
Received September 10, 2019, accepted September 29, 2019, date of publication October 9, 2019,
date of current version October 23, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2946527

Enhancing Fast TCP’s Performance Using Single
TCP Connection for Parallel Traffic Flows to
Prevent Head-of-Line Blocking
SARFRAZ AHMAD AND MUHAMMAD JUNAID ARSHAD
Department of Computer Science and Engineering, University of Engineering and Technology at Lahore, Lahore 54890, Pakistan

Corresponding author: Sarfraz Ahmad (sarfaraz.awan@hotmail.com)

ABSTRACT Hypertext Transfer Protocol-2 (HTTP/2) partially resolved the problem of Head-of-Line
Blocking (HoLB) by multiplexing independent messages at the application layer. This enables simultaneous
transmission of multiple requests over the same connection independently. However, this technique becomes
ineffective when packet loss occurs in the Transmission Control Protocol (TCP) flow in which case all the
independent streams are blocked until the retransmission of the lost packet; this problem is known as HoLB
at TCP-level. The problem arises because the underlying TCP does not differentiate between independent
messages/streams from application layer protocol. This study proposes a multistream framework for Fast
TCP to support multiple independent messages/streams of the application. The proposed framework uses
separate flows, buffers, and segments for each independent stream, and interleaves these segments over
a single TCP connection. It makes TCP compatible with HTTP/2, reduces data delivery latency between
transport and application layer, and alleviates head-of-line blocking. We implemented this framework in
Fast TCP and carried out a simulation-based comparison between Multistream Fast TCP (MFast TCP) and
Stream Control Transmission Protocol (SCTP). Our results show that MFast TCP significantly improved
performance over SCTP in the event of HoLB.

INDEX TERMS Data transfer, fast TCP, head-of-line blocking, multistream, SCTP, transport protocol.

I. INTRODUCTION
Latest broadband facility is now available to home users
via modem and ADSL. It enables the recent applications
to transfer a variety of data to the end user. Data intensive
applications are using Transmission Control Protocol [1] to
transfer large amounts of data. TCP is the default choice of
these applications due to its unique features like congestion
control, flow control, reliable data transfer, in-order data
delivery, and data transmission over a single bytestream. The
studies [2]–[4] proposed different schemes for multimedia
applications to optimize their performance on top of TCP.
These studies achieved the desired goals at the application
level, but some issues remained that must be addressed at the
transport layer to get maximum performance benefit.

TCP follows a systematic approach for in-order data trans-
mission. The TCP sender assigns a unique sequence number
to each segment tomaintain data order before dispatching it to

The associate editor coordinating the review of this manuscript and

approving it for publication was Giacomo Verticale .

the receiver. These segments may be lost or corrupted either
due to congestion, bit errors in a bad wireless spectrum, or
a bad fibre connection. This data loss disturbs the segments’
order on the receiver side. In this case, the receiver places
these segments in the receiver buffer to restore the order of
the segments as per assigned sequence number. Although this
data storage is necessary to maintain data order, it causes
delay in the delivery of segments to the application [5]. For
example, a server sends three different pictures to appear in
parallel in a client’s web browser. The server simultaneously
transmits part of the data from each picture to the transport
layer. This transmission process at the server continues until
data of all three pictures are transferred successfully. During
transmission, if a packet loss occurs in TCP and the packet
contains part of the first picture’s data, then the receiver will
stop processing all the latter segments containing data for the
other two pictures until the lost segment is recovered. This
phenomenon is known as head-of-line blocking (HoLB). This
causes unnecessary delay in the data delivery for the second
and third picture.

148152 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-6507-193X
https://orcid.org/0000-0001-7508-9706


S. Ahmad, M. J. Arshad: Enhancing Fast TCP’s Performance Using Single TCP Connection for Parallel Traffic Flows to Prevent HoLB

Latency at the applications level increases due to HoLB.
The applications which are providing online services require
maximum low latency for swift response to the end user.
The user experience is negatively affected with large latency
response. 100 ms latency costs 1 percent of sales to Amazon
and 20 percent of google traffic reduction as it takes 0.5 sec-
onds of extra time in search page generation [6]. Therefore,
these applications required an efficient transport protocol to
increase the efficiency.

HTTP manages client’s requests at the application layer.
It has to depend upon the underlying TCP to manage data
exchange in a client-server networking model. In the case
of multiple requests, as in the case discussed above, it suf-
fers head-of-line blocking due to the limitation of the TCP.
Therefore, the different versions of HTTP use underlying
TCP differently to avoid head-of-line blocking [7]–[12]. But
none of the HTTP versions could resolve HoLB problem
completely.

HTTP/2 partially resolved the problem of HoLB by intro-
ducing multiplexing at the application layer so that the appli-
cation could issue new requests over the same connection
without having to wait for the previous ones to complete.
HTTP/2, however, still suffers from another kind of HoLB
on the TCP layer, i.e., one lost packet in the TCP stream
that places all HTTP’s streams on hold until the lost packet
is retransmitted and received. To permit this type of parallel
functionality on top of the TCP, it is required that the TCP is
able to identify the independent messages of the application
and multiplex these messages over the transport layer. Simi-
larly, it is required that the TCP on the receiver end could seg-
regate the segments of independent messages. These changes
will make the TCP compatible with HTTP/2 and eliminate
HoLB at the transport layer. In this study, an architecture
is proposed for TCP to incorporate the above-mentioned
changes.

Stream Control Transmission Protocol (SCTP) is designed
for telephony signaling over IP networks. It provides multi-
stream feature to address the head-of-line blocking problem
at the transport layer. Although it efficiently handles small
flows of signalingmessages, its loss-based congestion control
algorithm degrades its performance in high bandwidth-delay
product networks [22].

The framework is implemented using Fast TCP [13].
Fast TCP is a delay-based transport protocol. It is specially
designed for high speed, long distance, and large band-
width networks. It avoids packet loss during the congestion
avoidance phase. Whereas, loss-based transport protocol like
SCTP cannot avoid packet loss in the congestion avoidance
phase. This packet loss oscillates the congestion window
of loss-based protocol. This oscillation degrades its perfor-
mance. The additive increase approach increases the size of
the congestion window by one packet on each RTT after
fast recovery phase. Therefore, it takes more time to utilize
the available bandwidth of the network after packet loss
compared to the delay-based congestion control scheme.
Fast TCP uses a formula instead of the AIMD technique to

increase its congestion window after packet loss. It performs
better in the form of goodput in the fast retransmit phase. Fur-
thermore, it consumes the available bandwidth more rapidly
after fast recovery phase; therefore, it gets more advantage
from themultistream feature compare to the loss-based proto-
cols. The higher goodput ofMFast TCP duringHOL blocking
period proves it.

