
Received August 21, 2019, accepted October 3, 2019, date of publication October 8, 2019, date of current version October 21, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2946264

MPCE: A Maximum Probability Based Cross
Entropy Loss Function for Neural
Network Classification
YANGFAN ZHOU1, XIN WANG2, MINGCHUAN ZHANG 1,3,4, JUNLONG ZHU 1,3,4,
RUIJUAN ZHENG 1,3, AND QINGTAO WU 1
1College of Information Engineering, Henan University of Science and Technology, Luoyang 471023, China
2Laboratory of Applied Brain and Cognitive Sciences, Postdoctoral Research Station, School of Business and Management, Shanghai International Studies
University, Shanghai 200083, China
3Henan Qunzhi Information Technology Company Ltd., Luoyang 471003, China
4Guangzhou Xiangxue Pharmaceutical Company Ltd., Guangzhou 510663, China

Corresponding authors: Xin Wang (wangxin@shisu.edu.cn) and Mingchuan Zhang (zhang_mch@haust.edu.cn)

This work was supported in part by the National Natural Science Foundation of China (NSFC) under Grant U1604155, Grant 61602155,
and Grant 61871430, in part by the Scientific and Technological Innovation Team of Colleges and Universities in Henan Province under
Grant 20IRTSTHN018, in part by the China Postdoctoral Science Foundation under Grant 2018M630461, in part by the Science
Foundation of Ministry of Education of China under Grant 19YJC630174, in part by the basic research projects in the University of Henan
Province under Grant 19zx010, and in part by the Science and Technology Development Programs of Henan Province under
Grant 192102210284.

ABSTRACT In recent years, multi-classifier learning is of significant interest in industrial and economic
fields. Moreover, neural network is a popular approach in multi-classifier learning. However, the accuracies
of neural networks are often limited by their loss functions. For this reason, we design a novel cross entropy
loss function, named MPCE, which based on the maximum probability in predictive results. In this paper,
we first analyze the difference of gradients between MPCE and the cross entropy loss function. Then,
we propose the gradient update algorithm based on MPCE. In the experimental part of this paper, we utilize
four groups of experiments to verify the performance of the proposed algorithm on six public datasets. The
first group of experimental results show that the proposed algorithm converge faster than the algorithms based
on other loss functions. Moreover, the results of the second group show that the proposed algorithm obtains
the highest training and test accuracy on the six datasets, and the proposed algorithm perform better than
others when class number changing on the sensor dataset. Furthermore, we use the model of convolutional
neural network to implement the compared methods on the mnist dataset in the fourth group of experiments.
The results show that the proposed algorithm has the highest accuracy among all executed methods.

INDEX TERMS Cross entropy, loss function, maximum probability, neural network classification, softmax.

I. INTRODUCTION
In the last few years, multi-classifier learning has received
significant attention in many fields. For example, fuzzy
system [1], wireless networks [2], power delivery sys-
tem [3], medical imaging [4], etc. Meanwhile, many meth-
ods have been proposed to solve multi-classifier problems.
For instance, Support Vector Machine (SVM) [5], Decision
Tree (DT) [6], Bayesian method [7], K-means [8], neural
networks [12], etc. However, despite SVM, DT, Bayesian
and K-means were wildly researched in the past years,
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their ability to deal with nonlinear multi-classifier prob-
lems is always poor. Many practical classification prob-
lems are actually nonlinear due to the complexity of the
real environment [9], [10], [11]. Moreover, neural networks
are famous for their strong ability to deal with nonlin-
ear multi-classifier problems. Furthermore, neural networks
can represent high-dimensional parameters better than other
methods due to their complex hidden layers. Therefore,
in order to address the multi-classifier problems that are non-
linear or with high-dimensional parameters, neural networks
have successfully been used in many hot fields of artifi-
cial intelligence, such as image classification [12], embed-
ded computation [13], biomedical engineering [14], etc.
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Moreover, neural networks always have higher classifier
accuracy than other traditional methods [15], [16], [17].

