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ABSTRACT Optimal path planning is required in autonomous navigation and intelligent control of the
unmanned aerial vehicle (UAV). However, as a kind of common obstacles in complex three-dimensional
(3-D) spaces, U-type obstacles may cause UAV to be confused and even lead to a collision or out of control.
Although most of the Ant Colony Optimization (ACO) algorithm can generate proper path, solutions to U-
type obstacles based on the specific behaviors of each ant are investigated rarely. Hence, different search
strategies are studied and a novel ACO-based method called Self-Heuristic Ant (SHA) is proposed in this
paper. The whole space is constructed by grid workspace model firstly, and then a new optimal function for
UAV path planning is built. To avoid ACO deadlock state (i.e., ants are trapped in U-type obstacles when
there is no optional successor node), two different search strategies are designed for choosing the next path
node. In addition, the SHA is utilized to improve the ability of the basic ACO-based method. Specifically,
besides pheromone update, a new information communion mechanism is fused to deal with the special areas
which contain dense obstacles or many concave blocks. Finally, several experiments are investigated deeply.
The results show that the deadlock state can be reduced effectively by the designed two different search
strategies of ants. More importantly, compared with the conventional fallback strategy, the average number
of retreats and the average running time of ACO can be reduced when SHA is applied.

INDEX TERMS Ant colony optimization, path planning, self-heuristic ant.

I. INTRODUCTION
As a kind of advanced autonomous robot, unmanned aerial
vehicles (UAVs) have been widely utilized in science, trans-
portation, energy, agriculture, entertainment, etc. for great
advantages of superior maneuverability, low cost, easy to use
and no casualties [1]–[5]. According to incomplete statistics,
the sales scale of civil UAV products were aboutU1.5,U2.33,
U3.7 billion in 2014, 2015, 2016 in China and is expected
to reach U97.69 billion by 2023, the year-on-year growth
rates are as high as 55%, 58%, 59%, respectively. With the
urgent development of UAV towards autonomous flight and
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intelligent control, optimal global path planning as one of
the key technologies for UAV are becoming increasingly
essential.

Global path planning is to create an ordered sequence of
intermediate way points under the known obstructed environ-
ment based on certain given evaluation criterion, as well as
segments linking each pair of adjacent way points, that the
vehicles can visit each way point along these segments to
generate an optimal or secondary optimal obstacle-avoidance
path from origin to destination [6].

Various conventional approaches have been developed to
solve this problem, such as visibility graphs [7], potential
field [8], heuristic approaches [9], etc. In visibility graphs
approaches, a set of lines is defined to connect an object’s
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features to those of another. But for n features, n2 links will
be created and its complexity is O(n2). In potential field
approaches, the whole space is always processed as vector
fields firstly and artificial potential functions are used to
describe it, then UAV is considered as a point in the space that
integrates tension to the destination and expulsion from obsta-
cles. Under the affection of vector fields, UAV would head
toward the destination and avoid a collision which is con-
venient for the underlying real-time control. However, UAV
is easily trapping to local optima when concave obstacles
are contained in workspace. Furthermore, the vector fields
may cancel each other out which will cause these approaches
to fail easily. In heuristic approaches, the occupancy grid
is utilized to divide the whole space into equally separated
cells and thus the path planning problem becomes a graph
search problem, so the A∗ algorithm [10], [11] is widely used.
However, the path generated may be too close to obstacles
which could lead to a collision between vehicles and obsta-
cles. Besides, the time complexity of A∗ algorithm cannot be
ignored when the number of grids in workspace is large.

In the last decade, inspired by natural phenom-
ena, many bio-inspired intelligent algorithms, e.g., Ant
Colony Optimization (ACO) [12]–[16], Genetic Algo-
rithm (GA) [17], [18], Artificial Immune System (AIS) [19], [20],
Cuckoo Search [21], Bacteria Foraging Optimization [22],
Particle Swarm Optimization (PSO) [23]–[27] are attempted
at path planning. It should be noted that each of these
algorithms has advantages and disadvantages. As a kind of
evolutionary algorithm, GA has strong robustness and global
search capabilities. By simulating the behaviors between
chromosomes, the core of the algorithm is independent of
the problem to be solved. However, the local search ability
and the convergence speed are not high. Besides, it may
be difficult to encode and decode the problem itself. Based
on the relationship between antigen and antibody, AIS is
able to adjust itself and produce solutions according to the
inputs. Although the convergence speed is fast, AIS may
reach a balanced state and antibody population cannot be
improved further. Moreover, for the evaluation which based
on the concentration of antibody, the concentration of good
antibody should be increased but not too high to guarantee
both the convergence and the population diversity. Thus,
the algorithmmay be easily influenced by this conflict. Based
on the cluster behavior of birds, PSO owns the advantages of
high efficiency and simple structure, but it cannot process the
discrete optimization problem effectively and may trap into
the local optimum. In addition to the above, a detailed review
can be referred to [28].

Bio-inspired algorithms are various and each has both
advantages and disadvantages in different aspects. Thus,
it may be hard to determine which one is absolutely
advantageous. With the strong robustness, preferable global
optimization performance, good distributed computing, and
self-organization characteristics, ACO which proposed by
the Italian scholar M. Dorigo is investigated popularly as an
important path planning solving method [29]–[31]. However,

some problems exist in ACO cannot be ignored and many
scholars have been solving them.

In a 2-D environment. To simulate real ant colonies,
the conceptions of the neighboring area and smell area
were presented, then a hybrid ant colony (HAC) algorithm
was designed to avoid premature convergence by combin-
ing pheromone search and random search strategies [32].
According to actual ants, a scout ant cooperation (SAC)
algorithm was presented by dividing ants into two groups
that adopted nearest neighbor search strategy and random
search strategy respectively [33]. To increase path searching
efficiency, a bidirectional searching ACO was proposed [34].
To accelerate the decision process of selecting new path
nodes, a simple ACO distance-memory (SACOdm) is pro-
posed, in which the distance of the source and destination is
added to state transition function [13].

