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ABSTRACT Automated ultrasonic signal classification systems are often utilized for the recognition of a
large number of ultrasonic signals in engineering materials. Existing defect classification methods are mainly
image-based and serve to extract features for various defects. In this paper, we propose a novel detection
baseline model based on a fully convolution network (FCN) and gated recurrent unit (GRU) to classify
ultrasonic signals from flawed 3D braided composite specimens with debonding defects. In the proposed
algorithm, the proposed Gated Recurrent Unit Fully Convolutional Network (GRU-FCN) is used to extract
temporal characteristics of ultrasonic signals; the GRU module is key to enhancing the performance of FCNs.
Experimental results on an in-house dataset indicated that the proposed model performs very well against
all baselines. We also developed a scheme to interpret the relationship between A-scan and C-scan images
and a 3D depth model representation to visualize the location information of defects.

INDEX TERMS Ultrasonic signal classification, fully convolution networks, gated recurrent unit, 3D

braided composite specimens, time series, C-scan images.

I. INTRODUCTION

Three-dimensional (3D) braided composites are broadly
employed in a variety of industries [1] as per their advan-
tages over conventional laminated composites, including
high damage tolerance, through-thickness reinforcement, and
anti-ablation capability. Internal defects must be accurately
detected to improve the service life of materials. Ultrasonic
methods are considered the most efficient method for non-
destructive testing (NDT) in evaluating composite materials.
The pulse-echo method is the most widely used ultrasonic
method for thickness measurement and flaw location, which
involves detecting echoes produced when an ultrasonic pulse
is reflected from a discontinuity or interface in the tested
specimen [2]. An ultrasonic transducer receives the reflected
waves from defects and converts them to electrical signals.
These signals, called A-scan signals containing information
regarding the orientation, size, and type of the defects.
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The primary goal of the ultrasonic inspection of engi-
neering materials is to detect, locate and classify internal
defects as quickly and accurately as possible. The results
of defect identification on A-scan signals usually depend on
the knowledge and experience of operators, which is gener-
ally inefficient and can lead to false detections and missed
inspections. Automatic signal classification systems are an
attractive potential alternative for flaw detection [3]. Many
previous researchers have developed such systems [4]-[7].
Computational intelligence methods based on SVM have
been used to classify defects in CRFP [8]. Saraiva et al. [9]
proposed a general framework that uses the ANN as a non-
linear classification tool. Simone et al. [10] presented two
feature extraction techniques to classify ultrasonic nonde-
structive examination (NDE) signals in welded materials.
Deep convolutional neural networks have been used to clas-
sify ultrasonic signals from CFRP specimens with voids
and delaminations [11]. Other researchers have established
multi-class defect classification methods based on the 1D
local binary pattern algorithm for weld defects as well [12].
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FIGURE 1. Flowchart of proposed approach. (a) Data collection process;
(b) signal classification including input signals, GRU-FCN architecture and
training/testing; (c) Defect determination was performed by using C-scan
imaging and 3D defect model.

Zhang et al. [13] attempted to resolve unbalance and inade-
quate training data issues using similar methods.

The above methods are mainly image-based generally inef-
ficient, and are easily affected by image quality. Any classi-
fication problem using data that is registered in some type
of order can be cast as a Time Series Classification (TSC)
problem [14]. Time series have been applied ranging
from electronic health records [15] and human recogni-
tion [16]-[17] to acoustic scene classification [18]. Ultrasonic
signals can be viewed as time series, so we selected several
baselines in this study for ultrasonic signals classification
with deep learning architectures.

In this study, ultrasonic signals which were very similar to
each other as-obtained from artificial inserts in a 3D braided
composite plate were used to test a novel flaw detection tech-
nique. First, we produced a 3D braided plate with artificial
defects and debonding. We then established an automated
signal detection system based on FCN [19] and GRU [20] to
process time series acquired via ultrasound transducer. In our
previous task, Geng et al. [21] applied FCN and GRU to clas-
sify egg hatching activity. As mentioned above, the ultrasonic
signals can be also viewed as time series, so several time
series classification models were selected as baselines and
3,600 unique ultrasonic signals were tested as a dataset for
classification. For more comprehensive defect information,
we created a 3D depth model representation to characterize
and localize defects. Below, we also propose a scheme to
interpret the relationship between A-scan and C-scan images.
Figure 1 represents a flowchart of our proposed approach.

A. CONTRIBUTIONS
The key contributions of this work are as follows.

1) A novel ultrasonic signal method for artificial defects
detection in 3D braided composites is proposed. The ultra-
sonic signal of the specimen is used to classify defect versus
non-defect areas. The results obtained using A-scan signals
as the classification features are very accurate. Since the
A-scan signals are a time series, they are easier to acquire and
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collect than images, thus greatly enhancing the classification
performance compared to image-based methods.

2) A baseline model based on the FCN module with a
gated recurrent unit, the GRU-FCN, is the first attempt to
detect ultrasonic signals from 3D braided composites. A GRU
sub-module is used in the FCN model to obtain superior
classification results.

