. Szymański and T. Kajdanowicz, ‘‘A scikit-based Python environment for
performing multi-label classification,’’ 2017, arXiv:1702.01460. [Online].
Available: https://arxiv.org/abs/1702.01460

[57] M.-L. Zhang and Z.-H. Zhou, ‘‘A review on multi-label learning algo-
rithms,’’ IEEE Trans. Knowl. Data Eng., vol. 26, no. 8, pp. 1819–1837,
Aug. 2014.

[58] E. Gibaja and S. Ventura, ‘‘A tutorial on multilabel learning,’’ ACM
Comput. Surv., vol. 47, no. 3, p. 52, 2015.

JUNYANG QIU is currently pursuing the Ph.D.
degreewith the School of Information Technology,
Deakin University. His current research interests
include cyber security and machine learning.

JUN ZHANG received the Ph.D. degree in com-
puter science from the University of Wollongong,
Australia, in 2011. He is currently an Associate
Professor with the School of Software and Elec-
trical Engineering, and also the Deputy Direc-
tor of Swinburne Cybersecurity Lab, Swinburne
University of Technology, Australia. He has pub-
lished more than 100 research articles in refer-
eed international journals and conferences, such as
the IEEE COMMUNICATIONS SURVEYS AND TUTORIALS,

the IEEE/ACM TRANSACTIONS ON NETWORKING, the IEEE TRANSACTIONS ON

IMAGE PROCESSING, the IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED

SYSTEMS, the IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY,
The ACM Conference on Computer and Communications Security, and
the ACM Asia Conference on Computer and Communications Security.
His publications have been widely cited in the area of cybersecurity. His
current research interests include cybersecurity and applied machine learn-
ing. He has been internationally recognized as an Active Researcher in
cybersecurity, evidenced by his chairing of eight international conferences,
since 2013, and presenting of invited keynote addresses in two conferences,
and an Invited Lecture of the IEEE SMC Victorian Chapter.

WEI LUO received the Ph.D. degree in computer
science from Simon Fraser University, Canada.
He is currently a Senior Lecturer with the School
of Information Technology, Deakin University.
He has published more than 40 research articles
in refereed international journals and conferences.
His current research interests include data mining
and machine learning.

LEI PAN received the Ph.D. degree in com-
puter forensics from Deakin University, Australia,
in 2008, where he is currently a Senior Lec-
turer with the School of Information Technology.
He has published more than 30 research articles
in refereed international journals and conferences,
such as the IEEE SECURITY & PRIVACY, the Jour-
nal of Multimedia, and Digital Investigation. His
current research interests include cyber security
and privacy.

SURYA NEPAL received the B.E. degree from the
National Institute of Technology at Surat, India,
the M.E. degree from the Asian Institute of Tech-
nology, Bangkok, Thailand, and the Ph.D. degree
from RMITUniversity, Australia. He is currently a
Principal Research Scientist with CSIRO Data61.
His current research interests include the devel-
opment and implementation of technologies in
distributed systems including web services, cloud
computing, and the Internet-of-Things (ioT), espe-

cially on security, privacy, and trust.

YU WANG received the Ph.D. degree in computer
science from Deakin University, VIC, Australia.
He is currently an Associate Professor with the
School of Computer Science, Guangzhou Univer-
sity, China. His current research interests include
network traffic analysis, mobile networks, social
networks, and cyber security.

YANG XIANG received the Ph.D. degree
in computer science from Deakin University,
Australia. He is currently the Dean of the Dig-
ital Research Innovation Capability Platform,
Swinburne University of Technology, Australia.
He has published more than 200 research arti-
cles in many international journals and con-
ferences, such as the IEEE TRANSACTIONS ON

COMPUTERS, the IEEE TRANSACTIONS ON PARALLEL

AND DISTRIBUTED SYSTEMS, the IEEE TRANSACTIONS

ON INFORMATION SECURITY AND FORENSICS, and the IEEE TRANSACTIONS ON

DEPENDABLE AND SECURE COMPUTING. He has published three books,Honeypot
Frameworks and Their Applications: A New Framework (Springer), Soft-
ware Similarity and Classification (Springer), and Dynamic and Advanced
Data Mining for Progressing Technological Development (IGI-Global). His
current research interests include cyber security, which covers network and
system security, data analytics, distributed systems, and networking. In the
past 20 years, he has been leading the team developing active defense
systems against large-scale distributed network attacks. His translational
research has made significant impact to the real-world applications, such
as AI-driven cyber security applications, malware applications, cloud and
the IoT security applications, and blockchain applications. His research was
funded by the Australian Research Council (ARC) and industry partners.
He is a Co-Founder and the Steering Committee Chair of the NSS, ICA3PP,
CSS, and SocialSec conference series. He served as an Associate Editor for
the IEEE TRANSACTIONS ON COMPUTERS, the IEEE TRANSACTIONS ON PARALLEL

AND DISTRIBUTED SYSTEMS, SECURITY AND COMMUNICATION NETWORKS (Wiley),
and an Editor of the Journal of Network andComputer Applications. He is the
Foundation Editor-in-Chief of the SpringerBriefs on Cyber Security Systems
and Networks. He is the Coordinator at Asia for the IEEE Computer Society
Technical Committee on Distributed Processing (TCDP).

147168 VOLUME 7, 2019


