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ABSTRACT This work presents a machine vision system for the localization of strawberries and envi-
ronment perception in a strawberry-harvesting robot for use in table-top strawberry production. A deep
convolutional neural network for segmentation is utilized to detect the strawberries. Segmented strawberries
are localized through coordinate transformation, density base point clustering and the proposed location
approximation method. To avoid collisions between the gripper and fixed obstacles, the safe manipulation
region is limited to the space in front of the table and underneath the strap. Therefore, a safe region
classification algorithm, based on Hough Transform algorithm, is proposed to segment the strap masks into
a belt region in order to identify the pickable strawberries located underneath the strap. Similarly, a safe
region classification algorithm is proposed for the table, to calculate its points in 3D and fit the points onto
a 3D plane based on the 3D point cloud, so that pickable strawberries in front of the table can be identified.
Experimental tests showed that the algorithm could accurately classify ripe and unripe strawberries and could
identify whether the strawberries are within the safe region for harvesting. Furthermore, harvester robot’s
optimized localization method could accurately locate the strawberry targets with a picking accuracy rate
of 74.1% in modified situations.

INDEX TERMS Robotics and automation, strawberry harvester, machine vision, environment perception.

I. INTRODUCTION
Machine vision is an essential element in agricultural robots.
Before the development of deep learning techniques, tradi-
tional image processing methods were used, such as methods
based on color thresholding, however these were not able to
adapt to changing agricultural environments [1]–[3].

Deep Convolutional Neural Networks (CNN) have greatly
improved the performance of image processing, partic-
ularly since the emergence of AlexNet, proposed by
Krizhevsky et al. [4] and the numerous other detection CNN
subsequently developed, some of which have been utilized
for the detection of crops and fruits. Examples of such
networks include You Only Look Once (YOLO), proposed
by Redmon et al. [5], Single Shot Detector (SSD), pro-
posed by Liu et al. [6] and the Region-based Convolutional
Neural Network (Faster R-CNN), proposed by Girshick [7].
Sa et al. [8] utilized Faster R-CNN in the detection of
sweet peppers, mangoes, strawberries and other fruit while
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Bargoti and Underwood [9] adopted the same network to
detect apples and mangoes, further improving its detection
performance through data augmentation.

Besides object detection, segmentation CNNs have also
been adopted for other applications in agriculture. Popular
semantic segmentation networks include Fully Convolu-
tional Network (FCN) [10], SegNet [11], DeepLab [12] and
U-net [10]. Popular instance segmentation networks include
Sharp Mask [13] and Mask R-CNN [14]. Bargoti and Under-
wood [15] utilized a semantic segmentation network to detect
apples and estimate the yield. In addition, Yu et al. [16]
utilized Mask R-CNN [14] for strawberry detection and sim-
ilarly, Gonzalez et al. [17] used the same network for blue-
berry detection. While detection and segmentation networks
have been widely used for the detection and counting of
fruit, their applications in fruit harvesting have been rarely
reported. Most of these methods focused on image analy-
sis, thus were not applied to a specific agricultural machine
system.

In order to achieve the efficient and reliable picking
of the objects, they need to be localized after detection.

147642 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0003-0049-6977
https://orcid.org/0000-0001-5593-8440
https://orcid.org/0000-0003-2604-7555


Y. Ge et al.: Fruit Localization and Environment Perception for Strawberry Harvesting Robots

Different methods based on different cameras have been used
for the localization of fruits and other agricultural crops.
These include the use of stereo cameras, depth cameras or sin-
gle camera with extra assumptions.

Mehta and Burks [18] localized citrus fruits using a fixed
monocular camera. Xiong et al. [1] used a single RGB (Red,
Green, Blue) camera for weed localization, based on the
assumption that the distance between the camera and the
weed plane was fixed.

Single camera techniques are simple but limited in their
depth determination and, therefore, much work has been
done on the development of multiple camera systems.
Font et al. [19] presented a stereo camera system for apple
and pear localization. Mehta and Burks [20] investigated the
fruit localization problems using multiple cameras based on
the assumption that the target had been matched successfully.
Similarly, Ji et al. [21] used stereo matching for the localiza-
tion of apple branches.