In a 3-D environment. To simplify the planning task, each
path node was selected from different layers generated along
the longitude or latitude direction, further a state transi-
tion probability was given and differential evolution algo-
rithm (DEA) was used to update pheromone [35]. To improve
the performance, a visibility graph as well as a series of ACO
pheromone updating rules was produced [36].

As ACO is easy to blend with other algorithms, much
research has been done on the combination of ACO and other
algorithms. Combined with the immune network, the stim-
ulation and suppression between antigen and antibody were
utilized to find initial paths before ACO was used to search
the optimal path in the antibody network [37]. A hybrid meta-
heuristic ACO was proposed as well as DEA was utilized to
update pheromone [38]. Cellular Ants (CA) and ant algorithm
were combined to find a collision-free path without priori
information of configuration area, namely, they could be used
in a dynamic environment [39].

However, deadlock state and stagnation problem cannot
be ignored, much research has been carried out to overcome
these drawbacks from different aspects. An enhanced ACO
algorithm was proposed, in which the search deadlock was
ruled out by modifying initial environment pheromone and
state transition probability [40]. The chaos disturbance factor
was employed to avoid the stagnation phenomenon and a
new evaluation criterion was introduced to avoid the dead-
lock state [41]. To avoid stagnation and get the best result,
the amount of pheromone on each path was limited to a
certain range, besides elitist strategy was adopted and the best
solution in each iteration was recorded [42]. To improve the
ability of global searching, the parameter which determines
the importance of exploitation and exploration was adjusted
continuously, further two strategies of depositing pheromone
were presented to prevent ants from dabbling into complex
traps deeply and to avoid the premature phenomenon [43].

The ACO-based algorithms above have been improved in
many ways, however in the following aspects, the considera-
tions in this paper are different or more comprehensive.

1) Research in the 3-D space with dense U-type traps is
rare because of the variety of obstacle shapes. For U-type
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obstacles only, pits, corners, concave walls, etc. are included.
When the type and quantity of obstacles are numerous, path-
finding is difficult. In this paper, the path-finding behaviors
are implemented in different complex environments with var-
ious U-type obstacles.

2) The deadlock state is easily generated in the map with
U-type obstacles. However, the research about the deadlock
state in 3-D environments is rare. When ants select new path
nodes, this problem is caused by the interaction of complex
obstacles and search strategies. In this paper, deadlock state
between the complex obstacles were analyzed, then different
search strategies were tried to solve the deadlock state.

3) To improve the efficiency of path-searching among the
complex obstacles, a novel idea is proposed based on the fall-
back strategy. Specifically, ants are prevented from entering
the U-type traps by modifying the specific behaviors of each
ant. Based on above, inspired by the fallback strategy of ACO,
a new information exchange mechanism was established to
enhance the ability of ants identifying U-type traps. As a
result, these traps will not be explored by ants deeply.

In this paper, 3-D environments with U-type obstacles are
constructed by the grid workspace model. In the research of
deadlock state, a taboo list which records the cells have been
visited is modified as the result of changing search strate-
gies when selecting new path nodes. Furthermore, the paths
produced in this way contain repeated path segments and
two methods are adopted to cut off redundant path seg-
ments. To improve the ability of ACO-based method, a new
approach called Self-Heuristic Ant (SHA) is proposed. In this
approach, the fallback strategy which allows ants to move
backward is integrated with a new idea, then a novel informa-
tion communion mechanism between each ant is established,
as a result, the times of moving backward is reduced and
the original algorithm is improved. The effectiveness of the
proposed approach is demonstrated via simulation.

The remainder of this paper is organized as fol-
lows: Section 2 reviews the basic ant algorithm theory.
Section 3 elaborates on the ACO algorithm in 3-D envi-
ronments. Section 4 introduces the research about solving
deadlock state and the methods adopted to cut off redundant
path segments. Our proposed approach, SHA, is discussed in
Section 5. Section 6 contains multiple simulation results and
the analyses. Finally, Section 7 concludes the paper and offers
the future direction of this research.

II. BASIC ANT ALGORITHM THEORY
Inspired by the foraging behavior of real ant colony, M.
Dorigo et al. proposed the basic model of the ant colony
algorithm. Specifically, ants deposit pheromone along the
paths they traversed between the nest and food source [44].
To reach the food source, they exchange information and
cooperate with each other through perceiving the pheromone
trails [45]. It has been proved both mathematically and exper-
imentally that the ants can find the shortest path between
the nest and the food source. The mathematical proof is
provided in [46] and the foraging behavior of real ant is

FIGURE 1. Double bridge experiment.

TABLE 1. Variables of Ant-based algorithm.

simulated in [47]. According to double bridge experiment
which depicted in Fig. 1, the experimental proof is given,
more details are provided in [39].

Several main steps contained in ant algorithms are briefly
introduced as follows.

1) Environment modeling and parameter initialization. The
workspace should be modeled as a graph with N nodes and L
links. Existing paths and costs between nodes are represented
by weighted directed graph. The number of ants (Nants) is
defined and each ant is put on the origin. The values of
Nants, as well as more basic parameters of ant algorithms,
can be assigned via experimental experience or trial and error
approaches.

2) State transition. The probability selection formula used
by ant k to select the next node is established as Eq. (1), which
is used to calculate the state transition probability of j as next
node from i. All variables mentioned can be found in Table 1.