We made a simulation-based comparison between Multi-
stream Fast TCP (MFast TCP) and Stream Control Trans-
mission Protocol (SCTP) [14]. Our results show that when
HoLB occurs, the MFast TCP performs better compared to
the SCTP. Furthermore, the size of the receiver buffer is
critical for the transport protocols that are used in the high
bandwidth-delay product network. In the presence ofmultiple
independent messages/requests, it is observed that MFast
TCP consumes the receiver buffer far less compared to native
Fast TCP in the case of HoLB.

The major objectives of designing the proposed framework
for TCP are: (i) eliminate unnecessary delay in transmis-
sion of the data from the transport layer to the application
layer (ii) design an architecture to make TCP compatible with
HTTP/2 so that its independent streams could be handled
(iii) devise a procedure to control each independent stream
separately within a single connection of TCP.

The rest of the paper is organized as follows: Section II
describes the related work performed to resolve the HoLB
problem; Section III explains the architecture of the pro-
posed framework; Section IV provides implementation detail
of the proposed framework; Section V narrates simulation
setup, results, and discussion; Section VI is dedicated to the
conclusion.

II. RELATED WORK
HTTP, as an application layer protocol, adopted different
techniques to handle the head-of-line blocking problem.
HTTP/1.0 uses separate TCP connections for each request.
Although, these connections serialize the data transmission,
there is a cost involved in setting up a new connection. There-
fore, it increases the latency because of establishing a TCP
connection, the number of network packets, and the resource
requirement on the server [7]–[9]. Furthermore, browsers
don’t allow an unlimited number of TCP connections. In the
case of multiple TCP connections, time to trigger fast retrans-
mit is also increased. This increased time is directly propor-
tional to the number of connections [15]. HTTP/1.1 resolved
the problems faced by HTTP/1.0 and proposed to open
limited persistent TCP connections. It reduces overhead
like number of network packets, resource requirement on
the server, and TCP connection establishment over multi-
ple requests. It increases network utilization and effective
bandwidth [10]. Both of these versions of HTTP are unable
to achieve requests-concurrency over a single TCP connec-
tion. The most recent version of HTTP is HTTP/2.0 that
was introduced in May 2015. It addresses the problems
of HTTP/1.1 and provides new features like content pri-
ority and server push. Considering its performance and

VOLUME 7, 2019 148153



S. Ahmad, M. J. Arshad: Enhancing Fast TCP’s Performance Using Single TCP Connection for Parallel Traffic Flows to Prevent HoLB

other benefits, current websites that are using HTTP/1.1 are
quickly adopting HTTP/2.0 [16], [17]. HTTP/2.0 proposed
a technique to achieve requests-concurrency at the applica-
tion layer by using a single TCP connection at the trans-
port layer. It multiplexes data of all the requests over
a single TCP connection. Although, this technique elimi-
nates the need for multiple TCP connections, it could not
remove the head-of-line blocking problem at the transport
layer [11], [12].

Google developed SPDY to transport web contents. SPDY
multiplexesmultiple requests over one TCP connection. If the
requests have a small amount of data, then SPDY gets a
benefit over HTTP/1.1.Whereas, its performance degrades in
the case of packet loss [18], [19]. This reduced performance
is because of HoLB.

QUIC multiplexes multiple independent requests of the
application over UDP. It establishes connection in zero-RTT.
It uses Forward Error Correction (FEC) to handle losses.
QUIC performs better compared to SPDY [20], but still it
has limitations. FEC increases the load over network. QUIC
has to work on a cross layer to handle the application and
transport layer functionalities. Although QUIC recovers from
congestion very efficiently, its performance may still degrade
due to the same reason as SPDY, that is, using a single
multiplexing channel [19]. Furthermore, it uses UDP instead
of TCP in its solution.

Stream Control Transmission Protocol (SCTP) is a general
purpose transport protocol specifically designed for tele-
phony signalling over an IP network [14], [21]. The proto-
col efficiently transfers small flows of signalling messages.
It provides two important transport layer services, that is,
multihoming and multistreaming. Although its multistream
feature addresses the problem of head-of-line blocking, its
loss-based congestion control algorithm degrades its perfor-
mance over long distance, large bandwidth networks. SCTP
is not designed for large bandwidth delay product networks.
It suffers performance problems while transferring large data
files over this network [22].

III. SYSTEM ARCHITECTURE OF THE
PROPOSED FRAMEWORK
Fig. 1 shows the system architecture of the proposed frame-
work having a Data Distributor (DD), Data Receiver (DR),
Stream Manager (SM), Data Manager (DM), Data Acknowl-
edgment (DA), Streams’ Dispatch Buffers, and Streams’
Receiver Buffers.

The Data Distributor (DD) unit receives the application’s
data, extracts stream identifiers from the application frame,
and uses this information to place the data in the rele-
vant stream’s dispatch buffer. The Stream Manager (SM) is
responsible to create buffers on the sender and receiver side
for each independent message/request of the application and
it also releases the resources at the completion of data transfer.
Data Receiver (DR) extracts data from the streams’ receiver
buffers and places it in the buffer. Data from that buffer is
then pushed to the application layer. The DataManager (DM)

FIGURE 1. System architecture of the proposed framework.

selects data from the streams’ dispatch buffers by using a
specific data selection algorithm, places a stream header on
the segment, and multiplexes the segments for transmission.
This unit is also responsible for control of each stream flow.
The Data Acknowledgment (DA) unit acknowledges each
received segment on the receiver side and coordinates with
the Data Manager (DM) on the sender side to identify any
lost segments so that the Data Manager could adjust its data
selection accordingly.

IV. IMPLEMENTATION DETAIL
The technical details of the framework are discussed in the
following sections.

A. TCP HEADER
One flag bit labeled Multistream Enabled (MSE) is intro-
duced in a reserved area of the TCP header [1] as shown in
Fig. 2. It indicates that the protocol supports multiple streams
to make it compatible with HTTP/2.

