
Received September 17, 2019, accepted September 30, 2019, date of publication October 9, 2019, date of current version October 23, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2946460

Research on Robust Stochastic Dynamic Economic
Dispatch Model Considering the Uncertainty
of Wind Power
XIANGYANG SU 1, (Student Member, IEEE), XIAOQING BAI 1, (Member, IEEE),
CHAOFAN LIU2, RUJIE ZHU 1, (Student Member, IEEE),
AND CHUN WEI 3, (Member, IEEE)
1Key Laboratory of Guangxi Electric Power System Optimization and Energy-saving Technology, Guangxi University, Nanning 530004, China
2Guangdong Chigo Heating and Ventilation Equipment Company Ltd., Foshan 528200, China
3College of Information Engineering Institute of Electrical Engineering, Zhejiang University of Technology, Hangzhou 310023, China

Corresponding author: Xiaoqing Bai (baixq@gxu.edu.cn)

This work was financially supported by the project National Natural Science Foundation of China (Grant No. 51967001).

ABSTRACT The increasing penetration rates of wind power in power systems bring challenges to the
dynamic economic dispatching. This paper proposes a Robust Stochastic Optimization (RSO) model to
handle the uncertainty of wind power in dynamic economic dispatch. Based on the event-wise ambiguity
set and event-wise recourse adaptation, the RSO model has generality and enables the ambiguity set to
be constructed irrelatively to the specific problem. Furthermore, by introducing the detail-variables, the
adjustment of event-wise ambiguity set of the RSO model can reduce the conservativeness. To the dynamic
economic dispatch problem, simulations studies on the IEEE 118-bus system and IEEE 300-bus system
verify that 1) RSOmodel is flexible and adjustable; 2) RSOmodel has excellent performance under different
penetration rates of wind power; 3) Compared with the results of Robust Optimization (RO) and Stochastic
Optimization (SO), RSO model can balance the economy and robustness effectively; 4) The RSO model has
better performance in dealing with the small sample volume of wind power data.

INDEX TERMS Optimization methods, power generation dispatch, wind power generation.

NOMENCLATURE
A. SETS
B Set of bus
G Set of generation unit
W Set of wind power unit
L Set of line
R Set of all real numbers
[S] Set of Random scenario

B. DETERMINISTIC VARIABLES/ PARAMETERS
T Total number of scheduling periods
mi Reactance of line i
Pline/Pg/PL Line/Generator/Load power matrix
B Admittance coefficient matrix
L Connection matrix of the branch nodes of

the system
CT /CD Start-up and shutdown costs of thermal

power units

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiaodong Liang .

CG/CW Adjusting penalty coefficient of
corresponding variables under real-time
operation

RU/RD Climbing / Landslide rate of thermal units
P̂wi /P

w
i Real wind power / Forecasted wind power

output at bus i
P̂gi /P

g
i Real / Based-point thermal output at bus i

PL Demand of load
Pmax
i /Pmin

i Upper / Lower limits of generator power of
thermal unit i

−ri/r̄i Upper/Lower spinning reserve capacity of
thermal unit i

goni,t/g
off
i,t Unit start-up and shutdown variables, binary,

1 for on, 0 for off
a/b/c Coefficient of generation unit cost function

C. UNCERTAINTY VARIABLES
w̃ A discrete random scenario in [S]
ν̃ Wind power forecasting error
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I. INTRODUCTION
Developing and utilizing renewable energy is the inevitable
trend of developing energy-saving, emission reduction, and
low carbon environmental protection. As an important renew-
able energy, wind power is particularly concerned due to
renewability, low-consumption, and non-pollution. With the
large-scale grid-connected wind power, the uncertainty of
wind power output brings significant challenges to the
optimal dispatch of power system [1].

In a power system, many decisions are ‘wait-and-see’.
The uncertain variables representing ‘wait-and-see’ decisions
depend on the portion of the real data that reveals itself before
the moment when the decision is made. As one of the main
uncertainties in power system, wind power is one of the main
‘wait-and-see’ decisions. For reducing the impact of wind
power dispatch in the power system, Stochastic Optimiza-
tion (SO) [2], [3] and Robust Optimization (RO) [4], [5]
are reported to tackle the uncertainty of wind power of the
optimal dispatch problem in power system.

The characteristic of SO is to generate a large number
of discrete samples through probability description for cal-
culation and solution. However, it is difficult to obtain an
accurate probability distribution of wind power output in
practice [6], [7]. Moreover, its computing burden increases
heavily with the numbers of samples.