Pkij(t) =


τ ∂ij η

β

ij∑
s/∈tabook

τ ∂isη
β

is

i,s,j /∈ tabook

0 otherwise

(1)

Equation 1 has a great influence on the behavior of ants.
If α is larger than β, ants are more likely to search along paths
according to pheromone left by previous ants. Otherwise, ants
tend to select paths according to heuristic information which
is similar to the greedy search algorithm.

3) Pheromone update. This process contains pheromone
reinforcement and pheromone evaporation. The update pro-
cess is represented by Eq. (2) where all variables mentioned
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can be found in Table 1.

τ now
ij
= (1− ρ)τ pastij + ρ

m∑
k=1

1τ kij (2)

Based on the Ant-Cycle model, the amount of pheromone
deposited by ant k on the path between i node and j node is
computed via Eq. (3), all variables mentioned can be found
in Table 1.

1τ kij =

{
Q
Lk

if the kth ant walks along link(i, j)

0 otherwise
(3)

III. UAV PATH PLANNING BASED ON ACO
A. ENVIRONMENTAL MODELING
The actual flight area is a real physical space whereas the
workspace applying ACO is an abstract space of the real
environment. In this paper, the grid workspace model is used
to construct the actual flight area, the grid granularity which
has a great influence on the precision of environmental mod-
eling is taken as 1×1×1. More details are discussed in the
following.

1) Storage of terrain information. The 2-D matrix is used
to record the height of terrain. To explain this, a matrix which
contains 4 rows and 4 columns is formed as Eq. (4).

Terrain =


0 1 0 0
0 1 0 0
0 2 2 0
0 0 0 0

 (4)

where Terrain(i, j) = 2 indicates that there is an obstacle at
the position of the i-th row and the j-th column, furthermore,
the obstacle height is 2.

2) Division of workspace and the corresponding graph.
In the Cartesian coordinate system, take Xmax , Ymax , Zmax as
the maximum values in the positive direction of the x axis,
the y axis, and the z axis, respectively. If the horizontal step
size is δ1 and the vertical step size is δ2, then the configuration
area of size Xmax × Ymax × Zmax can be divided into Nx ×
Ny × Nz cells, where Nx , Ny, Nz is the round of Xmax /δ1,
Ymax /δ1, Zmax /δ2 respectively. The cell occupied by obstacles
is obstacle grid, otherwise it is a free grid. The coordinates
of each cell is represented by its center point. An example is
depicted in Fig. 2 (a), where Nx = Ny = 4 and Nz = 2,
the colored cells are obstacle grids and colorless cells are
free grids. The 3-D structure of the graph corresponding to
Fig. 2 (a) is shown in Fig. 2 (b). There are bidirectional paths
between the adjacent nodes in free cells, and each blue node
is a potential path node.

3) Workspace processed by ACO. In this paper, three maps
of size 21×21×10 were used in simulation, they are depicted
in the simulation section.

B. MOTION CONSTRAINTS OF THE VEHICLE
To make the path obtained by ACO become flyable,
the motion constraints of aircraft should be considered.
Because the workspace is represented by the grid map,

FIGURE 2. Grid workspace and the corresponding graph.

the motion constraints are simplified to easily combine with
the environmental modeling method and the ACO itself. Here
are some main constraints.

1) The minimum step size. Before the aircraft makes a
manoeuvre, a distance needs to bemaintained. Take this value
as lmin, then the length between node i and node j cannot be
smaller than lmin, which is shown in Eq. (5).

dij ≥ lmin (5)

For convenience, the distance between the neighboring
grids is longer than lmin in our research.

2) Maximal slope of UAV. Slope is the included angle
formed by the horizontal and the flying direction, which indi-
cates the change of flying direction in the vertical direction.
Limited by the maneuverability, slop si at node (xi, yi, zi)
should be less than the maximal slop and it can be represented
by Eq. (6).

si =
zi − zi−1∥∥(xi − xi−1,yi − yi−1)

∥∥ (6)

where ||x|| is the norm of vector x.
3) Maximal turning angle. In the horizontal direction, turn-

ing angle is the angle formed by the previous direction of
UAV and its current direction. Limited by the maneuverabil-
ity, the turning angle θi at node (xi, yi, zi) cannot exceed the
maximum. The formula is as following.

θi=arccos

(
(xi−xi−1,yi−yi−1)·(xi+1−xi,yi+1−yi)

T∥∥(xi − xi−1,yi − yi−1)·(xi+1−xi,yi+1−yi)
∥∥
)
(7)

C. ACO BASED ON 3-D ENVIRONMENT
To generate a feasible path in 3-D environments, several
improvements have been made to the basic ant algorithm and
some of them are discussed as follows.

1) Selection of successive node. Based on Eq. (1), the state
transition probability is calculated, then the roulette wheel
selection procedure is used to select the next node.

2) The establishment of the objective function. To evaluate
the paths obtained by ACO, a new objective function repre-
senting the comprehensive cost of the path is computed by
Eq. (8).

costs = C1 • cost_length+ C2 • cost_altitude

+C3 • cos t_height (8)
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TABLE 2. Related variables.

where cost_altitude is the sum of the heights of all nodes
in one path relative to the lowest point of workspace,
cost_height is the sum of the heights of all nodes in one
path relative to the ground directly below them, cost_length
is the length of a path. These three factors are controlled
by weight variables, C1, C2, and C3, respectively. It should
be noticed that cost_altitude and cost_height are different,
because low flying altitude relative to the lowest point of
workspace does not mean flying close to the ground and
vice versa. When C2 > C3, its more important to fly at
low altitude relative to the lowest point. When C2 < C3,
its more important to fly as close as possible to the ground
below UAV. If it is assumed that a path obtained contains n
nodes, then the variables above can be calculated by Eq. (9),
Eq. (10), and Eq. (11). The variables mentioned can be found
in Table 2.