MSE bit is set to inform the receiver that the sender is using
multistream enabled protocol. The receiver also sets MSE bit
in the response segment to show that it also supports multiple
streams. This information is exchanged during handshake.
If both sender and receiver support multiple streams, then
subsequent communication takes place using this facility;
otherwise native TCP protocol procedure is followed for data
communication. While processing the MSE TCP segment,
the host extracts a Stream Header (SH) of four bytes from
the TCP header. This SH provides further details about the
stream.

148154 VOLUME 7, 2019



S. Ahmad, M. J. Arshad: Enhancing Fast TCP’s Performance Using Single TCP Connection for Parallel Traffic Flows to Prevent HoLB

FIGURE 2. MFast TCP Header.

B. STREAM HEADER
The stream header consists of 32 bits as shown in Fig. 3. First,
8 bits are reserved for the stream id (SID) and the remaining
24 bits are reserved for the stream sequence number (SSN).
The SID is used to uniquely identify the streams. The SSN is
a number that is assigned in a sequence to the segments of a
stream. One TCP segment contains data of one application’s
message up to the maximum segment size (MSS). If the
application’s independent message does not fit in one TCP
segment, then it can be fragmented into multiple segments.

FIGURE 3. Stream Header.

SCTP has two types of headers that are common header
of 12 bytes and chunk headers of 8 bytes. SCTP has
255 chunk types including defined and reserved chunk types.
The header size of each chunk type varies. The data chunk
of SCTP has a 16-byte header size. The protocol uses it to
distinguish each stream and its sequence number. SCTP can
bundlemultiple data chunks in a single segment. In the case of
segment loss, multiple data chunks are lost, and correspond-
ing streams are blocked. Whereas, MFast TCP provides the
feature of multistream with a stream header size of 4 bytes
coupled with the TCP header of 20 bytes. The protocol places
one stream’s data in one segment and only that particular
stream is blocked in case of segment loss.

The proposed scheme adds four bytes of stream header to
the 20-byte TCP header. Therefore, the overhead in a network
of the typical 1000 bytes packet size is 0.42%.

C. TCP CONNECTION
To explain the connection establishment procedure, two
hosts, A and B, are shown in the Fig. 4 with ‘‘Closed’’ and
‘‘Listen’’ states respectively.

The TCP on host A initiates a ‘‘three-way handshake’’
procedure to establish the connection with host B. At the time
of connection establishment, the sender raises its SYN and
MSE control flags. The sender raises the MSE control flag

FIGURE 4. Three-way handshake procedure at the time of connection
establishment.

to inform the end host that it supports multiple streams. The
sender also places the information about how many streams
are required to be opened with the end hosts in the SYN
segment. Host A changes its connection state from Closed
to SYN-SENT after sending the SYN segment.

If Host B does not support multiple streams, then it
ignores the MSE control flag and responds as a normal
TCP. Being a multiple-stream enabled TCP, Host B (which
is in Listen state) on receipt of the SYN segment, allocates
memory space required for a number of streams. Host B
responds to the SYN segment with a SYN-ACK segment
having SYN, ACK, and MSE control flags with an approved
number of streams. The SYN-ACK segment acknowledges
the SYN segment and informs the initiator that requested
space is allotted. Host B changes its connection state from
Listen to SYN-RECEIVED after dispatching the SYN-ACK
segment.

On receipt of SYN-ACK segment, Host A changes its
connection state from SYN-SENT to ESTABLISHED and
sends a ACK segment with the control flags ACK and MSE.
Host B, on receipt of the ACK segment, sets its connection
state from SYN-RECEIVED to ESTABLISHED.

Once the connection is established, full duplex flows are
open for data transmission between the end hosts. Now, end
hosts can handle multiple streams within a single connection.
This single connection reduces overhead of multiple TCP
connections, provides better goodput during congestion, and
loss recovery. Multiple independent streams within a single
connection reduce latency between the transport and applica-
tion layers at the receiver side.

VOLUME 7, 2019 148155



S. Ahmad, M. J. Arshad: Enhancing Fast TCP’s Performance Using Single TCP Connection for Parallel Traffic Flows to Prevent HoLB

D. DATA SENDING AND ACKNOWLEDGEMENT
The sender transfers each independent message of the appli-
cation over the separate stream. It segments the data of the
application’s message and places a stream header over it.
The TCP that supports multiple streams keeps record of the
streams’ segments against the Segment Sequence Number.
The sender keeps this record of each stream until the acknowl-
edgment of these segments is received.

SID and SSN are used to reassemble data segments in
the correct order at the receiver side. The receiver stores the
received segments in a receiver buffer. In response to this
received segment, the receiver prepares an ACK segment and
includes information of the corresponding stream’s received
segment in it. The receiver extracts in-order streams’ seg-
ments from the receiver buffer and stores them in the cor-
responding stream buffer. The data from the streams’ buffers
is pushed to the application layer.

On receipt of segment acknowledgement, the sender
uses ACK segment information to match it with Segment
Sequence Number, SID, and SSN which was saved at its
transfer time, so that ACK segments could be removed from
the buffers. SID and SSN are two different values, so unac-
knowledged segments of one stream do not affect the data
transmission of other streams.

1) EVENTS THAT OCCURRED ON SENDER SIDE
There are various events which are triggered on the sender
side while providing the data transfer service to the appli-
cation. These events are Data received from the application,
Timeout, and Acknowledgment received.

On the sender side, at the time of data receipt, transport pro-
tocol places data of the application’s message in its assigned
buffer. In case a timeout event is triggered, the sender retrans-
mits the timed-out segment and retransmits the segments
whose Sequence numbers are greater than the sequence num-
ber of this timed-out segment. On receipt of Ack Segment
sender checks whether it a duplicate acknowledgment; if so,
then it increases the duplicate Ack counter. If the count of the
duplicate Ack is three, then it resets the duplicate Ack counter
and triggers retransmission of the segment whose duplicate
Ack is received. The sender extracts sack options from the
Ack segment to mark the sent segments as sacked received.