However, despite neural networks can obtain an
outstanding accuracy in multi-class classification problems,
their training process is always a difficulty for researchers.
In order to alleviate this difficulty, many methods have
been proposed recently from different aspects. For instance,
the acceleration of convergence speed for optimization
algorithms [18], the structure optimization of neural net-
works [19], the improvement of activation functions [20]
and the improved version of loss functions [21]. Among of
them, the research of loss function is always a hotspot in
many subjects, such as statistics [22], decision theory [23],
neural networks [24], etc. The loss function maps values of
variables onto a real number that intuitively represents some
loss associated with the variables. Moreover, when deal-
ing with the multi-classifier problems by neural networks,
the associated loss is the difference of the output value of
activation function and the true value of samples. Therefore,
the choice of loss functions is closely related to the activation
function. At present, softmax function has been wildly used
for output layers in multi-classifier learning because of its
ability to convert output values into probabilities [25], [26].

Many loss functions have been utilized in the neural net-
works based on softmax activation function, such as Mean
Square Error (MSE) loss function [27], Cross Entropy (CE)
loss function [28], etc. However, the gradient of MSE tends
to disappear when softmax is used as output layers in neural
networks. Moreover, due to the back-propagation error of
CE less than that of MSE at each iteration, CE has a faster
convergence rate in these cases [29], [30]. Therefore, CE has
become a popular loss function in problems of multi-class
classification. Furthermore, many variants of CE has been
proposed in the past few years. For instance, a visualized vari-
ant [30], a symmetric variant [31], an improved variant which
is used in multi-scale convolutional neural network [32].

CE uses entropy to measure the differences between
predictive distribution and true distribution, and it performs
better than other loss functions and has a great flourish of
studies. However, CE let the value of real class to 1 and
let the values of other non-real classes to 0. This method
may result in information redundancy of back-propagation
error. In order to further improve the loss measure of CE,
we propose a novel cross entropy loss function based on the
maximum probability of the predictive distribution, called
MPCE. We first determine the true class based on the true
distribution. Thenwe choose themaximum probability to cal-
culate the cross entropy of object variables. Finally, we update
the object variables along the gradient direction. The main
contributions of this paper are as follows:
• The proposed method reduces redundant information
for each back-propagation error, which brings better
benefits to the training of the objective function.

• We give the gradient derivation of the proposed method
and show the result that the proposed method has less
back-propagation error than CE at each iteration.

• We present the algorithm based on the proposed method.
Moreover, the simulated experiments on six public
datasets show that the proposed method has a faster
convergence rate than CE, Taming Cross Entropy (TCE)
and Accelerated Cross Entropy (ACE).

• The proposed method is simple in structure and easy to
apply as same as the standard CE.

The rest of the paper is organized as follows. We review
the related works in Section II, and present the multi-class
classification problem in Section III. We give the gradient
derivation and the algorithm design of the proposedmethod in
Section IV. The simulated experiments on six public datasets
are presented in Section V. Finally, we conclude the paper in
Section VI.

II. RELATED WORK
The training process is an important work for machine
learning. And the training process of many algorithms in
machine learning requires massive of labeled data. How-
ever, the massive labeled data, especially large-scale and
high-dimension data, will take lots of cost that be labeled
by people. Therefore, many researchers focus on improving
the training efficiency. The design of the loss function with
better performance is one of the effective ways. For example,
theMean Square Error (MSE) function was used as loss func-
tion in neural network classification. However, the training
process of this case is very slow. To this end, MSE is replaced
by CE in neural network classification that accelerates the
training process.

CE loss function originates from information theory, which
measures the loss between the true distribution and the pre-
dicted distribution of the current model. CE, as a loss func-
tion, has been wildly used in the training of model parameters
for machine learning. For instance, convolutional neural net-
work [32], random tree [33], clustering [34], etc.

The CE loss function is popular mainly because of its
excellent performance in terms of multi-class classification
accuracy. CE is a calibrated loss and requires well-behaved
probability estimates. However, as the classification accuracy
increases, the calibration of the classifier using CE deteri-
orates. The reason of this case is caused by outliers. For
this reason, many robust variants of CE have been proposed.
For example, Ghosh et al. studied some robust loss func-
tions under label noise for deep neural networks [35], and
Martinez et al. presented a robust derivative of the standard
CE used in deep learning for classification tasks [38].