cost_altitude =
n−1∑
i=2

Hi (9)

cos t_height =
n−1∑
i=2

hi (10)

cos t_length =
n−1∑
i=1

dij, j = i+ 1 (11)

The height between UAV and the terrain below it should
always be higher than a safe distance predefined but not too
large. Furthermore, flying outside the known workspace is
not permitted. With the new objective function and the con-
straints above, the minimum value f of the costs is expressed

FIGURE 3. Ant trapped in an U-type obstacle.

via Eq. (12). Partial variables can be found in Table 2.

f = min(costs)


0 < x(i) ≤ Xmax

0 < y(i) ≤ Ymax

hi + L1 ≤ z(i) ≤ hi + L2

0 < hi ≤ Zmax

(12)

3) Establishment of new heuristic information. For the
distances between two adjacent grids in a 3-D environment,
the difference between the maximum value (i.e.,

√
3) and

the minimum value (i.e., 1) is small. Thus, the effect of the
heuristic information which usually represented as Eq. (13)
is not obvious. In addition, flight height is not contained in
Eq. (13). In response to these problems, the heuristic function
is redefined as Eq. (14), where ηj is represented as Eq. (15).
All variables can be found in Table 2.

ηij =
1
dij

(13)

ηij =
C4

dij + djF
•
C5

hj
• ηj (14)

ηj =

{
0 j is an obstacle cell
1 j is an free cell

}
(15)

4) Pheromone update strategy. Pheromone update is
divided into two parts, namely, local update and global
update. Local update defined as Eq. (16) which allows ants
to explore new paths is executed every time when ants move
to the next node. The variables can be found in Table 2.

τ nowij = (1− ρ1)τ
past
ij (16)

The global update which ensures the convergence of ACO
is only performed on the best path after all ants in a gener-
ation have arrived at the destination. The pheromone update
function is as Eq. (17), as shown at the bottom of this page,
where the variables mentioned can be found in Table 2.

5) Measures to prevent stagnation. In 3-D environments,
ants are easy to fall into U-type traps. An example is shown
in Fig. 3 where an ant is trapped in node 5. To avoid the
deadlock state and the stagnation of algorithm, some special
measures ( e.g., ants move backward sequentially to get out
of traps, fill the traps with obstacle grids, drop the lost ants)

τ nowij = (1− ρ2) • τ
past
ij + ρ2 •

[
Q

C1 • cost_lengthbest + C2 • cost_altitudebest + C3 • cost_heightbest

]
(17)
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TABLE 3. Parameters and their ranges.

have been proposed. More methods are discussed later in this
paper.

6) Optimization of parameters using multiple population
genetic algorithm (MPGA). The parameters involved in ACO
which directly affect the performance of the algorithm are
numerous and interrelated. But for the problem of the parame-
ters selection, there is no general solution. Thus, eight param-
eters of ACO are optimized by GA because of its good
operability and high efficiency. The range of these parameters
is shown in Table 3.

The parameters above are coded as genes in the chromo-
somes of GA. During the execution of GA, ACO is called
and the comprehensive costs of paths computed by Eq. (8)
are utilized to evaluate the fitness. When GA is complete,
the optimal chromosome which contains the best combina-
tion of 8 parameters can be obtained. The whole steps are
shown in Fig. 4 (a).

However, under the influence of some features of GA,
especially the influence of elite retention strategy, GA tends
to fall into local optimum. To solve the problem, MPGA was
adopted. Specifically, several independent populations with
different control parameters were combined by the immi-
gration operator. For each generation during the evolution,
artificial selection operator was used to put the optimal solu-
tion into the elite population for preservation. Based on this
population, the number of generations maintained by the
optimal individual is taken as the basis for ending algorithm.
Since the focus in the article is not MPGA, more relevant
content will not be mentioned here. The structure of MPGA
is as Fig. 4 (b).

IV. NEW IDEAS TO SOLVE DEADLOCK STATE
When encountering U-type obstacles, ants may be trapped
when there is no optional successor cell. In basic ACO,
the ant cannot revisit the same nodes, which is called Default
Mode (DM) in this paper. In this case, when the neighboring
cells of current cell are fully occupied (e.g., occupied by the
obstacle cells, the cells have been visited, the cells does not
satisfy the constraints), then there is no successor cell avail-
able and it is called deadlock state in this paper. To escape
from the U-type obstacles and avoid deadlock state, dropping
the ants trapped in traps is widely used. However, when lots of
U-type obstacles are distributed in workspace, a large number
of ants may be dropped as well as many incomplete paths,
i.e., a lot of computing resources are wasted. To solve this,
search strategies of ants are studied and two different methods
of searching for new path nodes are compared which called
Extension Mode 1 (EM1) and Extension Mode 2 (EM2).
The paths obtained by these methods contain redundant path
segments and this problem is solved by two methods which
called Splicing method and Dijkstra method.

FIGURE 4. The structures of GA and MPGA.

FIGURE 5. Path with redundant path segments.

A. EXTENSION MODE 1
In this approach, the taboo table only contains the previous
node of the current node. Specifically, when ant k reaches a
new node, the unique element in tabook is a previous node.
Except for the previous node, those nodes which have been
visited can be revisited. Thus, the path nodes that ants can
choose are more diverse and the problem of no successor
cell is less likely to occur. By this means, however, the dead-
lock state cannot be completely avoided, and redundant path
segments may be contained in the paths. To illustrate the
formation of redundant path segments, a 2-D grid map is
taken as an example.
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TABLE 4. Variables in Splicing method.

In Fig. 5, an ant visits nodes in the order of A, E, B, C,
D, E, and F. After the ant reaches the point E for the first
time, it passes through B, C, D and returns to point E again,
generating redundant path segments.

