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ABSTRACT With the rapid development of network security and the frequent appearance of CPU vulner-
abilities, CPU security have gradually raised great attention and become a crucial issue in the computer
field. Undocumented instructions, as one of the important threats to system security, is an important entry
for CPU security research. Using fuzzing technology can automatically test the CPU instruction set and
discover potential undocumented instructions, but the existing methods are of slow search speed and low
accuracy. Therefore, this paper designs an efficient fuzzing method (UISFuzz) for undocumented instruction
searching. This method has the following merits: (1) the instruction search speed is greatly improved by
an automatic instruction format recognition, as the low efficient part of the known instruction format is
skipped and therefore the instruction search space is much narrowed; (2) the false positive rate is reduced by
a recheckmechanism based on the expert knowledge database to filter the wrongly found instructions; (3) the
overhead of the method is decreased by optimizing the result analysis program, and the scope of the system is
expanded, where more processors with lower performance are compatible. Typical CPU experimental results
show that, the UISFuzz can successfully find undocumented instructions in the CPUs and simultaneously
improve the time efficiency by 5 times compared with existing tools.

INDEX TERMS Undocumented instructions, fuzz, CPU, instruction analysis.

I. INTRODUCTION
With the rapid development of electronics economy (for
example, e-wallets, encrypted virtual currency and mobile
payments), information technology has been strongly related
to the economy and business [1]. And at the same time,
the risk of the computer information system attack is increas-
ing due to the economic benefits [2]. Thus, the security of
computer information system is attracting more attention in
recently years [3]. As a core unit of computer architecture [4],
CPU’s security has an important impact on the computer
information system. The CPU vulnerabilities exploded in
recent years [5]–[12] have inspired us that, computer could
not work safely and properly no matter how many security
mechanisms are integrated into operating system once the
CPU has security problems. The severe security threats and
the important position of CPU urge us to pay more attention
to the current immature CPU security researches.

At present, the security testing of CPUs still is a very chal-
lenging task. Until now,most of CPU tests were carried out by
their manufacturer [13], [14]. However, current CPU tests are
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mainly concentrated on the CPU’s performance [16]–[18].
And due to trade secrets, it is generally not disclosed on
whether to conduct security testing or not, how to conduct
security testing and what the related test data are. On the
other hand, the increasing complexity and integration of the
CPU raise the difficulty for researchers and individuals of
non-CPU vendors to conduct security tests on the chip [14].
Therefore, a feasible CPU detection solution is urgently
needed for the computer information security industry to fill
the gap.

As an important interface to connect computer hardware
units and software systems, the instruction set is an excellent
entry to detect whether the CPU has security flaws or not [15].
And it turned out that [9], testing the entire instruction space
of the CPU to find out undocumented instruction (defined
in Section III) can effectively detect CPU vulnerabilities.
However, the existing researches for CPU undocumented
instruction search are still insufficient.

A. RELATED WORK
In the past, cybersecurity researchers generally considered
software to be untrustworthy, and designed many techniques
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to find its vulnerability or backdoors. However, compared
to the software, the research on CPU security is limited.
Although through the history of CPU development, it is obvi-
ous that vulnerabilities emerge in endlessly. Therefore, this
chapter will be divided into two parts: (1) the history of CPU
vulnerabilities and backdoors; (2) researches for security test
of software and CPU.

1) HISTORY OF CPU VULNERABILITIES AND BACKDOORS
CPU vulnerabilities and backdoors have been appearing since
the computer was put into use. By summarizing literatures of
CPU vulnerabilities, the CPU vulnerabilities can be catego-
rized into two types: (1) vulnerabilities that implemented in
the CPU design architecture (Memory Sinkhole [7] in 2015,
Meltdown [10], Spectre [11] and TLBleed [12] in 2018);
(2) vulnerabilities that executed in the CPU instruction set
(FDIV [5] in 1994, F00F [6] in 1997 and ‘‘RosenBridge’’ [8]
in 2018). The former vulnerabilities are caused by logical
defects in the CPU design architecture [1]. This type of
vulnerabilities requires researchers to have a deep knowledge
of CPU architecture and implementation, and it is difficult to
automate and formalization [11]. The second type is caused
by inconsistence or deficiency of the CPU manual descrip-
tion [8], which can be found by Undocumented Instruction
Search. The instruction set is an interface provided by the
CPU to the software and operating system layers, which can
be directly called and operated [4]. Therefore, many mature
technologies in software security can be applied to CPU
instruction set analysis [1]. And this paper also adopts the
Undocumented Instruction Search to find suspicious instruc-
tions of potential CPU vulnerabilities.