Furthermore, training speed is another research point
in machine learning based on CE loss. The common
method to speed up training is stochastic chooses a sub-
set of samples at each iteration. However, this method
requires a large number of samples to mitigate errors. For
this reason, Bengio and Audry [39] proposed used adap-
tive importance sampling to accelerate training. Moreover,
Blanc and Rendle [40] proposed an adaptive sampling
method based on kernel for classification problems using
CE loss. In addition, to speed up the convergence rate,
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George and Shalabh [41] used cross entropy method in the
reinforcement online learning.

Despite the robust variants of CE could obviously elimi-
nate the influence of outliers, and the adaptive sampling vari-
ants of CE could speed up the training, however, they often at
the expense of classification accuracy. The accuracy is always
the most important point to the classification problems. For
this reason, we propose a novel cross entropy loss function to
improve the classification accuracy. The maximum probabil-
ity in predictive distribution is used to improve the standard
CE, therefore, a more accurately loss of variables is obtained
at each iteration. The proposed method thereby obtains the
optimal solution earlier.

III. MULTI-CLASS CLASSIFICATION
In problems of multi-class classification, let S denote a sam-
ple space and L denote a limited set of labels, where L =
{l1, l2, . . . , lm},m > 2. Therefore, the mapping relationship
of a sample x ∈ SN to label set L is many-to-one, i.e., a
sample can not have more than one label, but different sam-
ples can have the same label. A multi-class classification task
is to predict the class of a sample from multi classes. Next,
we introduce how neural networks accomplish multi-class
classification tasks.

As shown in FIGURE1.A general neural network based on
softmax activation function has three layers, i.e. input layer,
hidden layer and output layer. A softmax function transform
the numerical results of neural network to the output of
probability. Moreover, the predicted class is decided by the
max probability in the output. Then, at each training iteration,
cross entropy function is used to measure the difference
between the predicted class and the true label. Whereafter,
the difference (i.e., error) is propagated back to the hidden
layer to adjust the weights. Let wij denote the connection
weight of the i-th neuron to the j-th neuron. Moreover,
W denotes the weight matrix which is consisted of wij, and wi
denotes the i-th row vector of matrixW . Therefore, the output
z = Wx. However, the output z is not normalized. In order to
solve this problem, softmax function has received significant
attention in multi-class classification, which is used be the
output layer. The output layer of neural networks contains
m cells, and each cell corresponds to a label. Moreover,
yi denotes the i-th coordinate value of vector y, and ỹi denotes
the i-th coordinate value of vector ỹ. Softmax maps output
results to the interval (0, 1), in which sum of all outputs is 1.
Therefore, it converts the classification problem into the form
of probability, which provides intuitive choices for the final
decision. The softmax is shown as follows,

yi =
exp(zi)∑m
j=1 exp(zj)

, (1)

where i ∈ {1, 2, . . . ,m}, and the neural output zi =
∑

j wijxij.
Therefore, we have

m∑
i=1

yi = 1. (2)

According to the mentioned above, the main target of
neural network is training weight matrix W . For this reason,
many gradient descent based optimizationmethods have been
used in these cases. The value of weights is adjusted by
back-propagation of each iteration error. Moreover, the error
is generated by a loss function (or cost function). Let f t (W )
denote the loss function at iteration t . Then, we have an
optimization problem,

min
T∑
t=1

f t (W ), (3)

where T is the total number of training iterations. In order
to obtain a optimal solution, optimization algorithms search
along the gradient direction. Moreover, when considering the
i-th output cell, the gradient of its loss function at t-th iteration
can be expressed in the following mathematical form,

∇f t (wi) =
∂f t (wi)
∂wi

. (4)

Therefore, we have update strategy of the weight vector wi in
gradient descent based algorithms,

wti = wt−1i − η∇f t (wt−1i ), (5)

where η denotes the learning rate.

A. CROSS ENTROPY
In the next step, we will introduce the formula form of CE
loss function and its gradients when using in multi-classifier
learning. Fist, the CE function is as follows,

f t (W ) = −
m∑
i=1

ỹi log(softmax(wix))

= −

m∑
i=1

ỹi log(yi), (6)

where m denotes the total number of classes, yi denotes the
i-th prediction class of MPCE, and ỹi denotes the i-th true
class of training samples. Moreover, the softmax function is
defined in Eq. (1).