2) FLOW CONTROL AND ACKNOWLEDGEMENT
GENERATION ON THE RECEIVER SIDE
Flow control is another important service that TCP provides.
Flow control ensures that the sender is not overwhelming
the receiver device with large amounts of data. The Ack
segment provides very useful information to the sender that
is necessary for this service. It informs the sender that the
receiver has received the segment, the segment has left the
network, and what is the current status of its receiver window.

In the receiver buffer (represented by the receiver window),
it keeps only those streams’ segments whose data is not
received in-order. Whereas those streams’ segments that are

received in-order are removed from the receiver buffer. In this
way, MFast TCP frees more space of the receiver buffer.
The benefit of this technique is significant during the HoLB
period.

There are three types of cases as given below that are
handled by the receiver while generating the ACK segment:

1. On arrival of an in-order segment with an expected
segment sequence number whereas all previous data up
to that segment has been already acknowledged.

2. On arrival of an in-order segment with an expected seg-
ment sequence number whereas higher segments have
already been acknowledged.

3. Arrival of an out-of-order segment with a higher than
expected segment sequence number

In the case of a normal scenario, that is, the receiver
receives the segment with expected sequence number,
whereas all previous data up to that segment has been already
acknowledged. In this case, there is no change in the segment
handling algorithm except that it places the segment in its
related stream buffer after extracting required information
from the segment and stream header. From the stream buffer,
it is pushed to the application.

In the case where a receiver receives an in-order segment
with an expected segment sequence number whereas higher
segments have already been acknowledged. This is the sce-
nario which represents that a particular stream’s data that was
blocked in the receiver buffer becomes in-order. The receiver
removes all the data from the receiver buffer and places it in
the stream’s receiver buffer because a lost segment has been
received and now the stream’s data is in-order and ready to
be handed over to the application.

In the case where a receiver receives the out-of-order
segment with a segment sequence number higher than the
expected segment sequence number. In this scenario, if the
received segment contains the data of the stream, all of whose
previous segments are received correctly and there is no gap
between the segments, then it will be extracted from the
receiver buffer and placed in the corresponding stream buffer.
This step frees the receiver buffer space and on the same time
made this data available to the application. In this way, the
protocol alleviates the HoLB problem and efficiently utilizes
the receiver buffer. This efficient utilization of the receiver
buffer is critical for a delay-based congestion algorithm that
is being operated in large bandwidth-delay product networks.

V. SIMULATION SETUP, RESULTS, AND DISCUSSION
The proposed framework as described in the previous section
is simulated using ns-2.35 [23] in a wired environment. For
simulation, we used the Fast TCP patch that is implemented
by L. Andrew [24] and the SCTP patch that exists in the
ns-2.35 release. A custom application capable of tagging data
segments for the transport layer is used to generate traffic.
It is considered that a server needs to transfer multiple files.
Therefore, the application uses a separate stream of a fixed
data size for each of its independent messages over the period
of the TCP session.

148156 VOLUME 7, 2019



S. Ahmad, M. J. Arshad: Enhancing Fast TCP’s Performance Using Single TCP Connection for Parallel Traffic Flows to Prevent HoLB

Procedure 1 Acknowledgement Generation
Variables:

Segment Sequence Number ‘SEQ’
Expected Segment Sequence Number ‘ESEQ’
Stream ID ‘SID’
Stream Sequence Number ‘SSN’
Expected Stream Sequence Number ‘ESSN’

Procedure ACK(TCP Header tcpRec)
1 SEQ← tcpRec.SEQ
2 SID← tcpRec.SID
3 SSN← tcpRec.SSN

TCP Header ack;
4 ack.SID← SID # ACK Segment
5 do if SSN = ESSN of SID then
6 case 1: ESSN of this Stream is received and there is

no higher segments of this stream is in the rwnd
7 ESSN of SID← ESSN of SID + 1
8 ack.SSN← ESSN of SID
9 Remove Segment from rwnd
10 StreamBuffer[SID]← tcpRec.Stream Data
12 case 2: ESSN received and higher segments of

this stream are
there in the rwnd

13 ESSN of SID← cumulated ACKED SSN of SID
14 ack.SSN← ESSN of SID
15 # Place stream segments in StreamBuffer
16 StreamBuffer[SID]← SSN of SID TO ESSN

of SID
17 Remove SSN of SID TO ESSN of SID from rwnd
18 end ıf
19 do ıf SSN > ESSN of SID then
20 rwnd← tcpRec.Stream Data
21 ack.SSN← ESSN of SID
22 end ıf
23 do ıf SEQ = ESEQ then
24 case 1: Expected segment received and there is

no higher segment in rwnd
25 ESEQ← ESEQ + 1
26 ack.ACK_Number← ESEQ
27 case 2: Expected segment received and

higher segments are there in the window
28 ESEQ← cumulated ACKED SN
29 ack.ACK_Number← ESEQ
30 end ıf
31 do ıf SEQ > ESEQ then # Out of order arrival

of the segment
32 ack.ACK_Number← ESEQ
33 set SACK option for this segment
34 end ıf
35 Dispatch ACK Segment

The application generates traffic in such a way that data
from different sources is multiplexed, segment-by-segment.
For example, in the case of FTP over Fast TCP with the
proposed framework, the transfer of multiple files is started

simultaneously and data equal to the size of the segment is
sent in a round robin fashion from each source file.

The data segments generated by the application carry an
ID, size, and sequence number of the stream/transaction. The
transport layer manages the session behaviour, as required
with this information.

This mechanism provides significant performance
improvements in congested or vulnerable networks or where
the chances of packet loss at intermediate nodes exist.

A. NETWORK TOPOLOGY
The network topology used in the simulation scenarios
is shown in Fig. 5. İt consists of four nodes, i.e., n0,
n1, n2, and n3. Duplex links n0-n1, n1-n2, and n2-n3
have bandwidth of 2Mbps, 1.5Mbps, 2Mbps and delay
of 10ms, 100ms, and 10ms respectively. Each node uses a
DropTail queue of size 10. There are three pairs of agents
(SctpAgent, SctpAgent), (FastTcpAgent, TcpSink/Sack1)
and (MSFastTcpAgent, TcpSink/Sack1). These agents are
attached with n3 and n0 separately to study the behaviour
of these protocols while executing the simulation scenarios.
A custom ServerApp and ClientApp are attached with the
sender and receiver agents. The simulation time is 100 s,
ServerApp is set to start at 1.0 s and stop at 100 s. List error
model is attached with the bottleneck link n1-n2 to drop a
packet so that head-of-line blocking on the receiver end could
be created and its impact on goodput during this interval could
be studied.