2) RESEARCHES FOR SECURITY TEST OF
SOFTWARE AND CPU
There are manymethods to discover vulnerabilities and back-
doors in software, which can be divided into two categories:
program static vulnerability analysis techniques and dynamic
vulnerability analysis techniques [41]. The static vulnerabil-
ity mining method represented by ITS4 [21] and MOPS [22]
is simple and easy to understand, but it is of high false positive
rate and poor applicability [41]. The dynamic vulnerability
mining method represented by fuzzing is widely-deployed
[24] since its introduction in the early 1990s [23], it has
evolved from simple robust test to the self-feedback based on
the code coverage or else information from the execution pro-
cess [27], [28]. And with the development of artificial intelli-
gence, vulnerability analysis and exploit technology, fuzzing
technology has gradually become more intelligent [29], and
the entire software vulnerability discovery technology is
gradually mature and moving towards automation [30], [31].

Compared with the software vulnerability discovery,
the research of CPU security is still lack and fragmented [1].
In 2015, Hicks et al. [32] summarized the past processor
bugs and proposed a lightweight runtime mechanism for
protecting software from security-critical processor bugs. But
it is severely limited as it relies on open source processors.

In 2014, Chen and Ahn [33] conducted a security analysis
of the microcode of the x86 processor, and pointed out its
possible attack, but did not give a solution for it. On the
2017 USENIX Security, Koppe et al. [34] reversed engi-
neer the microcode of x86 processor, completed the custom
microcode update, and implemented a Trojan in microcode
level, but with the update of microcode, its method expired.

In the existing published researches, attention directly con-
centrated on undocumented instruction is limited [1]. In 2009,
DUFLOT L. [35] proved that undocumented instructions
pose a threat to the computer system security by embedding
the code into the virtual machine to simulate the CPU undocu-
mented backdoor, but it did not give a way to solve such prob-
lems. Sandsifter [9] can be regarded as the first automatic tool
focusing on the undocumented instruction search, which can
efficiently avoid invalid instruction space, but the method still
has limitations on efficiency and false positive rate, which is
difficult to be practical. And the sandsifter tool and its thesis
were published at the Blackhat conference, which favors
hacker technology, and it not attracted enough attention from
the academic community. Zhu et al. [1] proposed the CPU
Security Benchmark, and mentioned that their undocumented
instruction search tool was improved compared to Sandsifter.
However, there are no detail about their theoretical models,
system design or experimental results.

B. OUR CONTRIBUTION
Therefore, to meet the requirements of CPU security
testing, this paper designs and implements an efficient
fuzzing method (UISFuzz) for CPU undocumented instruc-
tion searching. Firstly, aiming at the undesirable problem
of violent searching with huge instruction space, a depth-
first search algorithm based on instruction prefix matching is
proposed to identify valid instruction boundaries, so that the
instruction space decrease to a solvable range. Then, to blind-
ness caused by the fact that the instructions to be tested
are regarded as byte arrays in the search process, an auto-
matic instruction format recognition are adopted, where the
byte bits with low contribution to instruction behaviors are
extracted and then skipped or sampled according to config-
uration. Finally, aiming at the false alarms in the existing
detection methods, an instruction recheck mechanism based
on the expert knowledge base is introduced. To sum up, this
paper has the following contributions:

(1) a complete and extensible solution for undocumented
instruction searching is proposed, which provides a platform
for follow-up researchers to continue to expand research.

(2) a new search acceleration method based on instruction
format identification is proposed, which greatly reduces the
search space and improves the efficiency of the algorithm.

(3) an instruction recheck mechanism for undocumented
instruction search is proposed, which improves the correct-
ness of the algorithm.

(4) a UISFuzz prototype is implemented, which shows that
it can effectively discover undocumented instructions after
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FIGURE 1. Detail steps of UISFuzz.

actual testing on various typical CPUs, and the speed was
5 times faster than the existing methods.

C. PAPER ORGANIZATION
The organization of this paper is as follows: Section II giving
a macro introduction about the proposed solution and the
specific steps of UISFuzz. Section III provides a detailed
explanation of the specific key technologies in the UISFuzz
implementation. Section IV presents the conducted experi-
mental evaluation of UISFuzz and the performance analysis
of the UISFuzz system from several different perspectives.
Section V summarizes the full text and looks forward to the
research that needs to be carried out later.

II. OVERVIEW
In this section, our framework of UISFuzz is presented
in Part. A; and then, the running steps of UISFuzz are
explained in detail in Part. B. It is worth noting that for better
understanding, related definition is introduced in Part A,
Section III.

A. FRAMEWORK OF UISFUZZ
In this section, by referring to fuzzing technologies in soft-
ware, the framework of UISFuzz is designed and intro-
duced. As shown in Fig. 1, in a high level, our UISFuzz
model is composed of three related parts: the main fuzzing
loop, the CPU exception analysis infrastructure and result

analysis, whose key technologies will be explained in detail
in section IV.

The main fuzzing loop, as the main process, is the overall
framework for searching the instruction space, where a depth-
first search algorithm based on instruction prefix matching is
applied to avoid invalid instructions and narrow the search
space.