Next, we give the gradient derivation process of the i-th
output cell. From Eqs. (4) and (6), and according to the chain
rule, we have

∇f t (wi) = −
∂f t (wi)
∂yj

∂yj
∂zi

∂zi
∂wi

, (7)

where
∂f t (wi)
∂yj

=
∑k

j=1
∂(−ỹj log yj)

∂yj

= −
∑k

j=1 ỹj
1
yj
, (8)

and x ∈ SN is normalized before training process, therefore,
we have

∂zi
∂wi
=

k∑
j=1

xij = 1, (9)
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FIGURE 1. The structure of neural network in which softmax is used as activation function and CE is loss function.

where k is the total number of the connection units of cell i.
Then, we calculate the ∂yj

∂zi
in Eq. (7). First, we should consider

two cases of connection units, i.e. one is that connection unit
of cell is itself, the other is that connection unit of cell is other
cells. If i = j, then

∂yi
∂zi
=

∂
(

exp(zi)∑m
k=1 exp(zk )

)
∂zi

=

∑m
k=1 exp(zk ) exp(zi)− (exp2(zi))∑m

k=1 exp2(zk )

=
exp (zi)∑m
k=1 exp (zk )

(
1−

exp (zi)∑m
k=1 exp (zk )

)
= yi(1− yi). (10)

Furthermore, if i 6= j, then

∂yi
∂zi
=

∂
(

exp(zij)∑m
a=1 exp(zia)

)
∂zi

= − exp(zij)
(

1∑m
a=1 exp(zia)

)
exp(zi)

= −yiyj. (11)

Applying Eqs. (7) - (11), we have

∇f t (wi) =

− k∑
j=1

ỹj
1
yj

 ∂yj
∂zi

=

∑
j 6=i

ỹj
yj
yiyj −

ỹi
yi
yi(1− yi)

=

∑
j 6=i

ỹjyi + ỹiyi − ỹi

= yi
∑
j

ỹj − ỹi. (12)

Furthermore, according to Eq. (2) and Eq. (12), we have

∇f t (wi) = yi − ỹi. (13)

IV. GRADIENT DERIVATION AND ALGORITHM DESIGN
In order to improve training effect of optimization algorithms
in classification problems, we utilizemaximum probability of
predictive value to reduce the error of cross entropy function
at each iteration, and the novel loss function is called MPCE.
In this section, we give the mathematical expression and
algorithm design of MPCE.

Let ymax denote the maximum in {y1, y2, . . . , ym}, where
m is the number of class and the u-th class is the true class.
Moreover, the u-th coordinate of ỹ is 1. Let y′ := (ymax−yu)ỹ
with ỹ is the vector of real classes. Due to the values of untrue
classes are both zero, we have

m∑
i=1

(ymax − yi)ỹi = ymax − yu. (14)

Therefore, we have a maximized cross entropy loss func-
tion,

f t (W ) = −
m∑
i=1

y′i log(yi)

= −

m∑
i=1

(ymax − yu)ỹi log(yi), (15)

where y′i denotes the i-th coordinate value of vector y′.
In order to analyze performance of MPCE, we give the

gradient derivation process of Eq. (15). According to Eqs. (4)
and (15), we have

∂f t (wi)
∂yj

=

∂
(
−
∑

j(ymax − yj)ỹi log yj
)

∂yj

= −

∑
j

(ymax − yj)
ỹi
yj
. (16)
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FIGURE 2. Differences between MPCE distribution and CE distribution.