Many agricultural robots use an RGB-D (RGB-Depth)
camera for detection and localization because of its
simplicity. Wang et al. [22] used an RGB-D camera for the
detection and fruit size estimation of mangoes. Vitzrabin and
Edan [23] proposed a detection method for sweet peppers
using an RGB-D camera, and Xiong et al. [3] developed a
strawberry harvester using an RGB-D camera for the detec-
tion and localization of the fruits. In this paper, we used an
RGB-D camera for object detection and localization.

Environment perception or ambient awareness is crucial
for agricultural robots, to ensure safe interaction between the
robot and humans, the surrounding environment and other
objects. Reina et al. [24] integrated Light Detection And
Ranging (LiDAR) and imaging for the environment aware-
ness of outdoor vehicles. Similarly, the same researchers [25]
developed a multi-sensor system that integrates stereo-vision,
LiDAR, radar and thermography, for the ambient awareness
of agricultural vehicles in crop fields. They also [26] used
RGB-D images to sense obstacles in outdoor environments
in the navigation of rough terrain mobile robots. Indeed,
the environment perception system is most commonly used
for vehicle navigation, the conditions of which are markedly
different to those for a strawberry picking robot on a straw-
berry farm. In order to ensure safe picking operations, it is
necessary for the robot to detect the environment directly
surrounding the target strawberries.

In the development of various strawberry harvesters, some
have adopted machine vision systems based on color thresh-
olding methods [2], [3], [27], utilizing the color differences to
distinguish between ripe strawberries and other strawberries
and plants. Somemachine vision systems have been designed
to detect the strawberry peduncle as they work with a scissor-
like cutter to cut the peduncle [28]–[30]. These systems apply
color thresholding to first detect the strawberry and then
detect the peduncle of the strawberry by identifying a certain
region above the strawberry. However, as mentioned above,
this color-based image processing is not able to adapt to
changing environments [3].

Traditional feature learning methods have most typically
been used for learning the different shapes of strawber-
ries [31] and deep learning techniques for object detec-
tion and segmentation have shown results in the detection
of strawberries [8], [16], [32]. However, these work have
focused on image processing and, as previously mentioned,
when integrated with a real strawberry harvester, the accurate
localization of the strawberries and maintenance of the safe
picking operations are essential and are, therefore, the main
focus of this paper.

Specially, we aim to solve the localization and collision
problems frequently encountered during table-top picking
for the strawberry harvester. The following highlights are
presented in this paper:
• We utilize the deep learning network for instance seg-
mentation to detect the target strawberries. Based on
the detection results, we propose a localization method
based on points clustering and location approximation
algorithms.

• We raise the potential collision problems for manipula-
tors in table-top strawberry farming. We solve this prob-
lem by proposing environment perception algorithms
that can identity a safe manipulation region and the
strawberries within this region. We propose the safe
region classification method for the strap in a 2D image
and the table in 3D point cloud to identify the pickable
strawberries that are located underneath the straps as
well as the pickable strawberries in front of the table.

• The methods for localization and environment percep-
tion were implemented and evaluated on our strawberry
harvesting robot in the farm conditions, thus providing
a reference for machine vision systems for localiza-
tion and environment perception for similar harvesting
robots.

II. OVERALL SYSTEM DESIGN
Our strawberry picking robot conducts static picking,
in which it stops and processes the input image before issuing
a command to the robot control system. Therefore, when the
robot is static, the RGB and depth image acquired from the
camera module is utilized for the computation of localization
and environment perception in the machine vision system.

The overall architecture of the proposed machine vision
system is shown in Fig. 1. Instance segmentation network
Mask R-CNN was utilized to detect our targets, includ-
ing strawberries, strap and table. Thereafter, the detected
strawberries undergo safe operation checking in 2D imaging,
coordinate transformation, a 3D location approximation algo-
rithm and safe operation checking in 3D space, to obtain the
final 3D strawberries’ locations within the safe manipulation
region, thus achieving safe and efficient picking.

The proposed environment perception algorithms include
defining the safe manipulation region in 2D image according
to the locations of the strawberries and strap, and defining the
safe manipulation region in 3D according to the locations of
the strawberries and table.
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FIGURE 1. Overall architecture diagram.

FIGURE 2. Mask R-CNN for strawberry fruits detection and segmentation.