Differed form the main fuzzing loop, the CPU Exception
analysis infrastructure is more independent. It is mainly
responsible for the exception analysis and disassembly anal-
ysis. Two jobs are done in the module: (1) compare the
information of its disassembly and actual execution to deter-
mine whether it is an undocumented instruction; (2) conduct
the instruction format analysis and skip the useless byte
insignificant to the search.

Result analysis is responsible for filter preliminary results
by recheck mechanism, classify the filtered instructions, and
finally obtain a test report. It is designed to ensure the
correctness.

B. RUNNING STEPS OF UISFUZZ
In this Section, the running steps of UISFuzz are described
in detail. As seen in Fig.1, the workflow of UISFuzz is as
follows:
•(1) Configuration: after the instruction search space of

the target CPU is confirmed, the screen display is initialized,
and then, the target instruction type, timer, log recording
methods and other system performance configurations is set.
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•(2) Generation: a machine code from the search space is
selected as the candidate instruction, and then passed to the
execution module.
•(3) Execution: after receiving the candidate instruction,

the execution module loads the instruction from the predeter-
mined initial state, and then monitor and record it whether is
an exception generated or not.
•(4)Instruction Exception Analysis: the exception result

is received by the instruction exception infrastructure module
as an input to analyze whether it is valid (can be actually
executed by the CPU).
•(5) Invalid instruction condition: if the instruction is

invalid, the boundary of the valid instruction is calculated by
analyzing its exception type and machine code, and then back
to step (2), and guides step (2) to obtain a valid instruction.
•(6)Valid instruction condition: if the instruction is valid,

the instruction is disassembled and analyzed to extract the
operand information, and then back to step (2), and guides
step (2) to speed up with the operand information.
•(7) Disassembly Analysis: in the disassembly analysis

process, the valid instruction is used as the input of the
disassembler to estimate whether it can be disassembled or
not.
•(8) Instruction Format Analysis: for disassembled

instructions, an instruction format analysis is required, and
the obtained operand range is used to accelerate the instruc-
tion generation. This module is actually integrated in the dis-
assembly analysismodule in the engineering implementation.
•(9) Judge: by comparing the disassembled result and

exception signal result of the instruction during the actual
execution, the instruction is determined whether is suspicious
or not and is recorded in the log.
•(10)Recheck: the screen display thread updates the inter-

face display in real time according to the current exception
analysis result and the disassembly analysis result of the
current instruction.
•(11) Classify: When the search space is completely

traversed, the program ends, and the detected suspicious
instructions are classified and summarized as a detailed report
for subsequent analysis.

III. IMPLEMENTATION
As mentioned in Section II, we implemented the prototype
UISFuzz. In this section, we will describe some vital tech-
niques in the UISFuzz implementation. Firstly, some related
definitions are firstly introduced in Part. A. And then,
the main fuzzing loop, the CPU exception analysis infrastruc-
ture and the recheck mechanism are respectively introduced
in Part. A, Part. B, and Part. C.

A. DEFINITION
For better illustration of our method UISFuzz, some related
definitions are explained in this section.
Machine Code: a string of hexadecimal byte combinations

at a specific length.

Disassemble: a process that interpret machine code as a
corresponding instruction as defined in the CPU manual.
Valid Instruction: Specific machine code that can be exe-

cuted by the CPU. As shown in Fig.2, x86 instructions can be
between 1 and 15 bytes long.

FIGURE 2. Machine code and valid instruction.

Invalid Instruction: Specific machine Code that cannot be
executed in the CPU, such as 0F24, is not defined in the CPU
manual and cannot be executed during actual test.
Undocumented Instruction: an instruction that can actually

be parsed and executed in the CPU but is not involved in the
document declared by the CPU manufacturer. The relation is
shown in Equation 1.

E = {x|x is executable}

D = {x|x is documented}

U = {x|x ∈ E and x /∈ D} (1)

Candidate Instruction: a specific machine code generated
by the main fuzzing loop which may be a potential instruction
but need to be test.

From definition, it can be clarified that an undocumented
instruction has two necessary conditions: (1) executable and
(2) undocumented. Thus, the problem to be solved in this
paper is how to efficiently find the instruction that satisfies
the two conditions in the instruction space. However, algo-
rithms with violent enumerations can’t afford this task at
present, as the search space of x86 CPU is 25615 = 2120 =
1.329228E36. So, we design UISFuzz for undocumented
instruction searching.

B. THE MAIN FUZZING LOOP
As mentioned above, it is impossible to complete the instruc-
tion search by pure blasting method at current computation
power, so a depth-first search algorithm based on instruction
prefix matching is applied to search the instruction space in
the main fuzzing loop.

Due to the change of x86 instruction length, the search
space is all possible for 15 bytes. After a machine code
is confirmed as a valid instruction, assume that the valid
instruction length is L1, the fixed first L1 bytes and any
possibility of last (15-L1) bytes cannot make up any new
valid instruction, so we don’t need to search these bytes.
Meanwhile, if a machine code is an invalid instruction, its
subsequent machine code is also invalid, so we don’t need to
search the following bytes, too.