B. EXTENSION MODE 2
In this case, all nodes which have been visited by ants can
be revisited. By this means, the diversity of searching for
new nodes is further increased and the deadlock state can be
completely avoided. However, the redundant path segments
which are contained in the paths are more complex.

C. METHODS TO CUT OFF REDUNDANT PATH SEGMENTS
The paths which contain redundant path segments produced
by EM1 and EM2 are not feasible. To cut off the redundant
path segments, two methods are applied.

1) Splicing method. This method is capable of deleting
redundant path segments between two same nodes and
connecting the remaining parts at the same nodes. The
steps are as follows and all variables can be found
in Table 4.

Step 1. The parameter i is initialized to 1. The original
path which contains the redundant path segments is stored
as path_1 according to the order of each path node.

Step 2. The i-th node in path_1 is stored in list_1.
Step 3. i ← i + 1. The i-th node in path_1 is recorded as

co_1. If co_1 is the destination, co_1 is stored in list_1 and
go to Step 6. Otherwise, move on to Step 4.

Step 4. If there is a node in list_1with the same coordinates
as co_1, move on to Step 5. Otherwise, go back to Step 2.

Step 5. In list_1, the node which has the same coordinates
as co_1 is recorded as co_2. Delete co_2 and all nodes after
it in list_1. Go back to Step 2.

Step 6. Output the path in list_1 as the result which does
not contain the redundant segments.

2) Dijkstra method. The Dijkstra algorithm is a typical
algorithm for solving the shortest path problem. By applying
it, the establishment of the shortest path from the origin to the
destination as well as the removal of the redundant segments
can be achieved.

To evaluate the effects of the Splicing method and the
Dijkstra method conveniently, a 2-D example is taken as
Fig. 6 (a), where an ant visits each node in the order of A, D, F,
D, B, C, E, F, and G. The effect of applying Splicing method
and Dijkstra method are shown in Fig. 6 (b) and Fig. 6 (c),
respectively.

FIGURE 6. Evaluation of Splicing method and Dijkstra method.

FIGURE 7. The optimal path and all taboo nodes obtained by a group of
ants.

In Fig. 6 (a), the ant needs to reach the point F via B, C,
and E before arriving at the point G. Therefore, Fig. 6(b) can
reflect the true order of the nodes visited by the ant though the
path obtained is not the shortest one. Conversely, the shortest
path can be obtained by applying the Dijkstra algorithm
although the result cannot reflect the true order of nodes
visited by the ant, which is depicted in Fig. 6 (c).

V. SELF-HEURISTIC ANT
EM1 and EM2 can solve the problem of deadlock state. How-
ever, as the diversity of searching for new nodes increases,
the efficiency of the algorithm is not high enough. Although
ants can escape from traps under the influence of pheromone
update and roulette wheel selection, the same nodes in
U-type traps may be visited repeatedly, which consumes a lot
of computing resources.

Reconsider the convex processing strategy and the fall-
back strategy in ACO which is widely used, the former one
processes the workspace before the algorithm starts, which
fills the traps with obstacle grids and turns the concave traps
into the convex shapes. However, this process is compli-
cated in 3-D environments where many obstacles of different
shapes are contained. The latter one makes the ants move
backward sequentially to get out of the U-type traps. How-
ever, the process of judging whether an ant needs to move
backward is complicated and time consuming. In this means,
the nodes which ant k retreats from are called taboo nodes and
are added to list tabook to prevent being revisited. Once the
ant k arrives at the destination, the tabook should be emptied,
the reason is illustrated as follows.

In the 3-D workspace shown in Fig. 7, the pink line is the
obtained path and taboo nodes are represented by black dots.
The optimal path here is not the final path, and the motion
constraints of UAV have not been considered yet. The taboo
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FIGURE 8. The process of SHA in 2-D workspace.

nodes generated by the fallback strategy also exist outside
the U-type traps, thus, these taboo nodes cannot be used to
prevent ants from entering U-type traps and tabook should be
emptied every time when the ant k arrives at the destination,
i.e., these taboo nodes are not being fully utilized. Another
problemwith taboo nodes in the fallback strategy is that when
the ant travels in the narrow area, the taboo nodes may block
the area containing the optimal path, which could cause the
ants to fail to reach the goal. In response to the above, the
SHA is proposed.

A. THE PRINCIPLES OF BASIC SHA
In SHA, taboo nodes generated by the fallback strategy are
divided into two categories which are defined as follows.

1) Valid taboo nodes. The taboo nodes inside the U-type
traps are valid taboo nodes which can be used to prevent
all ants from entering the traps.

2) Invalid taboo nodes. The taboo points outside the
U-type traps are invalid taboo nodes which cannot be
used to prevent all ants from entering the traps.

Because of the characteristics above, the invalid taboo
nodes are not expected to be generated. To gain a set of
valid taboo nodes, it is necessary to exclude the invalid taboo
nodes when generating taboo nodes. The set of taboo nodes
generated in this way can be used to prevent all ants from
entering the same U-type traps. By studying the reasons for
the formation of valid taboo nodes, the following conditions
which are indispensable to generate a valid taboo node k are
proposed.

(1) Condition one. k is a taboo node which the ant moves
back from.

(2) Condition two. In the horizontal plane where the taboo
node k is located, other taboo nodes or the obstacle nodes
existing in the eight neighboring grids around k can form
corners in the shape of the letter ‘‘L.’’

For the convenience of understanding, an example is taken
as Fig. 8, where the red dots in pink squares are obstacle

nodes whereas the blue dots in white squares are free nodes.
In addition, the taboo nodes are represented by black dots,
the trajectory and the direction of the path crawled by ant are
represented by a series of orange vectors. These representa-
tions are also applied to other examples which are mentioned
later.