3) We establish a scheme to interpret the relationship
between A-scan and C-scan images and provide the defect
information in 3D depth view.

B. RELATED WORKS

In recent years, various deep learning methods [22]-[24] have
been applied to many classification tasks. Moreover, many
recent researchers have pursued automated signal classifica-
tion systems. Sambath et al. [4], for example, applied wavelet
transform and an ANN classifier for defect detection and clas-
sification. Their ANN method has two layers with 25 nodes
and 8 nodes, respectively, and reaches classification rate up
to 94%. Meng et al. [11] used deep CNNss for training to clas-
sify ultrasonic defect signals from CFRP specimens where
a linear SVM top layer is operated in the training process
to perform the signal classification work. Veiga et al. [25]
tested an ANN for ultrasonic signals acquired from weld
beads by employing TOFD and pulse-echo techniques; four
welding defects were classified by applying a supervised
feed forward back propagation type neural network at a suc-
cess rate of 77.5% for TOFD and 72.5% for the pulse echo
technique. Cacciola et al. [8] proposed a feature extraction
approach based on PCA and DWT. The SVM can be used
as a heuristic pattern classifier trained on these features,
the technique works well for UT signals from defective CFRP
specimens. Munir et al. [26] used CNN and DNN on noisy
ultrasonic signatures to increase classification performance
of weldment defects. The CNN is the most robust structure
for ultrasonic defect classification in terms of noisy signals.
In this study, in an effort to enhance the effects of defect
detection and defect characterization, an ultrasonic signal
processing technique based on wavelet and wavelet packet
transform was used.

The ultrasonic A-scan signal classification can be con-
sidered a TSC problem. Deep neural networks can be
employed for TSC. The multi-scale convolutional neural net-
work (MCNN) [27] incorporating feature classification and
extraction in a single framework was proposed to provide
superior feature representation by automatically extracting
features at different scales and frequencies. However, its per-
formance is strongly rely on the pre-processing applied to the
dataset. FCN does not require any heavy data pre-processing.
In this study, we attempted to detect ultrasonic signals as a
time series for defect classification based on the FCNs by
augmenting the FCN module with a GRU sub-module.

C. OUTLINE
Our work is structured as follows. The background works
of the temporal convolutions and GRU are reviewed and
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network architectures relevant to this study are detailed in
Section 2. Our experimental procedure and results are dis-
cussed in Section 3. Section 4 characterizes and localizes 3D
depth defect information. Section 5 contains a brief summary
and conclusion.

Il. METHODOLOGY

The proposed model is divided into two branches: FCNs
and the GRU block. FCNs contain six temporal convolutions
which typically served as the main feature extractors. The
GRU block is comprised of two GRU layers that enhance
the classification effect of FCNs. Ultrasonic signals as the
time series are conveyed into both FCNs and the GRU block.
Finally, the output features of FCNs and the GRU block are
concatenated and classified via soft-max.

A. TEMPORAL CONVOLUTION NETWORKS

The temporal convolution network that receives the input is
generally described as a time series, which is an effective
learning model for the TSC problem [28]. According to
Lea et al. [29], let us consider X; € Rf0 as an input feature
vector of length Fy for time step ¢, ¢t = 1, ..., T. With different
sequences, the time 7" may be different. Let 7; be the number
of time steps in each step. The true action label for each frame
is given byy, € {1,...,C}, here C is the number of class
labels.

Here, a set of 1D filters on each convolution layer were
applied to see how the input signals evolve over the course of
a given defect if there are L convolution layers. The filters for
each layer are parameterized by tensor W& e RFr>xdxFi-i
with corresponding bias vectors ph e RE , here d,| €
{1, ..., L} represent the filter duration and the layer index,
respectlvely For the I — th layer of the encoder, the i — th
component of the (unnormalized) activation El( z) e RF1 is
a function of the incoming (normahzed) signal E(=D ¢
RF=1xTi=1 from the previous layer E;’ g ) can be computed as:

(D) ) @) (-1
E=f (bi +Z Wz t, E Jt4-d— t’>> 6]

t'=1

where f(-) denotes the Leaky Rectified Linear Unit [30].

B. GATED RECURRENT UNIT

Recently, Cho et al. [20] proposed the GRU to enable several
recurrent units to adaptively acquire dependencies along dif-
ferent time scales. Similar to the LSTM unit, long dependency
problems can also be solved by the GRU in recurrent neural
networks (RNNs). The GRU has gating units that modulate
the flow of information inside the unit, but does not have spate
memory cells. .

The activation function 7, is computed by:

W= (1=2)h_ + 2] @)
where h’ _, represents the previous activation; h’ denotes the

candldate activation. The extent to which the unit updates its
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content or activation depends on an update gate ;. We can
calculate:

2 =0 (Wex, + Uzhy_1Y 3)

This procedure is similar to the LSTM unit, which can
take a linear sum between the newly computed state and the
existing state. However, the GRU exposes the whole state in
each iteration. .