As the example shown in condition A of the Fig.3, {00,00}
is a valid instruction, which is interpreted in the CPU as the
instruction ‘‘add byte ptr [rax], al’’, its length is 2. So {00,00,
∗, ∗} (∗ means the byte can be any value) will not be valid
instruction, so we can skip the subsequent 13 bytes if the
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FIGURE 3. Instruction example.

{00,00} not change. Similarly, we can skip the subsequent
11 bytes in the condition C of the Fig.3.

Inspired by the above rule and based on the method from
sandsifter [9], a 15-byte buffer is firstly set and assigned to
0 as the candidate instruction. After the first execution of the
candidate instruction, the valid instruction part is obtained,
and then the valid instruction is divided into two parts: the
prefix part and the variant part. The initial prefix part length
is 1, and the variant part length is 1. As shown in Fig. 4,
the yellow byte is the prefix part and the green byte is the
variant part. At each time, the prefix part remains unchanged,
change the variant part from back to the front while the
valid instruction length is observed. If the length of valid
instruction has changed, extend the variant to the new instruc-
tion length, continue change the variant part from back to
the front. In each change, the corresponding byte’s value is
increased by 1. If the byte value become ‘‘0xFF’’ (‘‘0xFF’’
is a hexadecimal representation of 255, because we change
the byte from 0 to 255 incrementally, so if one byte value
finally became ‘‘0xFF’’, that means 256 possibilities of this
byte has been exhausted.), then backtrack one byte. When
the first byte become ‘‘0xFF’’, the search process ends. The
search logic is that under the same prefix conditions, look
for longer instructions first, until the conditions ‘‘0xFF’’ are
met and then backtracking. The depth-first search algorithm
is an algorithm for traversing or searching tree or graph data
structures that starts at the root node (selecting some arbitrary
node as the root node in the case of a graph) and explores as
far as possible along each branch before backtracking [42].
So, this search algorithm was named ‘‘a depth-first search
algorithm based on instruction prefix matching’’.

An example is shown in Fig.4. In the status¬ ,the first byte
is the prefix part, the second byte is the variant part. So, from
status ¬ to status ¯, the value of second byte changes from
‘‘0x00’’ to ‘‘0x03’’. When it changes to status °, the instruc-
tion length changes, so the first two bytes become the prefix
part and the third byte become the variant part. And continue
to change the third byte until to status ´, the instruction
length changes again. Then, in the same way, the first three
bytes make up the new prefix part while the rest fourth byte
turn to the variant part. Then the last four bytes continually
change until the corresponding byte’s value become ‘‘0xFF’’
and backtrack. And in the status 15©, all the possibilities of

variant part have been searched. So, it backtracks to the third
byte. And at a certain time, it finds the longest instruction
at the condition I. At the end, when the first byte turns to
‘‘0xFF’’, the whole search ends. Therefore, through such an
algorithm, invalid instructions were heavily reduced, which
make searching the instruction space turn to feasible.

C. THE CPU EXCEPTION ANALYSIS INFRASTRUCTURE
The important premise of a depth-first search algorithm based
on instruction prefix matching mentioned in Section B is
that the instruction length can be accurately parsed for any
machine code instruction. In this section, an exception analy-
sis to get instruction lengths is firstly introduced in Part. 1, and
an instruction format recognition to speed up search progress
is introduced in Part. 2.

1) GET INSTRUCTION LENGTH BASED ON EXCEPTION
ANALYSIS
The CPU provides an exception handling mechanism for
handling various unintended conditions during instructions
execution. An exception happened indicates a problem with
the current instruction. For example, if the current instruction
attempts to divide by 0, the CPU will throw an exception, and
the CPU immediately interrupts its current work and calls a
specific exception handler according to the exception’s type.
There are about 20 CPU exception types in the x86 architec-
ture. Some exceptions information related to this paper like
Page Fault (#PF), Invalid Opcode (#UD), General Protection
Fault (#GP) and else are listed in Table 1.

TABLE 1. Some Exceptions information (Excerpt from intel architectures
software developer’s manual).

By monitoring the exception during the CPU execution
of the instruction, we can get some information about the
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FIGURE 4. Depth-first search based on instruction prefix matching (Based on the method from
sandsifter).

instruction from the side. For example, if the #UD excep-
tion is generated during the execution of candidate instruc-
tion, the candidate instruction must be an invalid instruction.
If there is no exception during execution, or exception is
generated but not #UD, the candidate instruction is a valid
instruction. At the same time, when the CPU attempts to
execute an instruction from a non-executable memory page
(An operating system with support for the NX [43] bit may
mark certain areas of memory as non-executable. The proces-
sor will then refuse to execute any code residing in these areas
of memory), a #PF exception is thrown and the CR2 register
is set to the start address of the non-executable page.