First of all, an ant reaches node H from node A in the order
of B, C, D, E, F, and G, as shown in Fig. 8 (a). When H is
reached, there is no successor node to select and the ant needs
to move back from H to G. Among the eight nodes around
node H, the obstacle nodes Q, R, S may form a corner in
the shape of the letter ‘‘L.’’ According to the two conditions
proposed above, H is a valid taboo node. The result of which
the ant moves back to node G is shown in Fig. 8 (b). The
steps above will be repeated before the node F is reached,
as shown in Fig. 8 (c). Now the node I is the only node which
can be selected. Thus, the ant moves to node I, as shown
in Fig. 8(d). Then ant will move back to F again, which is
shown in Fig. 8(e). At this time, the obstacle node V and
the valid taboo nodes G, I form a corner in the shape of the
letter ‘‘L.’’ Condition one and Condition two are ensured, ant
continues to move back. If things went on like this, the ant
will go back to node B as shown in Fig. 8 (f). Finally, ant
may select the node J or K as the next node and get out of the
trap. The U-type trap is filled with valid taboo nodes C, D,
E, F, G, H, and I which are utilized to prevent all ants from
entering the trap.

B. SHA COMBINED WITH THE MOTION CONSTRAINTS
Because the workspace is divided by cubes and the path is
formed by the connections of adjacent grid nodes, to simplify
the problem, the maximal turning angle and slop are taken as
45 degrees in this paper. Besides, if themaximal turning angle
is less than 45, the successor nodes of ants can be selected
from a wider range than the adjacent nodes. When the motion
constraints of UAV are integrated into the searching process,
the generation of valid taboo nodes is influenced. Several
examples in 2-D maps are as following.

In Fig. 9 (a), the black nodes are ideal valid taboo nodes
which generated above the green line. These taboo nodes can
prevent ants from travelling deep inside the L-shaped corner.
However, when the ants travel along the orange vectors to
visit node B and D respectively, there is no available node to
be selected because the constraints of UAV are considered.
Based on the principles of the basic SHA, node B and D are
marked as the valid taboo nodes. If more retreats happen in
this area, the whole space would be filled by more valid taboo
nodes and the result is as Fig 9 (b). Obviously, those nodes
which under the green line should not be marked as the valid
taboo nodes because they block the area which may contain
the optimal path.

Another problem is depicted as Fig. 9 (c). When the con-
straints of UAV are considered, node A and node B will be
viewed as the valid taboo nodes after the ant retreated to
node C. As a result, the best pathwhich ismarked by the green
line cannot be obtained. In addition, when the obstacles are
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FIGURE 9. Problems caused by the motion constraints.

contained in the U-type obstacles, the valid taboo nodes could
narrow the passage. More constraints would cause fewer
optional nodes for ants, so deadlock state could easily occur in
those cramped passages. Finally, more valid taboo nodes will
be generated until the passage is completely filled, which is
not expected. More seriously, the algorithm will not converge
when the only path is blocked.

According to the above, the principles of basic SHA are
not enough to generate valid taboo nodes when the motion
constraints are considered. Therefore, more conditions are
added to the basic SHA.

3) Condition three. The taboo node k must exist in the
area which surrounded by the obstacles and the boarder. The
border is the connection at both ends of the L-shaped corner.
e.g., the green line in the Fig. 9 (a).

4) Condition four. Valid taboo nodes are produced layer by
layer from the deepest node of the L-shaped corner. Besides,
there must be enough space between the outermost layer and
the internal obstacles, this layer could be formed by the taboo
nodes and free nodes. When the origin or target is inside the
trap, it can be viewed as the internal obstacle temporarily.

To understand the condition three and four, an example is
shown below.

In Fig. 10, dotted lines of different colors represent the
boarders. The nodes with the same color as a boarder are the
valid taboo nodes in the region surrounded by this boarder
and the corresponding L-shaped corner. e.g., the black nodes
above are in the area surrounded by the black boarder and the
upper left corner, which satisfies the condition three. These
black nodes are generated layer by layer from node O. The
third layer is formed by taboo node A, B, C and a free node,
it is not adjacent to the internal obstacle, which is consistent
with the condition four.

FIGURE 10. The SHA combined with new conditions.

FIGURE 11. The difference of condition four when θi changes.

It is noteworthy that when the maximal turning angle θi
is less than 45 degrees, the condition four would be slightly
different. An example is as Fig. 11, where the orange lines are
boarders, blue lines are corners, the red squares are obstacles,
the layers of valid taboo nodes are represented by black solid
lines.

If θi = 45, the layers of valid taboo nodes are generated one
by one at a 45 degree angle. When there is no obstacle in the
U-type trap, the result is as Fig. 11 (a), if there is an obstacle,
the result is as Fig. 11 (b). When θi < 45, the layers of valid
taboo nodes are generated in the shape of angle bracket as
Fig. 11 (c).When an obstacle is in the U-type trap, the result is
as Fig. 11 (d). If more space is needed between the obstacles,
the third layer can be obviated too.

Under the influence of condition three, the problem
depicted in the Fig. 9 (b) will not occur. Besides, condition
four can be utilized to prevent the passage from becoming too
narrow, i.e., the area containing the optimal path is retained
and the convergence of ACOwill not be affected by the SHA.
With all the four conditions above, the valid taboo nodes are
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FIGURE 12. The result of applying SHA to ACO.

generated in right space and SHA can works effectively when
the motion constraints of UAV are integrated.