The candidate activation ﬁ; is defined as follows [27]

W = tanh Wy, + U (r; © hy_1)Y 4)

Here, tanh is the hyperbolic tangent function, © is the
element-wise multiplication, and r; refers to a set of reset
gates. )

The reset gate 7/ is computed by:

=0 (Wex + UhiyY )

C. NETWORK ARCHITECTURE

The proposed network is divided into two parts, FCNs and
the GRU block. The FCNs and GRU block perceive the
same ultrasonic signal input from two different perspectives.
In the proposed network, FCNs comprise of temporal con-
volutions and act as the primary feature extractors. In the
FCN block, each FCN is a convolution layer accompanied
by a batch normalization [32] followed by a ReLU activa-
tion function. Batch normalization accelerates convergence,
protects against divergence, and enhances the generalization
capability.

The FCN module consists of six stacked temporal con-
volutional blocks with filter sizes of 128, 512, 256, 128,
128, and 128, respectively. The convolution operations are
accomplished by six 1-D cores with the sizes {8, 5,5, 3, 3, 3}.
To prevent overfitting, we excluded any pooling operation.
Finally, after the convolutional blocks, in order to minimize
the number of weights needed, a global average pooling
layer [31] was applied.

Simultaneously, an ultrasonic signal was conveyed into the
GRU block to extract the temporal feature. The GRU module
consists of two stacked basic GRU blocks. Each GRU block
is a gated recurrent unit layer accompanied by dropout to
prevent overfitting. Similarly to FCNs, after the final GRU
block, a global pooling layer was applied. In the final step,
the output of FCNs and the GRU module is concatenated
and delivered to the soft-max layer. In the proposed archi-
tecture, the GRU module was applied to increase the perfor-
mance of FCNs. The proposed network structure and neural
network architectures, as shown in Figure 2 and Table 1,
respectively.

Ill. EXPERIMENTS

A. SPECIMEN PREPARATION

Aerospace and automotive engineers often use 3D braided
composites. The reinforced fibers in our specimens are
T700-12K carbon fibers and the resin is LT-5080 A-OS
vacuum impregnated with epoxy resin (Wells Advanced
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FIGURE 2. Network architecture. Table 1 shows more details.

TABLE 1. Neural network architectures.

Layer 0 1 2 3 4 5 6 7
Type Inp TC TC TC TC TC TC GA
ut P

Name Inp Conv Conv Conv Conv Conv Conv GA
ut 1d-1  1d-2 1d-3 1d-4 1d-5 1d-6  P-1

Conne - 0 1 2 3 4 5 6
ct
Filter - 8 5 5 3 3 3 -
dim
Filter - 128 512 256 128 128 128 -
size
Activa - ReL ReL ReL ReL ReL ReL -
tion U U U U U U
BN - Y Y Y Y Y Y -
Stride - N N N N N N -
Pad - valid  valid wvalid wvalid wvalid valid -
Layer 8 9 10 11 12 13 14
Type GR GRU GAP Conc FC Soft  Outp
U at max ut
Name GR GRU GAP Conc Fc Prob  Outp
U-1 -1 -2 at ut
Conne 0 8 9 7&1 11 12 12
ct to 0
Units 8 8 - - 2 - -
Activa Tan  Tanh - - - - -
tion h
Dropo 0.5 0.5 - - - - -
ut

@30mm D20mm ®10mm

O S s

FIGURE 3. Locations of debonding in 3D braided specimen.

Materials Co., Ltd.). Curing was performed in steps of 60°C
for 3 h and post-curing at 80°C for 6 h.

A process was developed to produce a 3D braided compos-
ite with debonding defects. As shown in Figure 3, an artificial
defective 3D 4-directional braided composite was fabricated
with length of 215 mm and width of 140 mm with three
debonding defects, then subjected to NDT measurements and
signal acquisition.

B. EXPERIMENT DATA

We used an Olympus Omniscan MX2 to scan 3D
braided composite structures for defects. For each 3D
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(b)

FIGURE 4. (a) Ultrasonic inspection system; (b) 3D braided composite
specimen.

[y ——

FIGURE 5. Original waveform of collected ultrasonic signal. Ultrasonic
signal data processed by filtering and de-noising. (a) Non-defect
ultrasonic signal; (b) Debonding defect signal.

braided composite, a SMHz near-wall probe with 64 elements
and a wedge (SNW1-OL-WP5) and encoder were used to
record UT data (Olympus Corp., Tokyo, Japan) (Figure 4(a)).
Experimental tests were performed on a 3D 4-directional
rectangular flat with debonding defects, (Institute for Com-
posites, Beijing 3D Braiding Co., Ltd.). The 3D flat braided
specimen was made by a 4-step 1x 1 method. The specimen
size was 215x 140x7 mm (Figure 4(b)).