The specific method is as follows, first allocate two
adjacent memory pages, the previous memory page is set
as an executable page, the latter memory page is set as a
non-executable memory page. Then first byte of the can-
didate instruction is placed on the last byte of executable
page; The remaining bytes are placed in subsequent non-
executable pages in order. The candidate instruction is the

executed, if the CPU trigger the #PF exception, and the start
address of non-executable page is recorded in the CR2 regis-
ter, that means part of the candidate instruction lies in the non-
executable page. Any other results mean that the whole valid
instruction is fetched and executed. Therefore, we continue to
move the candidate instruction one byte forward and execute
it until no #PF error or #PF error is generated during execution
but the CR2 register is not the start address of non-executable
page. Finally, the effective length of each candidate instruc-
tion is the length of the candidate instruction remaining in the
executable page.

An example is shown in the ‘‘¬get instruction length’’ in
Fig.6. Based on the above method, the candidate instruction
{26, 0F, 70, 9C, 10, 20, 30, 40, 50, 60, 90, 00, 00, 00, 00}
is continuously shifted and executed. When the candidate
instruction is shifted to the position that {26, 0F, 70, 9C, 10,
20, 30, 40, 50, 60} is located in the executable page while
{90, 00, 00, 00, 00} is located in the non-executable page,
no exception is generated during the execution, therefore the
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FIGURE 5. x86 instruction format (Excerpt from intel architectures software developer’s manual).

FIGURE 6. Instruction format recognition for speeding up search progress.

valid instruction length is 10 (the length of {26, 0F, 70, 9C,
10, 20, 30, 40, 50, 60} because it stay in the executable page).
This method provides support for depth-first search algorithm
Based on Instruction Prefix Matching in section B.

2) SPEED UP SEARCH PROGREE BASED ON INSTRUCTION
FORMAT RECOGNITION
Candidate instructions are treated as a byte array in the
search process until now, but the instruction have its own
intrinsic format. Taking the x86 instruction set as an example,
as shown in Fig.5, themachine code of a valid instruction con-
sists of prefix, opcode, register, addressing code, offset, and
immediate value. The existing method did not disassemble
and analyze the valid instruction, and after obtaining the valid
instruction length, it only traverse the variant part blindly.
In fact, the variation of the partial bytes contributes little or
almost zero to the entire search process. Such blind traversal
wastes a lot of computing power and time. Therefore, this
section proposes an undocumented instruction acceleration

search algorithm based on instruction format recognition,
which is described as follows.

Through analyzing the x86 instruction format, it is found
that the opcode field only occupies up to 3 bytes, while
displacement and immediate can account for up to 8 bytes.
In the search progress, what we really concern is the change of
opcode because the behavior of instruction is heavily depend
on the opcode, as for the operand, especially immediate, has
little effect on the instruction behavior compared to opcode.
So, if the Immediate field in the candidate instruction can
be identified and skipped during the search process, a large
amount of search time can be saved.

In order to increase search speed to change to next dif-
ferent instruction quickly until all the instruction space is
traversed. The instruction format analysis module based on
disassembler is proposed to analyze the instruction format
of the valid instructions. Through this module, the opcode
and operand fields in the instruction format were obtained.
The operand field consists of a register and an immediate
value. In history, vulnerabilities like F00F happened in the
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register filed. But the immediate filed has little effect on the
instruction behavior while occupy high percentage of bytes.
Therefore, we particularly choose to extract the correspond-
ing machine code of immediate field in the operand, and
calculate the value range of the immediate field. And then
take a certain number of samples to represent it or directly
skip it according to the user configuration, and concentrate
the computing power on the search in the opcode and register
fields which heavily affect instruction behavior. Investigating
the performance improvement of the method theoretically,
it is obvious to know that if the number of skip bytes in
the immediate field is n, so the reduced number of search
instructions is 28∗n. Therefore, the instruction number of
reduced in search grows exponentially with the growth of n.
This mechanism is configurable and the skip range will be
recorded for subsequent sole test aimed at the less probable
undocumented instructions hidden in the immediate value.

An example is shown in part II of Fig.6, for the instruction
{26, 0F, 70, 9C, 10, 20, 30, 40, 50, 60, 90, 00, 00, 00, 00},after
the instruction length is obtained based on the exception anal-
ysis, the position of the immediate value and displacement
field in the instruction operand (the last 5 bytes {20, 30, 40,
50, 60, 90}) is obtained by calling the instruction format
analysis module. It is easy to calculate that the last 5 bytes
can be any value from {00, 00, 00, 00, 00} to {FF, FF, FF,
FF, FF}. Because the last 5 bytes only affect the displace-
ment and immediate value of the instruction ‘‘pshufw mm3,
qword ptr es: [rax+rdx+?],? (? depended on the value of last
5 bytes.)’’, the change of 5 bytes has no effect on the search
progress. Assuming use skip strategy, these 5 bytes will be
skipped and backtracking straightly, as shown in the part II
in Fig.6.Hence, in this example, 240 candidate instructions
are reduced. Experiments in section V have shown that this
acceleration strategy has improved search efficiency by more
than five times while also find undocumented instructions
correctly.