In Fig. 1, the procedures related to strawberry localization
are highlighted in red, while those related to environment
perception are highlighted in blue. These two objectives coor-
dinate with each other to finalize the positions of strawberries
within the safe region, therefore the procedures relating to
both objectives are highlighted in green. The detailed local-
ization and perception algorithms will be described in the
following sections.

III. INSTANCE SEGMENTATION AND LOCALIZATION
A. FRUITS DETECTION AND SEGMENTATION
Mask R-CNN [14] was used for the detection and segmen-
tation of fruits, tables and straps. Mask R-CNN is a deep
neural network that can generate both the bounding box
and the masks for each instance, as can be seen in Fig. 2.
ResNet101was used as the base convolutional neural network
for feature extraction.

As described above, there are several networks available
for object detection that are fast, accurate and well suited for
fruit counting and yield estimation [5]–[7]. However, our goal
is to estimate the fruit location in 3D space as accurately as
possible. In this case, segmentation can provide more detailed
information and is thus more appropriate for localization,
since the segmented masks only contain the pixels of the tar-
gets whereas bounding boxes additionally include pixels of
other objects. To sum up, the instance segmentation method
was used because it can generate pixel-level segmentation for
each object.

Four target groups were classified, namely ripe strawber-
ries, raw strawberries, straps and tables. The ripe strawberries
are, of course, the harvester’s target, while the tables and
straps present potential collision problems with the gripper
while in manipulation and are, therefore, also objects that

should be detected. Detailed discussion about strap and table
detection will be presented in the next section.

Three examples of the detection and segmentation results
are provided in Fig. 3. Fig. 3 (a) shows the input images and
Fig. 3 (b) displays the detection and segmentation results,
including bounding boxes, masks and class names, while
Fig. 3 (c) shows the colorized segmented pixel-level masks,
with each color representing a different object.

B. COORDINATE TRANSFORMATION FOR SEGMENTED
STRAWBERRIES
Through image processing, several masks were created for
the strawberries, in which one mask represented a detected
target. The masks were de-projected into 3D points, repre-
senting the 3D positions of the targets in the camera frame
C. The workflow of the coordinate transformation is shown
in Fig. 4. The masks were extracted from the detected results
and the depth image was aligned to the RGB coordinate
system. The depth value was then obtained by matching the
aligned depth imagewith the correspondingmask results. The
coordinates were transformed from the image frame I to the
RGB camera optical frame C using the intrinsic parameters
of the RGB-D camera.

Examples of the coordinate transformation process and its
results can be seen in Fig. 5. The first and second columns
are the colorized detected masks and the corresponding depth
images, respectively. The third column is the visualization of
transformed points marked by 3D bounding boxes in the point
cloud. The detected masks contain the unripe strawberries but
only the positions of the ripe strawberries were selected and
sent to the harvester. Therefore, the third column shows the
3D bounding boxes of the ripe strawberries.

C. TARGET LOCATION APPROXIMATION METHODS
1) POINTS CLUSTERING
In this harvesting system, once the 3D positions of the
targets are obtained, the machine vision system needs to
send the positions of all strawberries to the manipula-
tion system. However, it was found that the raw points
transformed from the masks were not sufficiently accurate.
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FIGURE 3. Detection and segmentation results. (1)-(3) are three examples. (a) shows the input images; (b) displays the
visualized segmentation results on the input image; (c) shows the colorized segmented pixel-level masks.

FIGURE 4. Workflow of the coordinate transformation.

Therefore, post-processing procedures were implemented on
the raw points to obtain a point-set that could better represent
the target’s real position.

The inaccuracy of the transformed points was caused by
several factors. For example, the target points could be pro-
jected to the background scene due to inaccurate sensing from
the depth camera, such as the example shown in Fig. 6 (a).
Another factor was noise from the adjacent objects and,
in addition, there may have been inaccurate segmentation of
the masks from the Mask R-CNN.