RO assumes that the output range of wind power is in a
given set of uncertainty, which can be polyhedron, ellipsoid,
interval, and others. The goal of RO solution is to find the
worst possible scenario for the system. Inmost cases, ROmay
be over-conservative, but even in the worst case, the solution
obtained is still feasible [8]–[10].

In order to compensate for the deficiencies of RO model
and SO model, DRO model was proposed in [11] and [12].
At present, DRO has been applied to various fields in the
power system optimization problems, such as transmission
expansion planning [13], joint unit dispatching [14], and unit
commitment[15].

A class of hypothesis model of distribution set assumes
that the random variables satisfy a specific distribution form
(such as normal distribution) and their statistical moments
can vary in a certain range. Therefore, the uncertainty of
the distribution can be described by limiting the range of
moments. [16] assumes that wind power forecast error obeys
independent normal distribution. It gives a polyhedral set
describing the uncertainty degree of the mean (first moment)
and variance (secondmoment), and controls the conservative-
ness of the model by setting conservative coefficients. The
method has good computational efficiency, but the rationality
of its normal distribution hypothesis is difficult to apply in
reality.

Another kind of distribution set gives the first and second
moments of random vectors without presupposing their spe-
cific probability distribution form [17]. In the distribution set,
all joint probability distributions of first and second moments
that satisfy the given conditions are all possible distribu-
tions to characterize the uncertainty of distribution. In [18],

the integral definitions of the first and second moments
of wind power prediction errors and their corresponding
distribution sets are given, and the dispatching model is
transformed into bilinear matrix inequality problem by math-
ematical deduction. In [19], the data-driven theory is used to
construct ambiguity sets and Column-and-Constraint genera-
tion algorithm is used to solve them. In [15], the Wasserstein
metric is used to construct the ambiguity set, and the dual
theory is used to transform and solve the model. Also, the the-
ory of K-means [20] can be used to construct the ambiguity
set. These theories and models are often effective for specific
problems but lack of generality.

DRO has different decision models and corresponding pro-
cessing methods for different ambiguity sets, which might
cause models and solutions only suitable for specific prob-
lems in power system. In order to find a general model
expression, the RSO model is proposed in [21]. The author
proposed event-wise ambiguity set to construct DRO and
proved that event-wise ambiguity set had a good generality.
The event-wise ambiguity set can describe discrete distri-
bution in distributed robustness, distribution ambiguity set
based on moment information, K-means ambiguity set driven
by data, and Wasserstein ambiguity set.

This paper proposes an RSO model to solve the dynamic
economic dispatch optimizationmodel considering the uncer-
tainty of wind power in the power system. The main contri-
butions of this paper are as follows:

1) A novel RSOmodel composed of event-wise ambiguity
set and event-wise recourse adaptations is applied to
the day-ahead dynamic economic dispatch problem
of power system considering the uncertainty of wind
power, which can compensate for the conservativeness
of RO model and the inefficiency of SO model. The
validity of the model is verified by simulation analy-
sis based on IEEE 118-bus system and IEEE 300-bus
system.

2) In order to apply the RSO model to solve the dynamic
economic dispatch problemwith uncertain wind power,
we propose to use the Monte Carlo method and scenar-
ios reduction technology to construct affine functions
related to wind power. Besides, we slightly adjust the
ambiguity set of RSO by introducing detail-variables,
which reduced the conservativeness of the adjusted
model. For decision-maker, there are more choices.
At the end of the simulation section, the application
scenarios of different models are presented.

3) Generalizedmoment information of wind power output
is difficult to obtain accurately. Therefore, the DRO
model based onWasserstein ambiguity set is often used
to solve the dynamic economic dispatch problem.How-
ever, this method is prone to over-conservative when
the sample volume of wind power data is small. RSO
model makes up for this defect. In addition, the results
of RSO model and DRO model are compared based
on generalized moment information ambiguity set and
Wasserstein ambiguity set. It shows that the difference
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P =

P ∈ P0(RD
+ RL) :

(ξ , w̃) ∼ P
EP
[
ρ (ξ , ξ̂ )

∣∣ w̃ ∈ [S]k
]
= σk ≤ ϑ ∈ ψ

P
[
ξ ∈ C| w̃ = w

]
= 1,P

[
w̃ = w

]
= pw

 (7)

P =

P ∈ P0(RD
+ RL) :

((ξ ,u), w̃) ∼ P
EP
[
u| w̃ ∈ [S]k

]
≤ ϑ

EP [ξ ] = µ
P
[
(ξ ,u) ∈ C| w̃ = w

]
= 1,P

[
w̃ = w

]
= pw

 (8)

between the RSO model and DRO model using two
ambiguity sets is less than 1% when the sample vol-
ume is 5000. Hence, it is rational that RSO has good
generality and can be used to solve the dynamic eco-
nomic dispatch problem in power system considering
the uncertainty of wind power.