In the study, we performed inspections on the 3D braided
composite specimen with artificial debonding defects to test
the proposed method experimentally. During ultrasonic sig-
nal acquisition, the specimen was set on the scanning stage
and the probe moved it as probe water was coupled to the
surface. A couplant was used to transmit the acoustic energy
between the probe and the wedge. The A-scan signals were
processed by filtering and de-noising on OmniPC 4.4 to
enhance the classification accuracy. The ultrasonic signal was
digitized at a simple length of 320.

The ultrasonic signals collected in the experiment are
shown in Figure 5. The signals are very similar to each other
as-obtained from the 3D braided composites. A dataset was
constructed that consists of 3600 ultrasonic A-scan signals,
2100 of which show the absence of defects and 1500 with
defects. The 3600 datasets were divided into training sets, test
sets and validation sets accounting for 60%, 20% and 20% of
the total, respectively.

C. EVALUATION METRICS

The ratio of negative and positive samples is imbalanced;
there are many more non-defect signals than defect signals in
our dataset. In addition, accuracy alone is insufficient to mea-
sure the classification results of the baseline models. There-
fore, four different evaluation criteria including Accuracy,
Precision, Recalland F1 score [33] were used to measure the
proposed baseline comprehensively.
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The confusion matrix, also called the “‘error matrix”’, a spe-
cific system including four parameters that measures the
classification accuracy of a classifier. The four parameters are
defined by the following formulas:

TP+ TN
Accuracy =
TP + FN + TN + FN
o TP
Precision = ——
TP + FP
TP
Recall = ———
TP + FN
2TP
1= (6)
2TP + FP + FN

Among the above formulas, TP, TN, FP and FN are the
numbers of true positive (predicted defect ultrasonic signals
are actual defect ultrasonic signals), true negative (predicted
non-defect ultrasonic signals are actual non-defect ultrasonic
signals), false positive (predicted defect ultrasonic signals are
actual non-defect ultrasonic signals) and false negative (pre-
dicted non-defect ultrasonic signals are actual defect ultra-
sonic signals) signals, respectively. Accuracy is the ratio of
the number of samples correctly classified to the total number
of samples. Precision is the ratio of the samples predicted to
positive samples to actually positive samples. Recall is the
proportion of correctly classified that should be classified.
The Fl-score is the harmonic average of the accuracy and
recall rates.

To ensure a high-quality composite in an actual produc-
tion scenario (Eq. (6)), Recall can be used to evaluate the
ability of a baseline to identify positive samples. In other
words, a higher Recall suggests a better capability of the
baseline to recognize positive samples, which is great sig-
nificance to analyze our experimental results. However, pre-
cision reflects the ability of a model to recognize negative
samples. We expect an effective model to have higher recall
than precision. The Fl-score is a combination of accuracy
and recall indicators; a higher F1-score indicates more robust
classification ability.

D. BASELINES

In the study, to make the proposed model more competitive,
several existing time series classification baseline models
were selected.

1) ResNet [34], which inserts shortcut connections in each
residual block to enable the gradients to flow directly through
the bottom layers. However, the baseline RseNet is prone
to overfitting due to the small size of the ultrasonic signal
dataset and potential lack of sufficient variance to optimize
the complex structures with deeper neural network systems.
We explored the ResNet structure to classify ultrasonic sig-
nals for comparison. The ResNet consists of three resid-
ual blocks and the numbers of filters are {128, 256, 128}
respectively. Each residual block consists of three convolu-
tion layers accompanied by a ReLu and a Batch normaliza-
tion. After the final convolutional block, a global average
pooling layer and a softmax layer are subsequently applied.
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TABLE 2. Overall classification results for different enhancement
modules.

Models Modules Acc P R Fl1
FCN -- 0.9917 0.9836 0.9833 0.9916
LSTM-FCN LST™M 0.9931 0.9863 0.9861 0.9930
CNN-FCN CNN 0.9944 0.9890 0.9889 0.9944

GRU-FCN GRU 0.9972 0.9945 0.9944 0.9972

Finally, these settings reuse of the FCN structure for fair
comparison with the proposed model.

2) LSTM [35] is an extremely powerful sequence model
that outperforms the general RNNs. Recently, RNNs with
LSTM variants have been widely used to address the issues
involved in sequence dataset [36]. However, convolution
architectures with deep neural networks also obtain compet-
itive performance for time series classification. Thus, a pure
LSTM model was designed to compare their performance of
the two frameworks (CNN, RNN) because we are interested
to see which framework is better model for classifying our
ultrasonic signals.

3) The GRU model outperforms the LSTM model on a
set of tasks [37] although they have similar architectures.
The GRU as another powerful RNN architecture. In this
study, we sought to evaluate the performance of two closely
recurrent units on our dataset.

We set similar hyperparameters for each baseline to
compare baseline performance. Hyperparameters such as
dropouts and learning rate for each baseline were chosen to
adjust to optimize model performance. A random search was
used to ensure well-performing baseline hyperparameters.