FIGURE 5. Network topology used in the simulation scenarios.

B. CONFIGURATION
We performed two simulation tests to carefully analyse
and evaluate the behaviour of these transport layer proto-
cols. In the first test, the performance of native delay-based
Fast TCP and loss-based Stream Control Transmission Pro-
tocol (SCTP) is compared. Fast TCP controls its queue usage
with the parameter alpha. Simulation of Fast TCP is executed
twicewith the value 5 and 8 of the parameter alpha. SCTPfills
the bottleneck queue very quickly whereas Fast TCP aims for
minimum utilization of queues during the transfer of data.
We used two values of parameter alpha so that it could utilize
the bottleneck queue moderately and aggressively and study
its impact on the performance of Fast TCP in comparisonwith
SCTP.

VOLUME 7, 2019 148157



S. Ahmad, M. J. Arshad: Enhancing Fast TCP’s Performance Using Single TCP Connection for Parallel Traffic Flows to Prevent HoLB

In the second test, an error-model is introduced to drop a
packet. HoLB occurs on the receiver side with this packet
drop. The performance of Fast TCP, SCTP, and MFast TCP
in HoLB is studied. Table-1 shows various parameters related
to the simulation scenarios.

TABLE 1. Simulation parameters.

C. ENVIRONMENT AND ASSUMPTION
Packet received means the packets received at the transport
layer of the receiver, and packet delivered means the packet
from the transport layer was handed over to the application.

Packets are delivered in an order with respect to the stream
sequence number (SSN) instead of the TCP sequence number
(SEQ). SEQ is only used to track the received and other TCP
session related functionalities. The Fast TCP functionality is
modified to ensure that, as soon as the stream packets are in-
order, data will be transferred to the application. If packets are
missing, the flow will be held and control will be transferred
to the next stream.

The algorithm simulated here is for 1 to 5 streams. SCTP
and Fast TCP use a selective acknowledgement (SACK) pro-
cedure. It works on TSN and Sequence Number of SCTP and
Fast TCP respectively.

D. EVALUATION METHOD
We desire to calculate goodput and see the impact of packet
loss on the performance of the protocols. Therefore, in the
simulation, a simple packet drop model is used to study
network behaviourwhere one or several packets are lost either
due to congestion, bit errors in a bad wireless spectrum,
or a bad fibre connection on the destination node. In this
approach, a packet is completely removed from the system;
so the receiving node does not receive the specific packet.
This packet creates a gap in the sequence number on the
receiver side and data is received out of order. The receiver
buffer stores all the preceding segments while waiting for
the lost segment. Hence, this is a situation of head-of-line
blocking. All the three protocols that are under the study
enter in Fast Recovery mode. In this mode, native Fast TCP

provides no goodput, whereas modified Fast TCP shows
considerable performance improvement compared to native
Fast TCP. In Fast Recovery mode, the proposed MFast TCP
efficiently addresses the head-of-line blocking problem. Its
performance is competitive with SCTP.

The analyses given in this paper shows improvements on
the application layer by eliminating the impact of HoLB
from streams that were not affected by the packet drop at
the transport layer. Thus, the delay in data delivery to the
application layer is eliminated.

E. SIMULATION RESULTS AND DISCUSSION
This section provides results obtained by using Fast TCP,
SCTP, and the proposed Multistream Fast TCP (MFast TCP).

1) FAST TCP VS. SCTP
In this section, simulation results are obtained to compare the
performance of Fast TCP and SCTP. SCTP rapidly increases
its congestion window to fully utilize the network link. At the
peak time, it fully consumes the bottleneck queue. Therefore,
at this point, the number of SCTP packets in the network
exceeds compared to Fast TCP. In order to make the fair
comparison, we executed the simulation of Fast TCP twice,
once with the value of alpha as 5 and a second time with the
value of alpha as 8. This parameter controls the number of
packets that Fast TCP can place in the bottleneck queue while
transferring the data.

TABLE 2. Results of the three schemes (without error model) with
different performance parameters.

Table 2 shows average throughput, average end-to-end
delay, average goodput, and the number of packets dropped of
SCTP and Fast TCP with the buffer size of 10 packets. SCTP
provided lesser average throughput compared to Fast TCP
during the simulation time of 99 seconds. This degradation
is because SCTP is not designed for long distance and high
bandwidth networks. Furthermore, its loss-based congestion
control algorithm dropped 30 packets during the simulation.
SCTP decreases its congestion window on each packet loss.

148158 VOLUME 7, 2019



S. Ahmad, M. J. Arshad: Enhancing Fast TCP’s Performance Using Single TCP Connection for Parallel Traffic Flows to Prevent HoLB

Therefore, its average throughput is less compared to Fast
TCP which uses a delay-based congestion algorithm.

Average throughput of Fast TCP (alpha: 5) and Fast
TCP (alpha: 8) is 1423 Kbps and 1463 Kbps, respectively.
Throughput of Fast TCP is increased with the increase of the
alpha value. This is because Fast TCP (alpha: 8) can place
more packets in the bottleneck buffer. Therefore, its average
throughput is higher compared to Fast TCP (alpha: 5). The
delay-based algorithm of Fast TCP dropped no packets during
the simulation period. Therefore, with the consistent conges-
tion window size, its average throughput is higher compared
to SCTP.

Average goodput of SCTP is 1043 Kbps whereas good-
put of Fast TCP (alpha: 5) and Fast TCP (alpha: 8) is
1366 Kbps and 1404 Kbps respectively. Packet loss causes
performance degradation for SCTP. Although its multistream
feature removes the HoLB problem, its loss-based congestion
control algorithm becomes the reason for the degradation of
its performance.

It is quite clear from the statistics in Table 2 that Fast TCP
has a performance edge over SCTP. Therefore, implemen-
tation of a multistream feature using Fast TCP will further
improve its performance.