The rest of this paper is organized as follows. In section II,
the DRO model under different ambiguity sets and RSO
models are proposed. In section III, a three-level two-stage
dynamic economic dispatch model with the participation of
wind power is proposed. Section IV presents the reformu-
lation of the proposed RSO model. In section V, numerical
simulation is given to verify the generality and correctness of
RSO model. The conclusion is given in section VI.

II. SOLVING DYNAMIC ECONOMIC DISPATCH
PROBLEM BASED ON RSO MODEL
The RSO model for solving multi-stage problems introduced
in this section can be extended from the DRO model. The
DRO model for a multi-stage optimization problem is as
follows [22]:

min f0
(
x, ξ0

)
+ max

P(ξ)∈P
EP [f (x, ξ)]

s.t. h (x, ξ) ≤ 0, ∀ξ ∈ U (0) (1)

where x is set of decision variables, f (x, ξ) and h (x, ξ) are
functions of x, ξ is set of uncertain parameters, U (0) is
uncertainty set, 0 adjusts the scale of uncertainty set, EP
represents the expectations of functions, P is the ambiguity
set, P (ξ) represents the set of all probability distributions
on R. When the distribution P (ξ) of ξ is known, this model
is SO, when only the uncertainty set U (0) of ξ is known,
this model is RO. Therefore, DRO has different decision
models and corresponding processing methods for different
ambiguity setP . Different fromDROmodel, a general model
expression of RSO is as follows:

min f0
(
x, ξ0

)
+ max

P(ξ)∈P
EP [f (x, ξ)]

s.t. h (x, ξ) ≤ 0, ∀ξ ∈ U (0)

f (x, ξ) ∈ A (K , I) (2)

The biggest difference between RSO and DRO is the exis-
tence of dynamic decision constraints f (x, ξ) ∈ A (x, ξ),
which means that dynamic decision f (x, ξ) is a different
affine function for random variables ξ in each scenario. where

A is event-wise recourse adaptations expressed as follows:

A (K , I) =

f : f (x, ξ) = f0 +
∑
i∈I

fi(x, ξ )

for some f0, fi(x) ∈ A (K )

 (3)

where I is the information index set. A (K ) is an event-wise
static adaptation. The formula is as follows:

A (K ) =

f ′ : x(ξ ) = xτ

τ = F(ξ )
for some xτ ∈ R

 (4)

Correspondingly, a mapping F(ξ ) : [S] 7→ K , [S] is the
range of random variables, K is a collection in the partition
of scenarios and K is mutually exclusive and collectively
exhaustive events.

Whether DRO or RSO, the effect of the ambiguity set on
the final solution is very important. The ambiguity set of DRO
with generalized moment information is as follows [23]:

P =

P ∈ P0(RD
+ RL) :

(ξ ,u) ∼ P
EP [Aξ + Bu] = b

P [(ξ ,u) ∈ C] ∈
[
p
k
, p̄k

]


(5)

where P represents a joint probability distribution of the
random vector ξ ∈ RD appearing in the constraint function
f (x, ξ) and some detail variables u ∈ RL , p

k
/p̄k represent

upper/lower bounds of the probability boundary, and the
confidence set C is defined as:

C = {(ξ ,u) : Ciξ + Diu � Kici} (6)

where Ki represents a proper cone, � means less than or
equal to in cone space. In this model, the highlight is the
introduction of detail-variables u ∈ RL , which can transform
the model into a solvable form.