Therefore, a clustering algorithm was utilized to screen
out irrelevant or noisy points. Density-Based Spatial Clus-
tering (DBSC) of applications with a noise algorithm [33]
is a method that in which group points can be closely
packed together. By setting a threshold distance to mea-
sure core samples and a parameter of a minimum number
of points that can be a cluster, the less dense points and
noises could be removed. Fig. 6 shows three examples of
points before and after clustering, enclosed in the bound-
ing boxes. The noises marked in the figure, can be fil-
tered through this clustering method. Fig. 6 (a) shows an
example of a strawberry edge sticking to the background,

while 6 (b) and (c) show the examples of noises caused by
adjacent objects.

2) TARGET POSITION OPTIMIZATION
The 3D bounding boxes of target strawberries in the RGB
camera optical frame were sent to the manipulator. The raw
points obtained after clustering and the bounding box that
encloses the region of the points is shown in Fig.7 (a),
in which it is evident that the bounding box can only represent
a portion of a strawberry. The surface of the target that faces
towards the camera is sensed better than other surfaces as
the RGB-D camera uses a projection method to obtain 3D
points. In the table-top scenario, if the camera angle is that
of the front view, the lengths in the x and z dimensions of a
strawberry are almost the same. Therefore, in order to localize
the targets more accurately, we used the dimensions detected
in the x axis (representing the surface towards the camera) to
represent those in the z axis. Fig.7 (b) shows the strawberry
points and the refined bounding box.

D. WORLD COORDINATE TRANSFORMATION
The camera module enabled the location of the 3D coordi-
nates of the fruit in the camera optical frame C, so it was
necessary to convert the locations from the camera frame C
into the arm frameW. The relationship between the different
frames is shown in Fig. 8, in which S represents the straw-
berry, C the camera frame, W the arm frame and B the chess
board frame.

VOLUME 7, 2019 147645



Y. Ge et al.: Fruit Localization and Environment Perception for Strawberry Harvesting Robots

FIGURE 5. Examples of coordinate transformation for strawberries: (a) detected masks, with each color
representing a detected strawberry; (b) is the colorized depth image; (c) localization results visualized in
point cloud using bounding boxes.

FIGURE 6. Three examples of clustering of strawberry points.

FIGURE 7. Position optimization: (a) the bounding box of a strawberry
that encloses the filtered points; (b) the optimized bounding box and
corresponding strawberry points.

Let W S be the location of the strawberry S with respect
to the arm frame W, and CS be defined as the location of
strawberry S location in the camera frame. The coordinate
transformation of strawberries from camera frame to arm

FIGURE 8. Frames for world coordinate transformation.

frame can be expressed as follows:
W S = W

C R ∗
CS + W

C t (1)

where W
C R and W

C t are the rotation matrix and translation
vector from the camera frame C to the arm frame W.
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FIGURE 9. The safety manipulation region for the strawberry picking
robot. (a) is a front view with the safety region marked by white dash
line; (b) is a side view with the safety region marked by white dash line.

The B
CR,

B
C t shown in Fig. 8 can be obtained through camera

calibration while W
B R,

W
B t are known parameters. Based on

these two sets of parameters, WC R and W
C t can be obtained.

IV. ENVIRONMENT PERCEPTION
A. PROBLEM DEFINITION
It is necessary for the strawberry harvester to sense its envi-
ronment in order to make predictions and plan for the manip-
ulation. Therefore, the scene must be segmented and objects
that could cause potential damage must be localized.

During the experiments, the manipulator collided with the
table or strap when the strawberries were either too close to
the table or above the strap. Therefore, we used the segmen-
tation network to detect the strap and table and make esti-
mations about whether or not a target strawberry was located
within the safe manipulation region. The regions marked by
white dash lines in Fig. 9 represent the safe safety region
for the manipulation. Fig. 9 (a) is a front view of the scene,
in which the safe region is below the strap, while Fig. 9 (b)
shows a side view showing the safe region below the strap
and a safety distance from the table. Strawberries should,
therefore, be picked in the safe region.

B. SAFETY SOLUTIONS FOR THE STRAPS
An important output obtained by theMaskR-CNNmodelwas
the strap masks. The strap above the strawberry table is used
to support the strawberries plant during growth, making fruit
easier to harvest and also preventing the stems from breaking.
Most ripe strawberries hang underneath the straps, however
some can be found above the straps, which may be dangerous
for the gripper during harvesting. In this section, we introduce
two methods by which strawberry positions can be identified
in relation to the strap.