D. RECHECK MECHANISM
After above steps, a large number of suspicious instructions
will be output. However, since the disassembler’s own update
lags behind the update of the CPU instructionmanual, it is not
accurate to only compare exception results and disassembly
information. Therefore, a recheck mechanism based on an
expert strategy database is adopted.

The databsed includes two parts: (1) updated errata,
as CPU manufacturers continue to update errata to record
some CPU instruction anomalies; (2) collections of instruc-
tion format analysis (including coprocessor instructions or
some old obsolete instructions) organized by community on
the Internet [39].The expert strategy database can filter the
parts of suspicious instructions that are already documented.
For example, the instruction DBE0 is the instruction in copro-
cessor 80287 but Sandsifter mistakenly view DBE0 as the
undocumented instruction for the reason that the disassem-
bler support the instruction in coprocessor not well. With the
help of recheck mechanism, this mistake can be prevented.

After recheck mechanism, a certain count of false posi-
tives is filtered out but the number of suspicious instructions
still very large (results in Section V show the number will
over 106), which is impractical for further analysis. Thus,
an automatic classification is designed. The existing method
uses a recursive algorithm to analyze and classify the instruc-
tions in bytes, which is of high overload and couldn’t be used
on old CPUs. UISFuzz reduces the original recursive analysis
to three hierarchical loops according to the instruction format:
1) combine the same instructions according to the operand
field in the machine code. 2) preliminary classification of
the results based on the operand fields in the machine code.
3) combine the results again according to the difference of the
instruction prefix. Comparing with exist methods, the whole
analysis process is automatic without manual intervention
and supports the output of files and databases. It is not neces-
sary to run this progress every time as the result is saved after
once analyzed.

IV. EXPERIMENT AND DISCUSSION
To test the performance of the proposed UISFuzz, experi-
ments are conducted on some typical CPUs with the com-
parison of the existing method sandsifter. The evaluation
setup is firstly introduced in Part A; the found undocumented
instructions are then presented in Part B and the accuracy
is discussed here; the high efficiency and lower overhead
of the proposed method are respectively presented in Part C
and Part D; Finally, a discussion on these experiments are
concluded in Part E. To provide the fairest comparison as pos-
sible, any needed setup of the comparedmethod is equivalent.

A. EVALUATION SETUP
Through programming in Linux, the UISFuzz method for
undocumented instruction search contains about 2000 lines
of python codes. The injection tester for instruction search
and exception analysis is implemented based on sandsifter,
and about 800 lines of C code are added. In order to provide
detailed information about the operands during disassembly,
we also revised the well-known disassembly project ‘‘cap-
stone’’ [37], where about 400 lines of C code have been
changed.

To test the feasibility of the proposed UISFuzz, some
typical CPUs including Intel, AMD, Zhao Xin and VIA are
tested in the following experiments. Intel, AMD and VIA are
top three x86 CPU manufacturers in terms of market share,
it is reasonable to add them to research object list. As for
Zhaoxin, Zhaoxin [44] is a fabless semiconductor company,
created in 2013 as a joint venture between VIA Technologies
and the Shanghai Municipal Government. The processors are
created mainly for the Chinese market. We add Zhao Xin to
research list for the reason that wewant to knowwhether there
is similarity in the processors manufactured by Zhao Xin
and VIA’s CPU. Besides, for the comprehensiveness of the
test, the performance of the processors is range from poor to
better. The configuration information of these CPUs is shown
in Table 2. For better comparison, experiments of sandsifter
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TABLE 2. Details of experiment platforms.

are also conducted with the same configuration. The task of
each experiment is to search all the instruction space and
find undocumented instructions. And through experiments,
the differences between the UISFuzz and sandsifter are com-
pare to show the advancements of our methods. Generally,
these experiments are designed to answer the following ques-
tions?
Q-1: Could the UISFuzz find suspicious instructions in

these CPUs and how about the accuracy? The answer will
be given in Part B.
Q-2: How about the efficiency of our search method? The

answer will be given in Part C.
Q-3: How about overhead compared with the existing

methods? The answer will be given in Part D.

B. UNDOCUMENTED INSTRUCTION FOUND AND HIGHER
ACCURACY
In order to test the feasibility of this proposed method,
the UISFuzz is applied to a series of X86 processors.
Table 3 shows the found undocumented instructions of these
CPUs. Here are the details and analysis.

For the Intel Core i7-4770 and Intel Xeon E3-1226 proces-
sors, the following four undocumented instructions are found:

(1) {0F, 0D}, with a total of 2416014 actual measured
instructions. These instructions remained undocumented
until 2016 when they were published as PRFETCHw in
Intel’s official manual [36]. However, the CPU was manu-
factured in 2013. In its manual, the reg parameter limited
to 1 and other values are not described, but the instruction
can be implemented in the actual CPU;

(2) 0F18, with a total of 800 actual measured instruc-
tions. Similarly, these instructions were not undocumented
until 2016 when they were published as PREFETCHh in
the Intel official manual, but the tested CPU was produced
in 2013[40].