Different from (5), the Wasserstein ambiguity set of DRO
is as follows (7), as shown at the top of this page, where w
conditionings on the realization of a scenario w ∈ [S], ϑ is
an adjustable parameter representing the radius, ξ̂ represents
historical empirical data, ρ(ξ , ξ̂ ) represents the Euclidean
norm distance between ξ and ξ̂ , and

∑
w∈[S]

pw = 1. Because

the original RSO model described the problem very vaguely.
Inspired by Wasserstein ambiguity set, the detail variables
u ∈ RL is introduced in the optimization of the RSO model
in this paper. Hence, the event-wise ambiguity set of RSO
model can be adjusted as follows (8), as shown at the top of
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this page, where µ is the expected value of ξ , the confidence
sets C are defined as:

C = {(ξ ,u) : µ+ u ≥ ξ , µ+ u ≤ ξ} (9)

Note that detail variables u are auxiliary variables without
any specific meaning in the original RSO model, but in the
dynamic economic dispatch problem, u can represent the
difference between expected and actual wind power output.

III. DYNAMIC ECONOMIC DISPATCH MODEL
WITH WIND POWER
A. OBJECTIVE FUNCTION
In the actual power grid, it is necessary to take into account
the minimum sum of day-ahead economic dispatch cost and
adjustment cost under real-time operation. Aiming at this
problem, the objective function is as follows:

min
T∑
t=1

∑
i∈G

(CTigoni + CDig
off
i )

+

T∑
t=1

∑
i∈G

(ai(P̂
g
i,t )

2
+ biP̂

g
i,t + ci)

+ max
P∈P

∑
s∈S

Ps

min
∑
i∈G

(CGi,t1P
g
i,t )

+

∑
k∈W

CWk1Pwk,t

]
(10)

The formula (10) is a min-max-min three-level two-stage
optimization problem. The first part of the formula (10)
expresses the total cost of day-ahead economic dispatch,
including the start-up and shutdown costs and operation costs
of conventional units. The second part expresses the total
cost of adjustment of units and devices in real-time dispatch
considering the uncertainties of wind power output.

B. CONSTRAINTS
For the simplicity of themodel, the uncertainty of wind power
is expressed as the total wind forecasting error. At the time t ,
the wind power output can be expressed as:

ν̃ =
∑
k∈W

(P̂wk,t − P
w
k,t ) (11)

The affine policy between wind power output and thermal
units is as follows:

P̂gi,t = Pgi,t − δi,t ν̃, i ∈ G
0 ≤ δi,t ≤ 1, i ∈ G∑

i∈G
δi,t = 1, i ∈ G (12)

where δ is the participation factor of the automatic gener-
ation control system in response to the total wind power

forecasting errors. Besides, it is necessary to satisfy the
reserve capacity constraints of thermal units.

−ri,t ≤ −δi,t ν̃ ≤ r̄i,t , i ∈ G (13)

Pmin
i,t ≤ P̂gi,t ≤ P

max
i,t , i ∈ G (14)

The power balance constraints are as follows:

G∑
i

Pgi,t +
W∑
i

Pwi,t =
B∑
i

PLi,t (15)

The climbing constraints of the unit are as follows:

Pgi,t − P
g
i,t−1 ≤ RUi, i ∈ G (16)

Pgi,t−1 − P
g
i,t ≤ RDi, i ∈ G (17)

We choose direct current power flow method to do the
calculation, and the constraints are as follows:

Pline = BdiagLB−1
(
Pg − PL

)
(18)

− P̄line ≤ Pline ≤ P̄line (19)

Bdiag = diag(
1
m1
,
1
m2
, . . . ,

1
mi

), i ∈ L (20)

IV. MODEL REFORMULATION
It is difficult to solve the RSO model mainly because the
number of functional variables is over that of the ambigu-
ity set in the worst case. Therefore, it usually needs some
relaxation to solve. The dual theory can be used to obtain the
transformation form [21]. Although the transformation is not
strictly valid, [21] has proved that the difference between the
result after transformation and the original result is less than
0.1%. More detailed and relevant discussions can be found
in [21]. Hence, the dual theory method is used to relax the
model.

To simplify the description, CTg is equivalent to

start-stop cost
T∑
t=1

∑
i∈G

(CTigoni,t + CDig
off
i,t ), f0

(
y, ξ0

)
is equiva-

lent to
T∑
t=1

∑
i∈G

(ai(P̂
g
i,t )

2
+ biP̂

g
i,t + ci), L

(
aTy

)
is equivalent

to operating cost
T∑
t=1

∑
i∈G

(ai(P
g
i,t )

2
+ biP

g
i,t + ci), bT1ξ is

equivalent to
CWk1Pwk,t∑
k∈W

, ξ represents wind power output.