From Eqs. (7), (11), (12), (14) and (16), we have

∇f t (wi) =

−∑
j

(ymax − yj)
ỹi
yj

 ∂yj
∂zi

=

∑
j 6=i

(ymax − yj)
yj

yiyjỹi −
(ymax − yi)

yi
yiỹi(1− yi)

=

∑
j 6=i

(ymax − yj)yiỹi+(ymax−yi)yiỹi−(ymax − yi)ỹi

= yi
∑
j

(ymax − yj)ỹi − (ymax − yi)ỹi

= yi(ymax − yu)− (ymax − yi)ỹi. (17)

Due to yi, ymax , yu ∈ [0, 1], and ỹi ∈ {0, 1}, we have
m∑
i=1

‖∇f t (wi)‖ =
m∑
i=1

‖yi(ymax − yu)− (ymax − yi)ỹi‖

≤

m∑
i=1

‖(ymax − yu)− (ymax − yi)‖

=

m∑
i=1

‖yi − yu‖. (18)

According to the aforementioned, yu is the predictive proba-
bility of true class, therefore, 0 ≤ yu < 1. Moreover, the real
classes distribution ỹ = (0, . . . , 0, 1, 0, . . . , 0). Therefore,
we obtain

m∑
i=1

‖∇f t (wi)‖ ≤
m∑
i=1

‖yi − ỹi‖. (19)

Therefore, the back propagation error of MPCE is less than
that of CE for each iteration. In other words, CE may have a
faster convergence rate at the start of iterations than MPCE.
However, due to the bigger back propagation error, CE is
more difficult to get the optimization point. On the contrary,
MPCE backs a more accurate loss at each iteration when
approaching the optimal point. Moreover, the difference of
structures between CE and MPCE is shown as FIGURE 2.
CE sets the probability of true class to 1, and others to 0. How-
ever, the probability 1 may too large for true class because of
it contains some inaccuracy and redundant information. For
this reason, the setting of CE makes the gradient direction too
big at each iteration. To reduce the redundant information,

MPCE sets the probability of true class to ymax − yu. Since
ymax−yu < 1,MPCE eliminates some redundant information
of CE, and obtains a more accurate entropy for weight update.

Algorithm 1 The Gradient Update Algorithm Based on
MPCE
Input: x (input samples)

η (learning rate)
u (the coordinate of true class in {1, 2, . . . ,m}) m (the
number of multi-classes)

Output: W
1: for t = 1, 2, . . . ,T do
2: t = t + 1
3: for i = 1, 2, . . . ,m do
4: z = wt−1

i x
5: y = softmax(z)
6: ymax = max{y1, y2, . . . , ym}
7: obtaining yu based on ỹ for ỹu = 1
8: ∇f (wt−1

i ) = (ymax − yu)y− (ymax − yi)ỹ
9: wt

i = wt−1
i − η∇f (wt−1

i )
10: updating W by wt

i
11: end for
12: end for
13: Return W

The gradient update algorithm based onMPCE is shown in
Algorithm 1. The algorithm shows the update rule of the i-th
cell weight. The input value is the training samples x, and z is
the output of neural networks, learning rate η and true class
ỹu. Learning rate η is a constant that set before performing
experiments. For the t iteration, z first be transformed in
probability by softmax function. Then, MPCE searches the
maximum value ymax in {y1, y2, . . . , ym}. According to ymax
and yu, MPCE computes gradient ∇f (wi). Finally, MPCE
updates weight wi along the gradient direction.

V. SIMULATED EXPERIMENTS
In order to evaluate the performance of the proposed algo-
rithm, we conduct three groups of simulated experiments for
multi-class classification in neural networks. We focus on
some experiment indicators: the cross entropy loss respec-
tively on the same number of epoches and the same running
time, the training and the test accuracy on the same number of
samples, and the relationship between the changing of class
number and the performance of loss functions.

A. FULLY CONNECTED NEURAL NETWORK
We firstly use fully connected neural network to finish
multi-class classification problem on six public datasets.

1) EXPERIMENTAL SETUP
a: DATASETS
We use six public datasets 1, news20, aloi, mnist, connect-4,
sensorless and sector, in our simulated experiments.

1https://www.csie.ntu.edu.tw/∼ cjlin/libsvmtools/datasets/
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The news20 is a famous dataset for text classification, which
contains twenty topics of news. The aloi is produced by
University of Amsterdam which collects color images of
one-thousand small objects. The mnist is a widely used
handwritten digital dataset, which from Arabic numeral 0 to
9. The connect-4 contains position information of a game.
Moreover, the sensorless collects lots of features that are
extracted from electric current drive signals. Besides, the sec-
tor is used for text classification. Furthermore, the six datasets
are summarized in Table 1.