1) METHOD 1: ORIGINAL MASKS
In order to classify the strawberries that are on or above the
straps, the top positions (yitop) and the horizontal centroids
(x ic) of the strawberries bounding boxes are first calculated,
as shown in Fig. 10. Thereafter, for each strap mask region
of non-zero pixels, x ic is applied to obtain all the vertical

FIGURE 10. Schematic of safety solution calculation for the straps:
(1) using method 1, case 1, case 2 and case 4 would be considered
successful, while case 3 would be a failure; (2) using method 2, all cases
would be considered successful.

coordinates yi from the masks. Next, yitop is compared to the
minimum value of yi, which is used to represent the strap
position, and assigned as dangerous if the strawberries are
above the strap and safe if the strawberries are below the strap.

We observed, however, that this method was not always
sufficiently precise, as there were some situations in which
corrupted segmented straps were obtained, such as case
3 shown in Fig. 10. In this case, the calculation method was
not applicable to the strawberries that did not have strap
masks below and, therefore, case 3 may be considered a
failure using this method.

2) METHOD 2: RECTIFIED MASKS
To solve the above mentioned problems arising in method 1,
first, the Canny Edge Detection algorithm proposed by
Canny [34] was applied to ascertain all of the edge points
of a segmented strap. Thereafter, we sequentially applied
the Probabilistic Hough Transform algorithm proposed by
Kiryati et al. [35], which uses a random subset from the edge
detector to obtain multiple lines in the image, including their
starting and ending coordinates. All these coordinates were
then used to calculate the line equation (y = m · x + b)
that best interpolates all the points by using least squares.
The bounding box that enclosed all the strap masks, marked
by the dash line in Fig. 10, was determined by the width of
the strap and the fitted line. As shown in Fig. 10, to ver-
ify whether strawberries are above or below the straps and
assign a warning sign (dangerous or safe) to each fruit, x ic
is applied to the line equation to obtain the y and compare
it to the yitop + threshold . This threshold is a value obtained
through the original segmented mask to determine the safe
manipulation region between the line and the position of the
top of the fruit. As shown in Fig. 10, all cases were defined
correctly using this method.

Comparative visual results for the two methods described
above, the safety solution containing the original strap seg-
mentation and the rectified strap segmentation, are shown
in Fig. 11. The images Fig. 11 (a) presents the original
images, while the images in Fig. 11 (b) show the results
of the first method and the images in Fig. 11 (c) show
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FIGURE 11. Visual results of the safety solution for the original strap segmentation and the rectified strap segmentation: (a) original images (1,2,3);
(b) the image results of the first method; (c) image results of the second method; The green and yellow bounding boxes indicate, the safe (S) and the
dangerous (D) warning signs.

the results of the second method. The green and yellow
bounding boxes indicate, the safe (S) and the dangerous (D)
warning signs, respectively. It is evident from these images
that the visual results obtained through the first method
could not correctly classify as dangerous the strawberries
above the corrupted regions of the strap masks. However,
with the second method, all the fruits were classified
successfully.

C. SAFETY SOLUTION FOR THE TABLE
The picking robot needs to know the specific 3D location
of the table in order to identify the proximity of a strawberry.
The same clustering method was used for the table 3D points.
The detected table masks and corresponding 3D points for
table can be seen in Fig. 5.

In order to represent a table’s complete position, we fitted
a 3D plane to the detected 3D points of the table. A plane
in 3D space can be determined by defining a point p0 =
(x0, y0, z0) on the plane and a normal vector n = (a, b, c) that
is perpendicular to the surface. The surface p = (xp, yp, zp)
can be represented by n · (p− p0) = 0.
We used the centroid of the points as p0. Then we

created a moment of inertia tensor and used singular

value decomposition to obtain the normal vector n of the
plane.

The distance between the detected strawberry center ps and
the table surface plane p could then be calculated. A line
l = (xl, yl, zl) passing through point ps and perpendicular
to the table plane can be represented by l = k ∗ n + p. The
intersection point pi between the line and the plane satisfies
both equations as follows:{

l = k ∗ n+ pi
n · (pi − p0) = 0

(2)

Thus the value of k and the exact position of pi were
obtained. The distance between pi and ps was calculated
and used to ascertain whether or not a strawberry is
within the dangerous distance to the table of strawberry
trays.