E. EXPERIMENT SETTINGS

The FCN module remained constant throughout our experi-
ment and there was no data preprocessing. The initial batch
size was 512 and the number of training epochs was kept
constant at 300. After the final GRU layer, a dropout rate
of 50% was applied to combat overfitting. All LSTM and
GRU kernels were initialized by Xavier initialization [38].
The models were trained with Adam [38] at an initial learning
rate of /e-3 and a final learning rate of /e-4. The learning rate
was reduced every 50 epochs by a factor of 1/+/3 until the
final learning rate was achieved.

The performance of our network was determined on a
dataset, which consists of ultrasonic signals collected from a
3D braided composite specimen. To best represent the effec-
tiveness of our baseline model, we designed three enhance-
ment blocks (CNN, GRU, LSTM) to investigate their effects
on the dataset. Table 2 and Figure 6 show the overall classifi-
cation results with four metrics for different networks.

F. EFFECT OF DIFFERENT ENHANCEMENT MODULES

1) Our results indicate that CNN-FCN, GRU-FCN and
LSTM-FCN are more effective than the sole FCN. The
GRU-FCN clearly outperformed the other three methods as
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FIGURE 6. Confusion matrix of different models. (a) FCN, (b) CNN-FCN,
(c) LSTM-FCN, (d) GRU-FCN.

per its higher generalization capability for classification on
our database. This is because that GRU, CNN and LSTM
blocks enable the FCN baseline to extract more temporal
information of the ultrasonic signals. The addition of the
LSTM, CNN, and GRU blocks improves the FCN classifi-
cation performance of FCN.

2) The four evaluation metrics of the CNN-FCN are higher
compared with those of the LSTM-FCN, which indicates that
the convolutional module performs better ultrasonic classifi-
cation than the LSTM module.

3) We also found that the GRU-FCN performed best
classification performance on our ultrasonic signal database.
Table 2 provides the recognition rate of the proposed method,
where GRU-FCN achieves the highest Accuracy, Precision,
Recall and F1 score among all the baselines we tested.
Our goal here was to create a model with higher Recall
than Precision for ultrasonic signals. Compared with the
CNN-FCN, the recall rate of GRU-FCN increased by 0.55%.
That suggests that the GRU-FCN model can effectively detect
defect and non-defect ultrasonic signals and in practice and
guarantee the quality of 3D braided composites.

G. OVERALL RESULTS
We used the benchmarks described above to test the perfor-
mance of various models on our dataset (Table 3). The results
suggest the following.

1) All of the FCN models with CNN, LSTM and GRU
modules outperformed the other baselines by an order of
magnitude. The baseline GRU-FCN achieved very com-
petitive accuracy. The FCN models with the GRU blocks
described here are suitable for classifying ultrasonic signals.
The LSTM and GRU models performed very similarly. Simi-
larly to the FCN, the ResNet model achieved favorable results
on all four evaluation parameters. Convolutional-architecture
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TABLE 3. Overall classification of different models on in-house dataset.

Models ACC P R Fl1
LSTM 0.9889 0.9783 0.9778 0.9888
GRU 0.9889 0.9783 0.9778 0.9888
ResNet 0.9917 0.9836 0.9833 0.9916
FCN 0.9917 0.9836 0.9833 0.9916
LSTM-FCN 0.9931 0.9890 0.9861 0.9930
CNN-FCN 0.9944 0.9890 0.9889 0.9944
GRU-FCN 0.9972 0.9945 0.9944 0.9972
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FIGURE 7. Confusion matrix of different models. (a) LSTM, (b)GRU,
(c) ResNet, (d) FCN, (e) CNN-FCN, (f) LSTM-FCN, (g) GRU-FCN.

networks appear to classify ultrasonic signals better than
recurrent networks.

2) ResNet only outperformed the baselines of LSTM and
GRU. In theory, ResNet should have achieved the best results
due to its deepest network structure and greatest weight
among the methods we tested. However, our dataset is very
small and ResNet was more likely to overfit the data.
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FIGURE 9. Defect depth information in 3D visualization model.

IV. 3D REPRESENT FOR DEFECT DEPTH DETERMINATION
As discussed in this section, we established a scheme to
characterize and localize the depth locations of defects.

A. ULTRASOUND SIGNAL REPRESENTATION

Ultrasonic signals can be represented as A-scan, B-scan and
C-scan images for defect determination in 3D braided com-
posites, as shown in Figure 8.

The A-scan displays the amplitude of the ultrasonic sig-
nals. A-scan signals are easy to collect and are commonly
applied for processing in real world classification tasks, but it
is difficult to make interpretations about the isolated A-scan
signal without a reference signal recorded from a known
defect-free area [39]. Thus, there is demand for a 2D repre-
sentation based on B-scan and C-scan imagery. The B-scan
image displays the depth of the potential defect and the
C-scan image the top view of a specimen parallel to the
scanned surface. Different color-codes of a defect in this case
indicate the various depths at which the defects are located.
A C-scan image including series of parallel A-scan signals
is shown in Figure 8; where indeed the depth and size of
the defect can be determined from the B-scan and C-scan
images. The A-scan signals may continually vary in ampli-
tude when the probe is moved on the surface of the specimen,
suggesting that a C-scan image depends solely on the A-scan
amplitude.