2) THROUGHPUT
Fig. 6 shows throughput of Fast TCP, MFast TCP, and SCTP.
There is not much variation in throughput of Fast TCP and
MFast TCP during the simulation except during the fast
retransmit period. This is because of its delay-based algo-
rithm, whereas a lot of variation in throughput of SCTP can be
seen in the figure. This is because of its loss-based congestion
control algorithm. Furthermore, there is no difference in the
congestion window size of Fast TCP and Mfast TCP in slow
start, congestion avoidance, fast retransmit, and fast recovery
phases. Therefore, both of these protocols provide the same
throughput.

FIGURE 6. Fast TCP, MFast TCP, and SCTP throughput.

3) GOODPUT OBTAINED USING FAST TCP,
MFAST TCP, AND SCTP
Fig. 7 shows the goodput of Fast TCP, MFast TCP, and SCTP.
On the x-axis, time is shown and on the y-axis, goodput

FIGURE 7. Fast TCP, MFast TCP, and SCTP Goodput.

in Kb is shown. Goodput is calculated during the periods
of 0.10-second intervals. HoLB stops the data delivery to the
application until the receipt of the lost packet.

Fast TCP does not have a multistream feature, therefore,
it completely stops the data delivery to the application layer
during the period of HoLB. On receipt of a lost packet,
it delivers all the data stored in the receiver buffer. It is
observed that Fast TCP extensively utilizes the receiver buffer
in case of HoLB.

SCTP provides a multistream feature to resolve the prob-
lem of HoLB. It stops the data delivery of only that stream
whose packet is lost, whereas rest of the streams continues to
provide the data to the application layer.

MFast TCP does not use a receiver buffer so extensively
compared to Fast TCP; rather, it stops only that stream whose
packet is lost and continues to provide to the application
from the rest of the streams. Fast TCP and MFast TCP, due
to its delay-based congestion control algorithm, maintains
its goodput during the simulation period. SCTP’s goodput
fluctuates due to its loss-based congestion control algorithm.
Therefore, cumulated goodput of delay-based congestion
control algorithm in long distance high bandwidth network
is higher than a loss-based congestion control algorithm pro-
tocol. Furthermore, average goodput of MFast TCP is higher
than SCTP.

4) GOODPUT DURING AN INTERVAL OF PACKET LOSS
The behavior of Fast TCP, MFast TCP, and SCTP with the
traffic of multiple messages is shown in Fig. 8. This is a
zoom-in view extracted from Fig. 7 to show the behavior
of protocols at the time of packet loss. For the purpose of
clarity, the goodputs of all the protocols during packet loss
are overlapped within the same time interval.

In SCTP, a packet is dropped at 38.72 second, the sender
receives a third duplicate ack at 39.12 second, retransmits
the dropped packet, and reduces its congestion window by
1/2 and enters in fast recovery mode. In fast recovery mode,
although SCTP is in HoL state, its goodput does not drop to
zero. This is the case because SCTP is continuously providing

VOLUME 7, 2019 148159



S. Ahmad, M. J. Arshad: Enhancing Fast TCP’s Performance Using Single TCP Connection for Parallel Traffic Flows to Prevent HoLB

FIGURE 8. Goodput graph during the interval of packet drop.

data to the application from the rest of the streams. Goodput
of SCTP during the HoLB period is less thanMFast TCP. The
receiver receives the retransmitted packet at 39.25 second.
This packet made the data in-order and the SCTP hands over
the data of blocked stream to the application layer. Therefore,
the graph is showing increase in goodput at this instance
of time. Sender receives cumulated ack at 39.38 second.
Decrease in goodput at this moment is because most of the
data has already left the network and has been handed over
to the application. Therefore, the transport layer has no more
data to deliver to the application layer. Moreover, with this
ack, the SCTP comes out of its fast recovery mode and starts
sending new packets. The receiver receives these transmitted
packets during the 39.5-39.6 seconds interval. SCTP starts
increasing its congestion window using an Additive increase
technique to consume available bandwidth after fast recov-
ery mode. Interpacket delay between two series of packets
becomes the reason for fluctuation in goodput in the graph.
The SCTP provides average goodput 964.6 Kbps during the
interval of the given graph.

In MFast TCP, a packet is dropped at 38.93 second. The
sender receives a third duplicate ack at 39.20 second, retrans-
mits the dropped packet, and reduces its congestion win-
dow by 1/2. The receiver receives the retransmitted packet
at 39.35 second. The sender receives the cumulated ack at
39.48 second. Meanwhile, it is observed that the receiver
receives a few inflight packets and hands them over to the
application at 39.5 seconds. The sender comes out of fast
recovery mode at 39.48 seconds. The cumulated ack quickly
slides its congestion window. It sends new packets to the
receiver and waits for their acknowledgement before send-
ing further packets. The receiver receives these transmitted
packets during the interval 39.6 – 39.7. Fast TCP andMSFast
TCP gradually increase its congestion window based on the
RTT calculation to stabilize its congestion window. This is
whywe observed a sawtooth-shaped curve of their congestion
window. Average goodput of the MFast TCP is 1080.8 Kbps
during the interval of the given graph. The MFast TCP shows
12% better performance compared to the SCTP during the

interval of the graph. Furthermore, during the HoLB period,
the MFast TCP produces 31% higher goodput compare to the
SCTP.

In the Fast TCP, a packet is dropped at 38.93 second.
HoLB occurs on the receiver end at 39.07. The applica-
tion layer receives no data from the transport layer from
39.1 – 39.35 seconds. The sender receives its third duplicate
ack at 39.20 second, retransmits the dropped packet, and
reduces its congestion window by 1/2. The receiver receives
the retransmitted packet at 39.35 second. The receiver hands
over all the blocked packets to the application layer on receipt
of the dropped packet because HoLB is clear now. The sender
receives the cumulated ack at 39.48 seconds. Meanwhile,
it is observed that the receiver receives a few inflight packets
and hands them over to the application at 39.5 seconds. The
sender comes out of fast retransmit mode at 39.48 seconds.
Cumulated ack clears its congestion window. It sends new
packets to the receiver and waits for their acknowledgement
before sending further packets. The receiver receives these
transmitted packets during the interval 39.6 – 39.7. Average
goodput of the Fast TCP is 1085.4 Kbps during this interval.