(3) 0F {1A-1F}, with a total of 9600 actual measured
instructions. Such instructions were not documented until
2016 when they were published as Reserved-NOP in the intel
official manual,

(4) 0FAE, with a total of 483 actual measured instructions.
Such instructions remained undocumented until 2016 when
they were published in the official manual.

(5) DF {c0-c7}, with a total number of 161 actual tested
instructions. Such instructions have not been specifically
described in the AMD manual until now.

As for the instruction DBE0 and DBE1 found by sand-
sifter, UISFuzz also found it but the instruction DBE0 and
DBE1 is escaped to coprocessor instruction set. And through
the intel 80287 programmer’s reference manual, the instruc-
tion DBE0, DBE1 are decoded as the instruction FNENI and
FNDISI. As for the instruction D6, F6 /1 and F7 /1, it has
documented in the sandpile.org (which is the world’s lead-
ing source for technical x86 processor information). These
instructions found in these two CPU have been successfully
screened out by the recheck mechanism.

The reason why these two results are same may be that
both CPU were produced in 2013 and instruction set were
designed in a same way. The result of Intel Core i7-8700K
is also same but this CPU were produced in 2017, so these
results were not undocumented instructions.

For the AMD processors, two types of instructions are
found:

(1) 0F0F, with a total of 2310180 actual tested instructions.
This instruction has not appeared in AMD manuals yet;

(2) DF {c0-c7}, with a total number of 161 actual tested
instructions. Such instructions have not been specifically
described in the AMD manual until now.

For the VIA Nano U3500 processor, besides the same
0F0D, 0F18, 0F {1A-1E} and 0FAE instructions found in
Intel processor, a unique undocumented instruction namely
0FA7 {C1-C7} are also found. The total number of such
instructions was 64. This kind of instructions were not
defined in the VIA official manual. Interestingly, the number
and type of exception instructions in ZX-KH26800 proces-
sors are very similar to those in VIA processors, and also
found the 0FA7 instructions which only appear in VIA. It may
be related to the cooperation between ZX-KH26800 and VIA
Technologies.

Besides, the instruction DBE0 and DBE1 have been found
in each CPU, but after recheck mechanism they have been
screened out. Therefore, the result given by UISFuzz is more
accurate than sandsifter.

C. FASTER FUZZING SPEED
In order to quantitatively evaluate the efficiency of UISFuzz,
the instruction search number ‘‘ins’’ is introduced as an eval-
uation indicator. The instruction search number represents
the number of instructions that need to test to traverse the
whole instruction space. It is one of the key indexes to judge
the performance of a search algorithm. Because the main
frequency of CPU is fixed, the number of instructions tested
in a fixed time will not fluctuate greatly. It means that, the less
the number of candidate instructions to search the whole
instruction space, the more efficient the search method is.

Fig.7 shows the number of search instructions chang-
ing with running time of sandsifter and UISFuzz on six
experimental CPUs: i7-8700K@4.20GHz, Xeon E3-1226@
3.30Ghz and i7-4770@3.40GHz. In the following figures,
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TABLE 3. Undocumented instruction found.

FIGURE 7. Search count and time cost of UISFuzz and sandsifter (1).

the red lines represent the results of the existing method
sandsifter, while the blue lines represent the proposed UIS-
Fuzz. Especially, the blue dots represent the time when the
UISFuzz completed the search of the whole instruction set
space. As it obviously shows, the blue lines in the six sub-
figures are much shorter than the red lines, which indicates
that the UISFuzz finished the instruction set space search

more efficient than sandsifter. It is found that, for the same
entire instruction space, our UISFuzz only needs to search for
about 108 instructions, while the sandsifter needs to search for
109 instructions.

It is worth noting that the slope of the two curves in these
subfigures varies little during the search process. The reason
is that the CPU’s main frequency is fixed, and the number of
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FIGURE 8. Search count and time cost of UISFuzz and sandsifter (2).

instructions tested per unit time is also fixed. On the other
hand, compared to sandsifter, duo to our improved algorithm
needs to do more operations for each instruction, the number
of instructions that can be tested per unit time is less than
sandsifter. So, the slope of UISFuzz curves is smaller than
sandsifter. However, because the total number of instructions
needed to search has been reduced by nearly nine times,
UISFuzz can still complete the search of instructions quickly
in advance.