TABLE 1. Summary of the multi-class datasets.

b: COMPARED METHODS
In order to evaluate the performance of the proposed method,
we compare it with three methods: Bayesian [36], SVM [37],
CE, TCE [38] and ACE [40]. Next, we will introduce the
following formulas of TCE and ACE.

TCE: The formula of TCE is as follows,

fα(y, ỹ) =
1

1− α

m∑
i=1

yi

(
(1− log ỹi)1−α −

1
1− α

)
,

where α ∈ (0, 1) is the parameter.
ACE: First, ACE chooses a sample s from the full classes.

z′i =

{
zsi − log(mqsi ) if ysi = 0
zsi else,

where m denotes the number of classes, q is the sampled
probability of each negative class, and z denotes the output of
neural networks. ACE then obtains its new softmax function
as follows,

y′i =
exp(z′i)∑m+1
j=1 exp z′j

.

Finally, the loss function of ACE is given by,

f (y, y′) = −
∑m

i=1 yi log y
′

= log
∑m

i=1 exp zi −
∑m

i=1 yizi.

c: PARAMETER SETTINGS
We set the learning rate η = 1

√
t
for all methods on the six

datasets. Moreover, the initialization of weight w0
ij is zero for

all methods. Furthermore, the parameters of neural networks
on the six datasets are summarized in Table 2. The neural

TABLE 2. Summary of parameters in neural networks.

number of input layer is related to the dimensions of input
data. The neural number of hidden layers is decided by the
input layer and output layer. Moreover, the number of output
layer is always same as the number of classes.

In addition, the hardware environment of our simulated
experiments is shown in TABLE 3. The version of GPU is
the GTX 1080 Ti which is produced by Nvidia. Moreover,
CPU is the i7-6850k from Inter. Besides, the internal stor-
age has 32GB. In addition, we use a solid state disk (SSD)
with 250GB to speed up data reading, and a 2TB hard disk
drive (HDD) to ensure sufficient data storage space.

TABLE 3. The Hardware Environment of the Experiments.

2) EXPERIMENTAL RESULTS AND ANALYSIS
First of all, we give the experimental results of cross entropy
loss on epoches. We run every dataset for 10 times (i.e.
10 epoches in experiments) and calculated the average for
the 10 times. In our experiments, the ratio of each dataset
is set to the same for all comparison methods. FIGURE 3
shows that the results of four methods on six public datasets.
The experimental results show that the cross entropy loss of
MPCE is the least of the four methods on six datasets. Specif-
ically, the experiments on news20 is shown in FIGURE 3 (a).
From first epoch to tenth epoch, the cross entropy loss of
MPCE decreases to 0.1 from 1. However, the loss of CE,
TCE and ACE all decrease to about 3 from 4. FIGURE 3 (b)
shows the results on aloi. The losses of all the four method
have obvious decrease. Meanwhile, MPCE reduces to the
lowest point. In FIGURE 3 (c), despite the start loss of MPCE
higher than that of ACE on mnist, however, the final loss of
MPCE is the least. FIGURE 3 (d) shows that the start losses
of TCE and ACE less than MPCE and CE on connect-4,
nevertheless, MPCE decreases the fastest and the greatest.
The downward trend of cross entropy loss on sensorless
is shown in FIGURE 3 (e). In this case, the start loss of
MPCE is the highest, but the final loss of MPCE is the least.
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FIGURE 3. Convergence of Bayesian, SVM, CE, TCE, ACE and MPCE, i.e. the decrease trend of cross entropy loss from one epoch to ten epoch.

FIGURE 4. The relationship of time and loss of Bayesian, SVM, CE, TCE, ACE and MPCE on news20, aloi and mnist datasets.

In FIGURE 3 (f), CE, TCE and ACE have poor performance
on sector, they reduce few losses during ten epoches. On the
contrary, MPCE still performs well.

Moreover, we respectively run the compared algorithms
on news20, aloi and mnist datasets to find the relationship
of time and cross entropy loss. And the results are shown in
FIGURE 4 that demonstrate the cross entropy loss of MPCE
reaches the lower value than other algorithms at the same
fixed time on the three datasets.