C. THE SHA IN 3-D WORKSPACE
The result of applying SHA to ACO in a 3-D map is shown
as Fig. 12 (a) where the pink line is the optimal path and
it satisfies the motion constraints. Valid taboo nodes repre-
sented by blue dots are spread around from the innermost
and deepest part of U-type obstacles, the sufficient space
between complex obstacles is maintained to produce the best
path. The corresponding top view is as Fig. 12 (b). Compared
with Fig. 10, node B and C are free nodes. This is because
the places where the ants retreat from are random. In this
experiment, the ants did not move back from node B and C.
i.e., the valid taboo nodes in Fig. 10 are generated ideally,
and the number of them may be less in reality. In addition,
the valid taboo node cannot be equivalent to the obstacle
node.

By applying SHA, a new communion mechanism between
each ant is established besides the pheromone matrix. In this
mechanism, ants who complete the path planning leave mes-
sages (namely, the valid taboo nodes) inside the traps to warn
the younger generations against entering the same traps. Fur-
thermore, the more the ants retreat in U-type traps, the more
complete the traps would be filled by the valid taboo nodes,
and the less likely the new generations are to enter the same
traps.

VI. PERFORMANCE EVALUATION
In this section, the simulation contains two parts. In part
one, DM, EM1, and EM2 are applied to ACO in one map
respectively. In part two, the fallback strategy and SHA are
applied to ACO in different maps respectively. In order to see
the U-type obstacles clearly, all maps and their top views are
as following.

Before the simulation, parameters listed in Table 3 are
optimized by MPGA and the values obtained are adopted
as the initial values of eight corresponding parameters in
ACO. Technically, this process should be executed whenever
the experimental conditions change, which is consuming and
troublesome. Here we only provide two groups of results,

TABLE 5. The values of parameters optimized by MPGA.

FIGURE 13. Maps and the obstacles.

which belongs to map 2 and map 3 respectively, as shown
in Table 5.

A. PERFORMANCES OF EXTENSION MODE 1 AND
EXTENSION MODE 2
In Fig. 13 (a), DM, EM1, and EM2 are applied to ACO
respectively. When the motion constraints are not considered,
two groups of experiments are implemented. In group one,
set the origin to (21, 16, 6) and the destination to (1, 10, 5).
In group two, set the origin to (12, 6, 2) and the destination
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to (12, 19, 5). In each group, basic ACO is executed 50 times
and the average value of deadlock state is recorded in Table 6.

B. PERFORMANCES OF SHA
In the last two maps of Fig. 13, several groups of the origins
and goals are set, then the SHA and fallback strategy are
applied to ACO respectively according to Table 7.

Based on the order in Table 7, simulation results are as
following. Where the pink line in maps is the optimal path
and the valid taboo nodes are represented by black dots. The
number of retreats and the running time when the algorithm
is executed 50 times are provided too. The blue dots represent
SHA, the pink dots signify fallback strategy, the pink line
indicates the average value of fallback strategy, the blue line
denotes the average value of SHA.

1) MAP 2

FIGURE 14. Map 2, Group 1, Line 1.

2) MAP 3

FIGURE 15. Map 2, Group 1, Line 2.

TABLE 6. The results of deadlock state using three different methods.

C. ANALYSIS
1) DM, EM1, AND EM2
In Table 6, the times of deadlock state occurs is reduced when
the EM1 is applied and it can be completely eliminated by
applying EM2. Therefore, the greater the degree of freedom
when ants select the next node, the less likely the deadlock
state will occur.
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TABLE 7. Settings of each simulation.

FIGURE 16. Map 2, Group 2, Line 1.

2) THE FALLBACK STRATEGY AND SHA
In the second chart of each figure from Fig. 14 to Fig. 21,
although the origins and the goals are different, all the paths
obtained can fulfil the motion constraints and the valid taboo
nodes are only present inside the U-type obstacles. Since

FIGURE 17. Map 2, Group 2, Line 2.

the height of most U-type obstacles in the map is greater
than the maximum flying height predefined, the UAV usu-
ally bypasses from the sides of obstacles in the horizontal
plane to jump out of U-type obstacles. However, when the
space above the obstacles is reachable, UAV can directly
pass over obstacles from the area above, e.g., the drone flies
through certain areas above the pit-shaped obstacle in map 2.
Most importantly, when other obstacles are located inside
the U-type traps, SHA can reserve enough space between
obstacles for the drone to pass through, which prevents the
ACO from not converging or even failing.

In the last two charts of each figure from 14 to 21, the aver-
age number of retreats (namely, the number of times that
the ants move backward) and the average running time of
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FIGURE 18. Map 3, Group 1, Line 1.

algorithm when applying SHA are less than that when the
general fallback strategy is applied. Thus, the effectiveness
of SHA is verified. However, not all the number of retreats
and the running time of algorithm when SHA is applied
are smaller than that when fallback strategy is applied.
The reason could be that the workspace with many concave
obstacles is complex and certain randomization is contained
in ACO when searching for new nodes. e.g., if it goes well
that the ants reach the goal without entering many concave
obstacles, the number of retreats and the running time of the
algorithm could be low too even without the SHA, because
SHA will only take effect when the ant enters the U-type
traps. Besides, retreats may also exist outside the concave
obstacles, although the number of retreats inside U-type traps
may be decreased by the SHA, the number of retreats outside
the U-type traps may be pretty high. In this case, the number
of retreats when SHA is applied could be high.

FIGURE 19. Map 3, Group 1, Line 2.

By comparing the last two charts of each figure from
14 to 21, the number of retreats could be low in spite of a
long time taken by algorithm. i.e., the running time of the
algorithm is not just depend on the number of retreats. In a
simulation, the antsmay not retreat frequently, but the optimal
path obtained in each generation of the ants may be quite
different or in low quality, so the convergence speed of ACO
could be relatively slow. In this case, although the number of
retreats could be obviously reduced by SHA, the total time
consumed by algorithm cannot be lowered.