5) GOODPUT OF INDIVIDUAL STREAMS OF MFAST TCP
The impact of the HoLB is the reduction of data transfer to
the application during the period. The MFast TCP assumes
that, in the case of minor single drops or bit errors, the packet
drop may not be from all current streams. Rather, it may
be from one or two streams, or in the worst case, packets
are dropped aggressively and all the streams‘ packets are
dropped. Fig. 9 shows the impact of a single packet drop of
selected stream-2 and its impact in case ofMFast TCP. It does
not block all streams but identifies the related stream whose
packet is missed or lost and places only that stream on hold.
Furthermore, it checks if the in-transit packets arrived in the
buffer or not. If there are the packets related to non-affected
streams, it selects the next, non-affected stream and transfers
the in-sequence data to the application. If the MFast TCP
cannot find stream data in-order, it places the correspond-
ing stream on hold unless all related packets arrive and an

FIGURE 9. MFast TCP Goodput during an interval of packet drop.

148160 VOLUME 7, 2019



S. Ahmad, M. J. Arshad: Enhancing Fast TCP’s Performance Using Single TCP Connection for Parallel Traffic Flows to Prevent HoLB

in-order transmission can be made. Fig 9 shows that stream
number 2 (red) is blocked effectively until retransmission of
the dropped packet returns. However, the remaining streams
continue to transfer to the application. MFast TCP ensures
the relevant stream is only blocked if there is packet loss and
other streams continue to transfer their data to the application.
In contrast, in the case of traditional Fast TCP, all streams are
placed on hold until the retransmission returns.

One of the basic drivers of implementing MFast TCP was
the size of packets in transit, the larger the RTT, the larger the
volume of the packets in transit and the more possibilities of
buffer overflows in the case of HoLB. Therefore, networks
having large bandwidth or large RTT can benefit more from
MFast TCP compared to networks with small bandwidth.

6) GOODPUT OF INDIVIDUAL STREAMS OF SCTP
Goodput of each independent stream of SCTP is shown in
Fig. 10. Figure 10 shows that a packet of stream-5 is dropped
as HoLB scenario can be seen during the interval 39 – 39.1.
All the streams, except stream-5, continuously provide data
to the application during the HoLB period.

FIGURE 10. SCTP Goodput during an interval of packet drop.

VI. CONCLUSION
In this paper, we discuss the design and implementation of
a framework to introduce multistream feature in Fast TCP.
We study the performance of MFast TCP in comparison with
Fast TCP and SCTP. Our results show that MFast TCP with
the proposed framework provides the compatibility with the
HTTP/2 at the application layer and reduces data delivery
latency between transport and application layers. The stream
ID and stream sequence number in the TCP header is intro-
duced. The SID segregates multiple independent messages
and the SSN is used to maintain the order of segments of
the particular SID. In the case of packet loss, both loss-
based and delay-based TCP variants enter in fast retransmit
mode. Results shows that MFast TCP minimizes the impact
of HoLB in the multistream environment and provides signif-
icant enhancements to effectively increase the data delivery
rates to applications. It also increases the transport layer

efficiency by minimizing the blocked period and the buffer
growth.

The novelty of the framework is that it provides the mul-
tistream feature with a 24-byte header size where the SCTP
provides the same feature with a 28-byte header. The SCTP
places multiple chunks in a single segment based on its chunk
and segment size. In the case of loss, streams whose chunks
were lost during the transmission are blocked, whereas pro-
posed framework places only one stream’s data in one seg-
ment at a time. Therefore, in the case of segment loss, only the
corresponding stream is blocked, but the rest of the streams
continuously provide data to the application. Above all, this
framework enables the application layer to transfer its mul-
tiple independent messages using a single TCP connection
without any fear of HoLB.

As we continue the optimization of our proposed frame-
work, we plan to extend our study to see the benefits that can
be obtained by reducing the time period to utilize available
bandwidth of the network link after the fast recovery phase
with the perspective of multistream feature in TCP. The SCTP
and MFast TCP both use fast retransmit and fast recovery
mechanisms after the packet loss. We believe that fast con-
vergence after the fast recovery phase will help to increase
the goodput and throughput of multistream-aware transport
protocol more appropriately, and it will impact on the end-to-
end performance of the protocols. Stream priority scheme is
another future topic of this research. This scheme is required
to enable the application to prioritize delay-sensitive data over
delay-tolerant data.

REFERENCES
[1] J. Postel, Transmission Control Protocol, document RFC-793, IETF, 1981.
[2] J. Wu, C. Yuen, M. Wang, J. Chen, and C. W. Chen, ‘‘TCP-oriented raptor

coding for high-frame-rate video transmission over wireless networks,’’
IEEE J. Sel. Areas Commun., vol. 34, no. 8, pp. 2231–2246, Aug. 2016.

[3] J. Wu, C. Yuen, and J. Chen, ‘‘Leveraging the delay-friendliness of TCP
with FEC coding in real-time video communication,’’ IEEE Trans. Com-
mun., vol. 63, no. 10, pp. 3584–3599, Oct. 2015.

[4] J. Wu, B. Cheng, M. Wang, and J. Chen, ‘‘Priority-aware FEC coding for
high-definition mobile video delivery using TCP,’’ IEEE Trans. Mobile
Comput., vol. 16, no. 4, pp. 1090–1106, Apr. 2017.

[5] F. R. Kevin and W. R. Stevens, ‘‘TCP: The transmission control protocol
(Preliminaries),’’ in TCP/IP Illustrated: The Protocols, vol. 1, 2nd ed.
Reading, MA, USA: Addison-Wesley, 2011, pp. 586–587.

[6] J. Zhang, F. Ren, and C. Lin, ‘‘Survey on transport control in data center
networks,’’ IEEE Netw., vol. 27, no. 4, pp. 22–26, Jul./Aug. 2013.

[7] J. C. Mogul, ‘‘The case for persistent-connection HTTP,’’ in Proc. ACM
SIGCOMM Symp., Stockholm, Sweden, 1995, pp. 299–313

[8] V. N. Padmanabhan and J. C.Mogul, ‘‘Improving HTTP latency,’’Comput.
Netw. ISDN Syst., vol. 28, nos. 1–2, pp. 25–35, 1995.

[9] E. Casilari, F. J. Gonzblez, and F. Sandoval, ‘‘Modeling of HTTP traffic,’’
IEEE Commun. Lett., vol. 5, no. 6, pp. 272–274, Jun. 2001.