B. 3D DEPTH DEFECT VISUALIZATION

In our experiment, C-scan representations confirmed the
presence of defects by showing clear plan views of the speci-
men parallel to the scanned surface but did not provide defect
locations. We visualized defect locations through 3D depth
model representations to account for this. The 3D depth repre-
sentation described here was established to determine internal
debonding defects, as shown in Figure 9. The corresponding
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A-scan, B-scan, and C-scan representations are shown in
Figure 8.

V. CONCLUSION

In this study, we established an ultrasonic signal detection
model using FCNs and a gated recurrent unit for defect
detection in 3D braided composites. We classified the ultra-
sonic A-scan signals of 3D braided composites directly by
using ultrasonic signals as a classification criterion. We first
attempted to use the digital defect detector (Olympus Omnis-
can MX2) to collect ultrasonic A-scan signals of defective
3D braided composites with debonding defects. The proposed
network structure for ultrasonic signal classification based on
FCNs with GRU blocks was then used to extract ultrasonic
signal features. Adding the GRU block allows the proposed
model to adequately extract the temporal information of ultra-
sonic signals which discriminate defect classes consistently at
very high classification accuracy.

We compared four evaluation metrics of six models. The
results show that the proposed baseline model effectively
classifies ultrasonic defect signals and achieves competitive
performance on the same dataset compared to others. For
defect determination, we also developed a scheme to interpret
the relationship between A-scan and C-scan images. Finally,
a 3D model representation was successfully used to charac-
terize the depth of defects.

REFERENCES

[1] L. Tong, A.P. Mouritz, and M. K. Bannister, 3D Fibre-Reinforced Polymer
Composite. Amsterdam, The Netherlands: Elsevier, 2002, pp. 137-146.
doi: 10.1016/B978-0-08-043938-9.X5012-1.

[2] ASM International, Nondestructive Evaluation and Quality Control,
vol. 17, 9th ed. Cleveland, OH, USA: ASM International, 1992, p. 516.

[3] S.Iyer, S. K. Sinha, B. R. Tittmann, and M. K. Pedrick, “Ultrasonic signal
processing methods for detection of defects in concrete pipes,” Autom.
Construct, vol. 22, pp. 135-148, Mar. 2012.

[4] S. Sambath, P. Nagaraj, and N. Selvakumar, “Automatic defect classifica-
tion in ultrasonic NDT using artificial intelligence,” J. Nondestruct. Eval.,
vol. 30, no. 1, pp. 20-28, Mar. 2011.

[5] S.-J. Song, H.-J. Kim, and H. Cho, “Development of an intelligent system
for ultrasonic flaw classification in weldments,” Nucl. Eng. Des., vol. 212,
nos. 1-3, pp. 307-320, 2002.

[6] Y. Wang, “Wavelet transform based feature extraction for ultrasonic flaw
signal classification,” J. Comput., vol. 9, no. 3, pp. 725-732, 2014.

[7] P. K. Wong, Z. Yang, C. M. Vong, and J. Zhong, “‘Real-time fault diag-
nosis for gas turbine generator systems using extreme learning machine,”
Neurocomputing, vol. 128, pp. 249-257, Mar. 2014.

[8] M. Cacciola, S. Calcagno, F. C. Morabito, and M. Versaci, ““Computational
intelligence aspects for defect classification in aeronautic composites by
using ultrasonic pulses,” IEEE Trans. Ultrason., Ferroelectr., Freq. Con-
trol, vol. 55, no. 4, pp. 870-878, Apr. 2008.

[9] E de O. Saraiva, W. M. S. Bernardes, and E. N. Asada, “A frame-
work for classification of non-linear loads in smart grids using artificial
neural networks and multi-agent systems,” Neurocomputing, vol. 170,
pp. 328-338, Dec. 2015.

[10] G. Simone, F. Morabito, R. Polikar, P. Ramuhalli, L. Udpa, and
S. Udpa, “Feature extraction techniques for ultrasonic signal classifica-
tion,” Int. J. Appl. Electromagn. Mech., vol. 15, nos. 1-4, pp. 291-294,
2001.

[11] M. Meng, Y. J. Chua, E. Wouterson, and C. P. K. Ong, “Ultrasonic
signal classification and imaging system for composite materials via deep
convolutional neural networks,” Neurocomputing, vol. 257, pp. 128-135,
Sep. 2017.

VOLUME 7, 2019


http://dx.doi.org/10.1016/B978-0-08-043938-9.X5012-1

Y. Guo et al.: Fully Convolutional Neural Network With GRU for 3D Braided Composite Material Flaw Detection

IEEE Access

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

H. Hu, G. Peng, X. Wang, and Z. Zhou, ‘“Weld defect classification using
1-D LBP feature extraction of ultrasonic signals,” Nondestruct. Test. Eval.,
vol. 33, no. 1, pp. 92-108, 2018.