Hence, the objective function includes operating cost and
start-stop cost, which can be described as follows:

min CTg+ f0
(
y, ξ0

)
+ max

P(ξ)∈P
EP
[
L
(
aT1y

)
+

T1ξ
]

m

min CTg+ f0
(
y, ξ0

)
+ max

P(ξ)∈P
EP [f (1y,1ξ)] (21)

In this model, y, ξ0 represents Pgi,t , P̂
w
k,t , the variables in

the first stage are day-ahead robust decision variables which
do not change with the actual scenario, and the second stage
variables are adjustable variables and uncertain variables.
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The event-wise recourse adaptations are as follows

A (K , I) =
{
f : f (1y,1ξ) = f0(1y)+

∑
i∈I

fi(1y,1ξ )

}
(22)

It means that dynamic decision f is an affine function of the
random variable1ξ under each scenario K , and I is specific
scenarios. Each I is generated by a finite number of K .
According to the duality theory, the following theorem is

established. The specific contents and proofs can be seen in
Section 4 of [21].

The expectation of the worst case is

sup
P(ξ)∈P

EP
[
r>(w̃)Gm(w̃)z̃+ hm(w̃)

]
(23)

It is equivalent to the optimal value of the following clas-
sical robust optimization problem:

inf γ

s.t. γ ≥ α>p+
∑
k∈[K ]

β>k µk ∀p ∈ P,

µk∑
w∈Ek

pw
∈ Qk , k ∈ [K ]

αw +
∑
k∈Ks

β>k z ≥ r
>(w)Gm(w)z+ hm(w)

∀z ∈ Zw,w ∈ [S]

γ ∈ R, α ∈ RS , βk ∈ RIz ∀k ∈ [K ] (24)

where k ∈ [K ] correspond to different events.
Therefore, the RSO model can be reformulated as follows:

max
P(ξ)∈P

EP [f (1y,1ξ)]

= max
P(ξ)∈P

EP
[
L
(
aT1y

)
+

T1ξ
]

= max
P(ξ)∈P

EP

[
T∑
t=1

G∑
i=1

(ai(1P
g
i,t )

2
+ bi1P

g
i,t + ci)+

T1ξ

]

=



inf γ

s.t. γ ≥ αTp+
∑
k∈[K ]

βTk σk ∀p ∈ P,

σk∑
w∈εk

pw
∈ Qk , k ∈ [K ]

α +
∑
k∈Ks

βTk 1ξ ≥

T∑
t=1

G∑
i=1

(ai(1P
g
i,t )

2
+ bi1P

g
i,t + ci)

+bT1ξ ∀z ∈ Zw,w ∈ [s]
γ, α, β ∈ R

(25)

whereα and β are Lagrangemultipliers, p stands for pw vector.
Besides, the operating cost function is a nonlinear function
and is linearized by using the method in [24]. Divide the
x interval

[
xmin, xmax

]
into N segments, and the boundary

points are xs1, x
s
2, . . . , x

s
N+1. The state variable l and contin-

uous variable xis introduced into each segment of the linear
function.

P̂gi,t (x) ≈
N∑
i

(k1i xi,t + k
2
i li,t )

k1i =
(
P̂gi,t

(
xsi+1

)
− P̂gi,t

(
xsi
))
/
(
xsi+1 − x

s
i
)

k2i = P̂gi,t
(
xsi
)
− k1i x

s
i

xsi li,t ≤ xi,t ≤ xsi+1li,t (26)

In (26), k1i is the slope and k2i is the intercept.
Now the transformation of the dynamic economic dispatch

model is completed, which is mixed-integer linear program-
ming and can be solved using Cplex [25] or Gurobi [26].

V. NUMERICAL SIMULATION
This section presents numerical results of IEEE 118-bus
system and IEEE 300-bus system. All models have been
implemented using MATLAB R2018b, Gurobi 8.1 and
RSOME [27], while the simulation is running on a desk-
top computer with 3.10 GHz processor and 8 GB memory.
In IEEE 118-bus system, wind farms are connected at nodes
20, 21, 30, 32, 65, 86, and 92 with each capacity of 100MW.
In IEEE 300-bus system, wind farms are connected at node
18, 20, 56, 57, 58, 81, 119, 156, 189, 215, and 245 with each
capacity of 100MW. The penetration rates of wind power are
21.2% in IEEE 118-bus system. The penetration rates of wind
power are 19.8% in IEEE 300-bus system. The value of pw
is 1

S .
Output data of wind farm come from a 100MWwind farm

in Nanning, Guangxi, China. For example, for node 18 in
IEEE 118-bus system, Figure 1 shows the output curve of
wind power on typical summer days, the blue line represents
the actual processing curve and the orange line and the grey
line represents the upper and lower bounds of the output inter-
val. Based on this output interval and real output, the Monte
Carlo method and scenario reduction technology [28] are
used to generate scenarios and specific scenarios of wind
power output. The output data of other wind farms also use
this method.