Fig. 8 shows the total running time and instruction
search number ins of existing method sandsifter and our
UISFuzz on the above six CPUs. For better comparison,
the runtime of UISFuzz is shown in blue while sandsifter
is in red, and the instruction search number of UISFuzz
is in brown, while sandsifter is in green. As Fig.8 shows,
in CPU-1 (intel i7-8700k@4.20GHz), for the running time,
sandsifter needs 343 minutes to complete the entire search
of instructions, while our UISFuzz only needs 60 minutes,
which is 5.72 times faster than sandsifter; for the instruc-
tion search number, sandsifter needs to search 1,001,137,646
instructions to complete the search of all instruction space,
while UISFuzz only needs 131,270,176 searches, which
reduced the instruction space by 7.62 times. The situation
of the CPU-2 (intel Xeon E3-1226@3.30GHz) and CPU-3
(intel i7-4770@3.40 GHz) is similar, where the efficiency
of our UISFuzz is respectively increased to 5.25 times and
5.73 times than sandsifter method, and the instruction search
number of our UISFuzz is both reduced by 7.62 times than
sandsifter.

In general, it can be concluded through Fig.8 that UISFuzz
is at least 5.57 times faster than sandsifter in command search
on the above six experimental CPUs. From the result of
experiment, the search space is reduced from 109 to 108

and the search speed is 5.57 times faster than before. As for
the test targeted at some software, the speed generally can
be promoted by optimization of hardware. While in undoc-
umented instruction searching, the experimental subject is
CPU itself, so the promotion of speed can only rely on the
promotion of the hardware. Therefore, the improvement of
speed is indispensable.

D. LOWER OVERHEAD
To quantitatively evaluate the running memory of the
proposed UISFuzz, the ‘‘Memory Profiler’’ [38] (Memory
Profiler is a pythonmodule formonitoringmemory consump-
tion of process and is widely used in performance evalua-
tion [38].) is applied to monitor the running time and memory
consumption of sandsifter and the proposed UISFuzz on
intel i7-8700k@4.20GHz and ZhaoXin KH26800@2.00GH
respectively. The results are shown in Fig. 9.

Fig. 9(a) is the test result on intel i7-8700k@4.20GHz, and
Fig. 9(b) is the test result on Zhao Xin KH-26800. For each
subgraph, the left one is the results of sandsifter, while the
UISFuzz is on the right. Fig. 9 shows that themaximummem-
ory consumption of sandsifter is about 24,000MB, 23.43 GB,
while that of UISFuzz is only 1300 MB (about 1.26GB),
which is reduced by 18.46 times compared to sandsifter. The
overhead of other experiment platforms is basically similar,
so we only show these two results. From Fig.9, The left
curve shows that the memory cost grows like a quadratic
function, While the right curve shows that memory grows in
three stages corresponding to the method proposed in part C
of Section IV. The load of the analyzer is very low, which
is 18 times lower than the memory usage of the existing
methods, and the running speed is 4 times faster than the
existing methods. With the significant decrease of the over-
head, the scope of application is expanded for the reason that
the memory limit of some old CPUs is very small.

E. DISCUSSION
The experimental results show that the efficiency and accu-
racy of the proposed UISFuzz are both higher than the exist-
ing methods, while its load is also greatly reduced. Specific
analyses are as follows: (1) the number of search instruc-
tion is decreased and the search speed is improved, which
shows the advance of our second point in Part B, Section IV.
By analyzing the instruction’s format, its operand part with
less relation to the operation is extracted, and the search
of this part is reduced during generation, which can effec-
tively reduce the meaningless search and make the efficiency
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FIGURE 9. Experiment result on work overhead.

higher. (2) the accuracy of the proposed method UISFuzz is
improved, which shows the validity of the recheck mecha-
nism in Part C, Section IV. The recheck mechanism filters
incorrect results by an expert knowledge database formed by
regularly summarizing the published CPU errata, which can
effectively ensure the accuracy of instruction search. (3) the
program’s overhead is much decreased, which indicates that
the conversion from recursive algorithm to multiple loops in
instruction structure analysis is correct and effective. In addi-
tion, the framework of UISFuzz we designed is clear, and
has good guiding significance for compatibility with other
platforms. However, due to time and experimental equipment,
this tool now only support CPUs in the x86 architecture.
More adaptation work for ARM and MIPS architectures is
the follow-up research content.

V. CONCLUSION
In this paper, we design and implement an efficient fuzzing
method UISFuzz for undocumented instruction search. The
proposedmethod has several contributions: (1) the instruction
format recognition is added in the instruction exception anal-
ysis process and the generation of subsequent instructions is
optimized, where the variation of meaningless instructions
is reduced. (2) a recheck mechanism based on the expert
knowledge database was applied, which effectively reduced

the false positive rate. (3) multiple loops are used to replace
the recursive algorithm during instruction result analysis,
reducing the memory load. Experiments show that the search
efficiency has been improved 5.57 times, and the memory
load has been reduced 18 times. However, there are also
some shortcomings, UISFuzz currently only support CPUs
in the x86 architecture, more adaptation work for ARM
and MIPS architectures is need to be done. Besides, search
undocumented instruction is just the first step. To judge the
harmfulness of undocumented instruction, semantic analysis
of undocumented instructions will be studied in the follow-
ing, which will be the focus of our next work. We hope
that this article can arouse more researchers’ interest in CPU
undocumented instructions and contribute more strength to
promote CPU security.
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