X.-Y. Zhang, H. Shi, X. Zhu, and P. Li, “Active semi-supervised learning
based on self-expressive correlation with generative adversarial networks,”
Neurocomputing, vol. 345, pp. 103—113, Jun. 2019.

J. C. B. Gamboa, “Deep learning for time-series analysis,” 2017,
arXiv:1701.01887. [Online]. Available: https://arxiv.org/abs/1701.01887
A. Rajkomar et al., ““Scalable and accurate deep learning with electronic
health records,” npj Digit. Med., vol. 1, no. 1, May 2018, Art. no. 18.

H. F. Nweke, Y. W. Teh, M. A. Al-Garadi, and U. R. Alo, “Deep learning
algorithms for human activity recognition using mobile and wearable
sensor networks: State of the art and research challenges,” Expert Syst.
Appl., vol. 105, pp. 233-261, Sep. 2018.

J. Wang, Y. Chen, S. Hao, X. Peng, and L. Hu, “Deep learning for sensor-
based activity recognition: A survey,” Pattern Recognit. Lett., vol. 119,
pp. 3—11, Mar. 2019. doi: 10.1016/j.patrec.2018.02.010.

T. L. Nwe, T. H. Dat, and B. Ma, “Convolutional neural network with
multi-task learning scheme for acoustic scene classification,” in Proc.
APSIPA ASC, Kuala Lumpur, Malaysia, 2017, pp. 1347-1350.

Z. Wang, W. Yan, and T. Oates, “Time series classification from
scratch with deep neural networks: A strong baseline,” in Proc. IJCNN,
Anchorage, AK, USA, 2017, pp. 1578-1585.

K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio, “On the prop-
erties of neural machine translation: Encoder-decoder approaches,” 2014,
arXiv:1409.1259. [Online]. Available: https://arxiv.org/abs/1409.1259

L. Geng, H. Wang, Z. Xiao, F. Zhang, J. Wu, and Y. B. Liu, “Fully
convolutional network with gated recurrent unit for hatching egg activity
classification,” IEEE Access, vol. 7, pp. 92378-92387, 2019.

X.-Y. Zhang, S. Wang, and X. Yun, ““Bidirectional active learning: A two-
way exploration into unlabeled and labeled data set,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 26, no. 12, pp. 3034-3044, Dec. 2015.

X.-Y. Zhang, S. Wang, X. Zhu, X. Yun, G. Wu, and Y. Wang, “Update
vs. upgrade: Modeling with indeterminate multi-class active learning,”
Neurocomputing, vol. 162, pp. 163-170, Aug. 2015.

X. Y. Zhang, H. Shi, C. Li, K. Zhang, X. B. Zhu, and L. X. Duan,
“Learning transferable self-attentive representations for action recognition
in untrimmed videos with weak supervision,” in Proc. AAAI, Hawaii, HI,
USA, 2019, pp. 9227-9234.

J. Veiga, A. A. de Carvalho, I. C. da Silva, and J. M. A. Rebello, “The use
of artificial neural network in the classification of pulse-echo and TOFD
ultra-sonic signals,” J. Brazilian Soc. Mech. Sci. Eng., vol. 27, no. 4,
pp. 394-398, 2005.

N. Munir, H.-J. Kim, J. Park, S.-J. Song, and S.-S. Kang, “Convolu-
tional neural network for ultrasonic weldment flaw classification in noisy
conditions,” Ultrasonics, vol. 94, pp. 74-81, Apr. 2019. doi: 10.1016/
j-ultras.2018.12.001.

Z. Cui, W. Chen, and Y. Chen, ‘“Multi-scale convolutional neural networks
for time series classification,” 2016, arXiv:1603.06995. [Online]. Avail-
able: https://arxiv.org/abs/1603.06995

G. Varol, I. Laptev, and C. Schmid, ““Long-term temporal convolutions for
action recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 6,
pp. 1510-1517, Jun. 2018.

C. Lea, R. Vidal, A. Reiter, and G. D. Hager, “Temporal convolutional
networks: A unified approach to action segmentation,” in Proc. 14th
ECCV, Amsterdam, The Netherlands, Aug. 2016, pp. 47-54.

L. Trottier, P. Giguere, and B. Chaib-Draa, ‘‘Parametric exponential lin-
ear unit for deep convolutional neural networks,” in Proc. 16th ICMLA,
Canciin, Mexico, Dec. 2017, pp. 207-214.

D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” 2016, arXiv:1409.0473. [Online].
Auvailable: https://arxiv.org/abs/1409.0473

S. Toffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” 2015, arXiv:1502.03167.
[Online]. Available: https://arxiv.org/abs/1502.03167 ?context=cs

A. Ozgiir, L. Ozgiir, and T. Giingor, *“Text categorization with class-based
and corpus-based keyword selection,” in Proc. 20th Int. Symp. Comput.
Inf. Sci., Tstanbul, Turkey, 2005, pp. 606-615.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. CVPR, Seattle, WA, USA, 2016, pp. 770-778.