But still, under the influence of valid taboo nodes in the
SHA, ants are effectively prevented from revisiting partial
nodes which inside the concave obstacles, i.e., the size of
space that ants can traverse is shrunk. As a result, the running
time of algorithm is reduced. To thoroughly explain how SHA
affects the ACO , more analyses are as following.
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FIGURE 20. Map 3, Group 2, Line 1.

In Fig. 22 (a), there are five flyable paths between the origin
and the goal, which are symbolized by different colors. Based
on the principles of SHA, several nodes would be marked as
the valid taboo nodes, which are represented by black dots
and the result is as Fig 22 (b). They can prevent the ants from
moving back from the location of these nodes. In addition,
the blue path is excluded and the ants can only select the
optimal path from the remaining four paths. Compared to the
five paths in Fig. 22 (a), the scale of pathfinding problem is
reduced and ants can focus on exploring in the areas which
may contain the best path.

Except the above, the time complexity is analyzed. In most
literature, the complexity of ACO is analyzed on travelling
salesman problem (TSP). Set the number of iterations to Nc,
the number of ants in each generation to m, and the size
of cities to n. Each ant needs to select a new city from n

FIGURE 21. Map 3, Group 2, Line 2.

FIGURE 22. The size of space affected by SHA.

cities once it arrives a city, set the number of executions of
this process to w. Because all the n cities need to be visited,
therefore w equals n and the complexity is O(NC × n2 × m)
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FIGURE 23. The value of w.

if the lower power is ignored. When ACO is used for 3-D
path planning, the number of nodes adjacent to the current

node is 26. Each ant needs to select the next node from
26 adjacent nodes once it reaches a new node and this process
is executed w times. Therefore the complexity is O(NC ×
26 × m × w) when the lower power is ignored. However
in the path planning problem, the number of nodes which
visited by each ant before it reaches the goal is uncertain,
so unlike TSP, w is unknown. Based on above, it might be
hard to determine an accurate value of the complexitywith the
O-notation in the path planning problem. In order to compare
the complexity between the ACO with SHA applied and the
ACO with fallback strategy applied, the values of w in the
simulations above are recorded and partial results are shown
in Fig. 23.

If the average value of w in the ACO with SHA applied is
X1, and the average value ofw in the ACOwith fallback strat-
egy applied isX2, according to Fig. 23,O(NC×26×m×X1) <
O(NC×26×m×X2). Thus, when the lower power is ignored,
the time complexity of applying SHA to ACO is lower than
it when fallback strategy is applied. In addition, the value of
w in the ACO with SHA applied is not necessarily less than
it in the ACO with fallback strategy applied, the reason can
be referred in the discussion about the running time and the
number of retreats.

D. LIMITATIONS
1) THE LIMITATIONS OF OBSTACLES
In this research, dynamic obstacles are not considered.
We think the path planning can be briefly divided into global
planning and local planning. For the former, by applying
ACO, the initial optimal path from the start to goal is pro-
duced based on the known map information, then the vehicle
travels along this initial path. For the latter, when travelling
along the initial path, the vehicle may have to leave the initial
path to avoid new obstacles ahead or the dynamic obstacles.
Once the vehicle has avoided the obstacles, the ACO is
applied again and a new initial optimal path would be gen-
erated from the current location to goal. Because the purpose
of SHA is to make ACO better generate initial optimal path
in an environment full of U-type obstacles, which belongs to
the global planning, therefore, the dynamic obstacles which
belongs to local planning is not considered. But still, to apply
the algorithm to an real scene, local planning should be
combined, which is our next step.

2) THE LIMITATIONS OF VALID TABOO NODES
In the simulation section, it is shown that the interior of some
U-type obstacles are not fully filled, and some valid taboo
nodes in Fig. 15 (b) are slightly different from what it is
in Fig. 16 (b). Firstly, valid taboo nodes are generated based
on the L-shaped corner, so there must be an area inside the
U-type obstacle that cannot be filled by valid taboo nodes.
Secondly, under the influence of condition 1 and 2, although
the valid taboo nodes can be generated layer by layer, the ants
may not move back from the expected node which should
be marked as the valid taboo nodes. As a result, condition 1
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cannot be fulfilled to fill the traps and valid taboo nodes may
be different in different experiments. Therefore, SHA remains
to be improved to fill the U-type obstacles more complete and
effective.

VII. CONCLUSION
In this paper, EM1 and EM2 which modified search strategy
to improve the deadlock state were discussed. The former
one prevents ants from revisiting the previous path node of
current node while the latter one allows ants to revisit all
path nodes. To solve the problem of redundant path segments
caused by these two methods, the Splicing method and the
Dijkstra method are adopted. By simulation, the relationship
between the degree of freedom when searching for the next
node and the deadlock state occurs was studied. These new
search strategies could improve the deadlock state though
the efficiency was not high enough. In order to improve the
efficiency of fallback strategy and make full use of each ant
as well as the taboo nodes, SHA was proposed and a new
communion mechanism between each ant was established
besides the pheromone matrix. The performance of SHA was
evaluated by a lot of experiments and the results indicated
that the number of retreats could be reduced effectively, more
importantly, the time performance of ACO was improved.
In addition, the reasons why SHA can improve the ability of
fallback strategy are analyzed from the perspectives of time
complexity and the scale of path-finding problem. At last,
based on the limitations of SHA, further studies might focus
on how to fill the U-type obstacles more complete and effec-
tive, how to combine the dynamic obstacles. e.g., to com-
pletely fill the traps, valid taboo nodes could be generated
based on the U-type obstacle rather than just the L-shaped
corner. Another strategy for using valid taboo nodes more
efficiently is to reserve them whenever the algorithm is done.
In this way, when the starting points and targets are changed,
some of these valid taboo nodes can still be used, which can
shrink the entire flyable space before the algorithm starts and
save a lot of time spent generating the valid taboo nodes.
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