In order to verify the validity and correctness of the pro-
posed model, the simulation will be analyzed from the fol-
lowing four aspects. 1) The effect of sample volume, different
radius parameters and the existence of detail-variables on the
results. 2) The comparison of model solution results under
different wind power penetration rates. 3) The comparison of
calculation results of different models. 4) The comparison of
RSO and DRO model under different ambiguity sets.

A. THE EFFECT OF DIFFERENT RADIUS PARAMETERS AND
THE EXISTENCE OF DETAIL-VARIABLES ON THE
CALCULATION RESULTS OF RSO MODEL
The detail-variables u is introduced in formula (8). Through
the analysis of formula (8), it is seen that the optimal value
will be different for different choices of ϑ .
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FIGURE 1. Output curve of 18 nodes wind farm in IEEE 118-bus system.

FIGURE 2. The change of optimal value under different radius.

TABLE 1. The growth rate of objective function value without introducing
the detail-variables.

We run 100, 500, 1000, 2000 and 5000 sample volume
generated by Monte Carlo method and compare their perfor-
mance: (with the participation of detail-variables u)
As shown in Figure 2, with the increase of the value of ϑ ,

the optimal value of RSO model is also increasing. This is
because with the increase of ϑ , the uncertainties increase.
In order to maintain the stable operation of the power system,
more spare capacity of thermal units is needed, which causes
an increase in the objective function value. However, when
ϑ exceeds 10, the optimal value increases slowly. This is
because ϑ represents the degree of migration of historical
samples date, while the whole sample is based on the simula-
tion of the upper and lower bounds of the actual data, which
means that there is an upper limit of the degree of migration.

To verify the validity of detail-variables u, this section also
compares the results based on the same sample volume.

FIGURE 3. Comparison of objective values on IEEE 118-bus system with
different wind power penetration rates.

FIGURE 4. Comparison of objective values on IEEE 300-bus system with
different wind power penetration rates.

As presented in Table 1, in any sample volume, without
introducing detail-variables u, the optimal value of the func-
tion will rise. As the sample volume increases, the effect
of detail-variables u on the optimal value decreases. This
is because the large sample volume will make up for the
lack of detail in ambiguity sets. But when ϑ becomes larger,
there is still an offset that cannot be ignored. Therefore,
the existence of detail-variables u is important to reduce the
conservativeness of RSO model.

B. THE IMPACT OF WIND POWER PENETRATION
RATES ON THE VALUE OF THE OBJECTIVE FUNCTION
IN RSO MODEL
The challenge of wind power uncertainty to the power sys-
tem is usually directly related to wind power penetration
rates. In the simulations, the different scenarios of wind
power under different wind power penetration rates have
been adjusted according to the capacity of the wind farm in
equal proportion. To analyze the performance of RSO model
under different penetration rates of wind power, the following
comparative analysis is made.

From Figure 3 and 4, it shows that the higher the pene-
tration rates of wind power, the better the economy of the
system. The relationship between the penetration rates and
the optimal value of the model is not linear growth, because
it involves the safe and stable operation of the system.
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TABLE 2. Result comparison under different numbers of historical data.

FIGURE 5. Comparison of objective values among RO, RSO, and SO on
IEEE 118-bus system with different sample volumes.

C. COMPARISON OF OPERATION COSTS AMONG UNDER
DIFFERENT MODELS AND DIFFERENT SAMPLE VOLUME
In order to verify the effect of sample volume on the results of
model solving, we made the following comparative analysis
under ϑ = 1. SO is based on 5000 sample volume.

Table 2 shows the comparison of optimization results
between RSO and SO under different sample volumes.
Notably, with the increasing number of samples volume,
the results of RSO model are closer to SO, which leads to the
affine function in the ambiguity set closer to the reality, thus
reducing the conservativeness of the problem. That is, with
the increasing number of samples volume, the RSO model is
less conservative.