The results of the detection and segmentation results of
table are presented in Fig.12 (a). The detected coordinates
in the image can be obtained from the masks and trans-
formed to the camera optical frame with the aligned depth
image. The fitted plane is marked in green in Fig.12 (b) and
Fig.12 (c). Fig.12 (c) also shows the point cloud and the
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FIGURE 12. Coordinate transformation and surface fitting for table:
(a) the input image, visualized segmentation results in the input image,
detected mask and corresponding depth image; (b) the transformed 3D
points (highlighted in black) and the fitted 3D plane (highlighted in
green); (c) point cloud with corresponding fitted table plane and detected
strawberries.

detected strawberries, as well as the distance between the
target and the table.

D. STRAWBERRIES IN THE SAFE MANIPULATION REGION
The coordinates of detected strawberries were compared with
the positions of the strap and table, to ascertain whether a
strawberry was within the safe region. The algorithm for the
position checking sequence can be seen in Algorithm 1.

The entire process can be concluded within the following
three main steps. First, the positions of the strawberry and
strap are compared within the 2D image, disregarding any
strawberries above the strap. Second, the positions of the
strawberry and the table are compared in the 3D space in the
RGB camera’s optical frame. The remaining strawberries and
the table are also compared in 3D space, with those strawber-
ries close to the table screened out by the pre-defined safety
distance. In the third and final step, only the strawberries

Algorithm 1AscertainWhether Strawberries AreWithin
the Safe Region
Result: coordinates of strawberries in safe manipulation

region
pre-processing: 2D line fitting for the strap and 3D plane
fitting for the table. ;
for every detected strawberry do

comparing the strawberry position with strap line
and table surface;
if the strawberry is above the strap then

remove the position of this strawberry target;
else if Dist2T < Dist_safe_limit then

remove the position of this strawberry target;
else

keep the position of this strawberry target;
end

end

TABLE 1. Evaluation results of detection method.

below the strap and outside the safety distance to the table
are selected.

V. EXPERIMENTS
A. EVALUATIONS OF DETECTION METHOD
The metrics used to evaluate the detection results include pre-
cision, recall, F1 score andAverage Precision(AP), as defined
in Eq. 3, below. A total of 120 images were used to evaluate
the detection method and the number of True Positive (TP)
and False Positive (FP) were recorded. Three confidence val-
ues, ranging from 0.7-0.9, were set to compute the precision,
recall, F1 score and AP. The results are shown in Table 1,
in which it can be seen that ripe strawberries had a higher
rate of detection accuracy. It was evident that from the anno-
tation process that the ripe strawberries are easy to define
while unripe strawberries are more difficult as they undergo a
long growth stage from young, small strawberries to partially
ripe strawberries. This could be confusing to the detection
network. 

precision =
TPs

TPs+ FPs

recall =
TPs
GTs

F1 =
2× precision× recall
precision+ recall

AP =
1∫
0
p(r) dr

(3)
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TABLE 2. Confusion metrics for the safety solution methods of straps:
Method 1 (original masks) and Method 2 (rectified masks).

TABLE 3. Confusion matrix for the safety solution of table.

B. EXPERIMENTS OF SAFETY SOLUTION FOR THE STRAPS
The performance of the two safety solution methods for the
straps were evaluated, using test images containing a total
of 418 strawberries. It is relevant to mention the strawberries
were most commonly situated below the strap, so the warning
sign classification was highly unbalanced. Confusion metrics
for both methods are presented in Table 2, in which it is
evident that the results for the method involving the original
masks show high classification errors for the dangerous warn-
ing sign class. Some of the Dangerous classes were classified
as Safemainly due to the corrupted regions of the strapmasks.
However, after rectifying the masks, this error was mitigated
and the overall accuracy results were improved from 83.7%
to 96.9%.

In both methods, the inaccurate classifications (Safe clas-
sified as Dangerous) were due to poor segmentation as well
as inaccurate line equations.