[10] R. Corbel, E. Stephan, and N. Omnes, ‘‘HTTP/1.1 pipelining vs HTTP2 in-
the-clear: Performance comparison,’’ in Proc. 13th Int. Conf. New Technol.
Distrib. Syst. (NOTERE), Jul. 2016, pp. 1–6.

[11] H. de Saxcé, I. Oprescu, and Y. Chen, ‘‘Is HTTP/2 really faster than
HTTP/1.1?’’ in Proc. IEEE Conf. Comput. Commun. Workshops (INFO-
COM WKSHPS), Hong Kong, Apr./May 2015, pp. 293–299

[12] M. Belshe, M. Thomson, and R. Peon,Hypertext Transfer Protocol Version
2, document RFC-7540, IETF, 2015.

[13] D. X. Wei, C. Jin, S. H. Low, and S. Hegde, ‘‘Fast TCP: Motivation,
architecture, algorithms, performance,’’ IEEE/ACM Trans. Netw., vol. 14,
no. 6, pp. 1246–1259, Dec. 2006.

VOLUME 7, 2019 148161



S. Ahmad, M. J. Arshad: Enhancing Fast TCP’s Performance Using Single TCP Connection for Parallel Traffic Flows to Prevent HoLB

[14] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor,
I. Rytina, M. Kalla, L. Zhang, and V. Paxson, Stream Control Transmission
Protocol (SCTP), document RFC-4960, IETF, 2007.

[15] M. Scharf and S. Kiesel, ‘‘NXG03-5: Head-of-line blocking in TCP
and SCTP: Analysis and measurements,’’ in Proc. IEEE Globecom,
San Francisco, CA, USA, Nov./Dec. 2006, pp. 1–5.

[16] M. Varvello, K. Schomp, D. Naylor, J. Blackburn, A. Finamore, and
K. Papagiannaki, ‘‘Is the Web HTTP/2 yet?’’ in Proc. Int. Conf. Passive
Active Netw. Meas., Heraklion, Greece, 2016, pp. 218–232

[17] T. Zimmermann, J. Rüth, B. Wolters, and O. Hohlfeld, ‘‘How HTTP/2
pushes theWeb: An empirical study of HTTP/2 server push,’’ in Proc. IFIP
Netw. Conf., Stockholm, Sweden, Jun. 2017, pp. 1–9

[18] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall,
‘‘How speedy is SPDY?’’ in Proc. 11th USENIX Symp. Netw. Syst. Design
Implement. (NSDI), Seattle, WA, USA, 2014, pp. 387–399.

[19] F. Qian, V. Gopalakrishnan, E. Halepovic, S. Sen, and O. Spatscheck,
‘‘TM 3: Flexible transport-layer multi-pipe multiplexing middlebox with-
out head-of-line blocking,’’ in Proc. 11th ACM Conf. Emerg. Netw. Exp.
Technol., Berlin, Germany, 2015, Art. no. 3.

[20] C. Gaetano, L. De Cicco, and S. Mascolo, ‘‘HTTP over UDP: An exper-
imental investigation of QUIC,’’ in Proc. 30th Annu. ACM Symp. Appl.
Comput., Salamanca, Spain, 2015, pp. 609–614

[21] S. Randall, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor,
I. Rytina, M. Kalla, L. Zhang, and V. Paxson, Stream Control Transmission
Protocol, document RFC-2960, IETF, 2000.

[22] M. J. Arshad and M. Saleem, ‘‘A simulation-based study of FAST TCP
compared to SCTP: Towards multihoming implementation using FAST
TCP,’’ J. Commun. Netw., vol. 12, no. 3, pp. 275–284, Jun. 2010.

[23] The Network Simulator—NS-2. Accessed: Feb. 11, 2019. [Online]. Avail-
able: https://www.isi.edu/nsnam/ns/ns-build.html

[24] L. Andrew. FAST TCP Simulator Module for NS2. Accessed: Mar. 5, 2006.
[Online]. Available: http://www.cubinlab.ee.mu.oz.au/ns2fasttcp/

SARFRAZ AHMAD received the M.S. degree
from the University of Management and Technol-
ogy, Lahore, Pakistan. He is currently pursuing
the Ph.D. degree in computer science with the
University of Engineering and Technology (UET),
Lahore. He is also an Assistant Professor with
the Department of Computer Science, Virtual Uni-
versity of Pakistan. His research interests include
computer networks and the Internet protocols.

MUHAMMAD JUNAID ARSHAD received the
M.S. and Ph.D. degrees in computer science
from the University of Engineering and Tech-
nology (UET), Lahore, Pakistan, in 2000 and
2009, respectively, where he is currently an Asso-
ciate Professor with the Department of Com-
puter Science and Engineering. His research inter-
ests include the Internet protocols, multihomed
networks focusing on performance, security, and
mobility issues, congestion control, and wireless
networks.

148162 VOLUME 7, 2019


	INTRODUCTION
	RELATED WORK
	SYSTEM ARCHITECTURE OF THE PROPOSED FRAMEWORK
	IMPLEMENTATION DETAIL
	TCP HEADER
	STREAM HEADER
	TCP CONNECTION
	DATA SENDING AND ACKNOWLEDGEMENT
	EVENTS THAT OCCURRED ON SENDER SIDE
	FLOW CONTROL AND ACKNOWLEDGEMENT GENERATION ON THE RECEIVER SIDE


	SIMULATION SETUP, RESULTS, AND DISCUSSION
	NETWORK TOPOLOGY
	CONFIGURATION
	ENVIRONMENT AND ASSUMPTION
	EVALUATION METHOD
	SIMULATION RESULTS AND DISCUSSION
	FAST TCP VS. SCTP
	THROUGHPUT
	GOODPUT OBTAINED USING FAST TCP, MFAST TCP, AND SCTP
	GOODPUT DURING AN INTERVAL OF PACKET LOSS
	GOODPUT OF INDIVIDUAL STREAMS OF MFAST TCP
	GOODPUT OF INDIVIDUAL STREAMS OF SCTP


	CONCLUSION
	REFERENCES
	Biographies
	SARFRAZ AHMAD
	MUHAMMAD JUNAID ARSHAD