The RO model deals with uncertainties by interval uncer-
tainty set, and the results are themost conservative. SO results
are calculated based on a large number of scenarios, and the
results are the least conservative. The uncertainty interval
of RO is based on the upper and lower bounds as shown
in Figure 1. To analyze the relationship between the conser-
vativeness of RSO, RO, and SO models, the value of ϑ is set
to 0.1 with the participation of detail-variables u.
Figure 5 and figure 6 show that RSO tends to RO when

the sample volume is small. As the sample volume increases,
the results of RSO tend to SO from RO. SO is optimized
by selecting scenarios and the expectations corresponding
to the probability of these scenarios. Compared with SO,
RSO also needs to consider the influence of uncertain sets
in the model description. Therefore, the economy of RSO is
generally very close to that of SO, but better than RO which
only describes uncertainty in interval form. In a word, RSO’s
conservativeness is between RO and SO.

FIGURE 6. Comparison of objective values among RO, RSO, and SO on
IEEE 300-bus system with different sample volumes.

TABLE 3. Computational speed comparison of different models.

We also make a comparative analysis of the computa-
tional speed of different models. The RSO model is based
on 5000 sample volume, and the value of ϑ is 1.

It can be seen clearly from Table 3 that although RSO is
slower than RO, the computation time of SO is about two
times that of RSO.

D. COMPARISON OF OBJECTIVE VALUES BETWEEN
RSO MODEL AND DRO MODEL UNDER
DIFFERENT AMBIGUITY SETS
To verify the generality and advantage of RSO model in
dynamic economic dispatch problem, we compared the RSO
model and DRO model under different ambiguity sets. For
clarity, the DRO model under generalized moment informa-
tion ambiguity set is named as GDRO, the DRO model under
Wasserstein ambiguity set is named as WDRO. Set the value
of ϑ to 0.1 for WDRO and RSO. In order to reduce the
randomness of model calculation, the simulation is carried
out by calculating 50 times and taking the expected value for
comparative analysis. The results are shown in Figure 7 and
Figure 8.

As can be seen from Figures 7 and 8, the gap between RSO,
GDRO, and WDRO is getting smaller as the sample volume
increases. When the sample volume is 5000, the difference
betweenRSO,GDRO, andWDRO is less than 1%. Therefore,
it is rational that RSO, GDRO, and WDRO are equivalent
in the three-level two-stage dynamic economic dispatch opti-
mization problem.

For the dynamic economic dispatch optimization model
considering the uncertainty of wind power in the power sys-
tem, the application of RO model, SO model, DRO model,
and RSO model are as follows:

When the accurate probability distribution of wind power
output data can be obtained, the SO model has high accuracy,
but it is not conservative. When the decision maker can only
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FIGURE 7. Comparison of average values on IEEE 118-bus system with
different model.

FIGURE 8. Comparison of average values on IEEE 300-bus system with
different models.

get the output range of wind power, the selection of RO
model can effectively ensure the stable operation of the power
system, but it is not economical.

DRO model can effectively balance conservativeness and
economy. When the accuracy of the probability distribution
of wind power is not clear, WDRO model is a better choice,
but when the sample volume of wind power is small, the opti-
mization result is too conservative. When the distribution of
wind power output can be accurately obtained, GDROmodel
is a better choice, however, it is difficult to gain accurate
distribution in reality. RSOmodel combines the advantages of
WDRO and GDRO. When the sample volume of wind power
is small, and the distribution is not clear, RSO model is a
better choice.

VI. CONCLUSION
This paper has proposed a novel framework to solve a three-
level two-stage dynamic economic dispatch optimization
problem in power system considering the uncertainty of wind
power. To solve the original RSO model, this paper has
transformed the RSO model into a mixed-integer program-
ming model by using dual theory and piecewise linearization
method. Affine function sets have been generated by the
Monte Carlomethod and scenarios reduction technology. The
RSO model has good flexibility, adjustability and can deal
with dispatching problems under different penetration rates
of wind power. Besides, the introduction of detail variables

reduces the conservativeness of RSO model and makes the
RSO model available on the extensive range. Compared with
WDRO model and GDRO model, RSO model has better
performance in small samples of wind power data.

The RSOmodel has been proposed to solve a dynamic eco-
nomic dispatch problem based on direct current power flow.
Due to the higher accuracy alternating current power flow, our
future research is to find an efficient alternating current power
flow computing method to apply on the dynamic economic
dispatch problem.
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