C. EXPERIMENTS OF SAFETY SOLUTIONS FOR THE TABLE
The safety solutions for the table were evaluated using the
RGB images, aligned depth images and point cloud. The
RGB and depth images were used for obtaining detection and
localization results while the ground truth was obtained by
manually measuring the distance between the target and the
table in the point cloud. The safety distance was set to 10 cm
based on reasonable practical experience. Twenty sets of the
collected data with 112 strawberries were tested and the clas-
sification results are shown in the confusionmatrix in Table 3.
Similar to straps results, significantly fewer strawberries were
found in the dangerous region than in the safe region. The
overall accuracy was 97.3%.

The accuracy of the plane fitting was based on accurate
detection and localization of the table. Therefore, the evalu-
ations were primarily based on the assumption that the table
had been correctly detected. Should the points not sufficiently
accurate, the resulting fitted plane may not be well aligned

FIGURE 13. Strawberry harvester, developed by Noronn AS, including the
platform, camera, robotic arm and gripper: W and C represent the origins
of arm and camera frame, respectively.

TABLE 4. Timing of the machine vision system.

to the real table. Because the aim of the algorithm is to
accurately identify the strawberries within the safe manipula-
tion region, the confusion matrix was used that would reflect
related failures.

D. EVALUATION OF LOCALIZATION ON THE
HARVESTING ROBOT
We tested the strawberry detection and localization method
on our strawberry harvester (developed by Noronn AS). This
harvester comprises a vehicle platform, a camera, a robotic
arm and a gripper for picking strawberries [3], [36], as shown
in Fig.13. A GPU (GTX 1060, NVIDIA, USA) was used
for running the machine vision and manipulation control
systems. The average processing time for one image frame,
including running the detection network, coordinate transfor-
mation and other computations was 0.82s, as can be seen
in Table 4. The time is an average of 119 image frames
with a resolution of 640 × 480. The average times and their
standard deviations for processing the detection, coordinate
transformation (including strawberries and table points) and
other computations are listed separately in Table 4.

The successful picking rates of the localization method
based on raw points (method 1) and the bounding box
optimization (method 2) were compared using the same
scenarios, in which the cutting action was disabled so that
the gripper swallowed the strawberry, moved down and went
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TABLE 5. Picking success rate with the localization method.

to the next strawberry. Each successful swallowing was con-
sidered as a successful picking.

The tests were conducted in modified situations, including
those in which the strawberries were isolated and those in
which ripe and raw strawberries were hanging adjacent to
each other. In this test, the Rumba variety of strawberry
was used, and the number of successfully detected and suc-
cessfully swallowed strawberries of 12 trials are recorded
in Table 5. The test of different growing situations can also
be found in [36], in which the various harvesting failure cases
were introduced. The picking rate in this paper is lower than
that in [36], because in this test the variety of strawberry is
more challenging for picking and the tests were conducted
with one attempt of picking.

The picking rates for the two localization methods were
obtained by dividing the swallowed strawberries by the num-
ber of detected strawberries. Method 1 in Table 5 indicates
localization based on raw points, while method 2 indicates
the optimized localizationmethod. It can be seen that the opti-
mized localization method achieved a success rate of 74.1%
in the modified environment, while the localization based on
raw points achieve a successful picking rate of 51.8%.

VI. CONCLUSION
This work proposed a localization method and environment
perception algorithms for strawberry harvesting robots. The
localization method was based on the segmented masks of
a deep convolutional neural network and depth images from
an RGB-D camera. To increase localization accuracy, density
based point clustering was used to segment and remove noise
points in the 3D point cloud. The table and strapwere detected
and located using the same network, and their locations
were compared with the positions of strawberries in order
to identify whether the strawberries were within the safe
manipulation region. The position comparison between the
target strawberries and the strap was based on the line fitting
using the Hough Transform algorithm, while the position
comparison between strawberries and the table was based on
a 3D plane fitting. The test results showed that the optimized
localization method can accurately localize targets, with an

accurate picking rate of 74.1% in modified situations. The
overall accuracy rates for the strap and table safety identifi-
cations were 96.9% and 97.3%, respectively.

This work investigated the challenges of localization based
on deep learning segmentation networks. It also raised the
problem of environment perception in harvesting and pro-
vided methods for detecting the danger objects for the har-
vester and classifying the safe manipulation region.

In future work, the localization algorithm could be fur-
ther optimized and adopted to suit more complex situa-
tions, such as occluded and unusual hanging positions of the
strawberries.
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