A. Graves, A.-R. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in Proc. IEEE ICASSP, Vancouver, BC,
Canada, May 2013, pp. 6645-6649.

VOLUME 7, 2019

(36]

(37]

(38]

(391

A. Karpathy, J. Johnson, and L. Fei-Fei, *“Visualizing and understand-
ing recurrent networks,” 2015, arXiv:1506.02078. [Online]. Available:
https://arxiv.org/abs/1506.02078

J. Chung, G. Gulcehre, K. Cho, and Y. Bengio, “Empirical evalua-
tion of gated recurrent neural networks on sequence modeling,” 2014,
arXiv:1412.3555. [Online]. Available: https://arxiv.org/abs/1412.3555

D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” 2014, arXiv:1412.6980. [Online]. Available: https://arxiv.org/
abs/1412.6980

S. Iyer, S. K. Sinha, M. K. Pedrick, and B. R. Tittmann, “Evaluation of
ultrasonic inspection and imaging systems for concrete pipes,” Automat.
Construct., vol. 22, pp. 149-164, Mar. 2012.

YONGMIN GUO is currently pursuing the Ph.D.
degree with the School of Mechanical Engi-
neering, Tianjin Polytechnic University, China.
Her research interests include intelligent signal
processing, nondestructive testing, image process-
ing, and pattern recognition.

ZHITAO XIAO received the Ph.D. degree from
the School of Electronics and Information Engi-
neering, Tianjin University, in 2003. He is cur-
rently a Professor with the School of Electronics
and Information Engineering, Tianjin Polytechnic
University. His research interests include intelli-
gent signal processing, image processing, and pat-
tern recognition.

LEl GENG received the Ph.D. degree from the
School of Precision Instrument and Optoelec-
tronics Engineering, Tianjin University, in 2012.
He is currently an Associate Professor with the
School of Electronics and Information Engineer-
ing, Tianjin Polytechnic University. His research
interests include image processing and pattern
recognition, intelligent signal processing technol-
ogy and systems, and DSP system research and
development.

JUN WU received the Ph.D. degree from the
School of Electronics and Information Engineer-
ing, Tianjin University, in 2007. He is currently an
Associate Professor with the School of Electronics
and Information Engineering, Tianjin Polytechnic
University. His research interests include image
processing and pattern recognition and artificial
neural networks.

151187


http://dx.doi.org/10.1016/j.patrec.2018.02.010
http://dx.doi.org/10.1016/j.ultras.2018.12.001
http://dx.doi.org/10.1016/j.ultras.2018.12.001

IEEE Access

Y. Guo et al.: Fully Convolutional Neural Network With GRU for 3D Braided Composite Material Flaw Detection

151188

FANG ZHANG received the Ph.D. degree from the
School of Precision Instrument and Optoelectron-
ics Engineering, Tianjin University, in 2009. She is
currently a Professor with the School of Elec-
tronics and Information Engineering, Tianjin Poly-
technic University. Her research interests include
image processing and pattern recognition and opti-
cal interference measurement technique.

YANBEI LIU received the B.E. degree from
the Zhengzhou University of Light Industry,
Zhengzhou, China, in 2009, the M.E. degree from
Tianjin Polytechnic University, Tianjin, China,
in 2012, and the Ph.D. degree from Tianjin Uni-
versity, Tianjin, in 2017. He is currently a Lecturer
with Tianjin Polytechnic University. His current
research interests include machine learning, data
mining, and computer vision.

WEN WANG received the master’s degree in
electronics and communication engineering from
Tianjin Polytechnic University, in 2015, where
she is currently an Assistant Lab Master with the
School of Electronics and Information Engineer-
ing. Her major research interests include image
processing and pattern recognition.

VOLUME 7, 2019



	INTRODUCTION
	CONTRIBUTIONS
	RELATED WORKS
	OUTLINE

	METHODOLOGY
	TEMPORAL CONVOLUTION NETWORKS
	GATED RECURRENT UNIT
	NETWORK ARCHITECTURE

	EXPERIMENTS
	SPECIMEN PREPARATION
	EXPERIMENT DATA
	EVALUATION METRICS
	BASELINES
	EXPERIMENT SETTINGS
	EFFECT OF DIFFERENT ENHANCEMENT MODULES
	OVERALL RESULTS

	3D REPRESENT FOR DEFECT DEPTH DETERMINATION
	ULTRASOUND SIGNAL REPRESENTATION
	3D DEPTH DEFECT VISUALIZATION

	CONCLUSION
	REFERENCES
	Biographies
	YONGMIN GUO
	ZHITAO XIAO
	LEI GENG
	JUN WU
	FANG ZHANG
	YANBEI LIU
	WEN WANG