The results in FIGURE 3 and FIGURE 4 demonstrate the
correctness of our aforementioned theory analysis. MPCE
eliminates some redundant information by using ymax−yu for
true class, which brings a faster convergence rate. We utilize

a smaller error to adjust the weights at each iteration, which
guarantees the optimization algorithm converge precisely to
the optimal point. In effect, because of the oversize error
adjustment, the standard cross entropy loss function makes
the optimization algorithm oscillate around the optimal point,
which leads to a long time to fail to converge.

Secondly, we observe the training accuracy of four meth-
ods on same number of samples. For the fairness of the
experiment, we respectively take 20, 000 samples from train-
ing samples on these datasets for training accuracy calcu-
lating. In FIGUREs 5 (a) (c) and (d) (i.e. news20, mnist
and connect-4), the accuracy of MPCE is the highest from
1, 000 samples to 20, 000 samples. FIGURE 5 (b) shows that
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Y. Zhou et al.: MPCE Loss Function for Neural Network Classification

FIGURE 5. The training accuracy of CE, TCE, ACE and MPCE. Each method takes 20, 000 samples from training datasets to calculate the accuracy.

FIGURE 6. The test accuracy of CE, TCE, ACE and MPCE. Each method takes 10, 000 samples from test datasets to calculate the accuracy.

the accuracy of TCE is similar as that ofMPCEwhen samples
less than 4, 000 on aloi. However, MPCE keeps the highest
accuracy when samples bigger than 4, 000. When samples

less than 10, 000, TCE, ACE and MPCE have almost the
same accuracy on sensorless (i.e. FIGURE 5 (e)), however,
MPCE reach the highest accuracy after 10, 000 samples.
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FIGURE 7. The relationship between classes and accuracy with compared methods on sector dataset.

FIGURE 8. The training and test accuracy of compared methods in CNN on mnist.

In FIGURE 5 (f), MPCE keeps the highest accuracy after
3, 000 samples on sector.
Theoretically, the algorithms based on CE and MPCE

could both have a perfect performance if a massive of training
samples exist. However, in fact, it is very difficult for us to
obtain such a large amount of samples, furthermore, these
samples should be labeled by people. Therefore, our propose
MPCE to make the optimization algorithm reach a higher
accuracy under the limited samples, which demonstrated in
FIGURE 5.

Then, we demonstrate the performance of MPCE through
a set of experiments on test accuracy. We respectively take
10, 000 samples from test sets of six datasets. MPCE has
the highest test accuracy on all the six datasets when sam-
ples is 10, 000. As shown in FIGURE 6, the test accu-
racy of MPCE on news20, mnist, sensorless and connect-4
(i.e. FIGURE 6 (a), (c), (e) and (d)) higher than 80%. How-
ever, MPCE has a test accuracy of less than 80% on aloi
and sector (i.e. FIGURE 6 (b) and (f)). The reason of this
case is that the class number of news20, mnist, sensorless
and connect-4 is far smaller than that of aloi and sector. The
class number of aloi is 10, 000, it thus has the lowest test
accuracy. However, the influence of class number is limited in
a span. When the difference of class number of two datasets
is very small, the test accuracy will not be affected very

much. Therefore, although the class number of sensorless
slightly smaller than that of news20, the test accuracy of
sensorless worse than that of news20.

The most direct indicator to evaluate a loss function is
the predictive accuracy. When choosing 10, 000 samples for
testing, MPCE retains a slightly better testing accuracy than
others compared methods on six public datasets. Finally,
we focus on the different influences of CE, TCE, ACE and
MPCE on the samples. We choose the sensor dataset to
run the group of experiments. The number of classes is set
to a fixed value at each running time. The class number
increases from 1 to 100 as the experiments go on. The
results of the experiments is shown in FIGURE 7. The left
of FIGURE 7 shows the relationship between class num-
ber and training accuracy, and MPCE performs better than
others. The right of FIGURE 7 presents the connection of
class number and test accuracy From this figure, we can
see that the performance of MPCE is better than other
methods.

B. CONVOLUTIONAL NEURAL NETWORK
Next, we consider the case that MPCE is used in the Convolu-
tional Neural Network (CNN). CNN is a successful method
for image classification, therefore, we will run the methods
on the image dataset mnist.
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1) EXPERIMENTAL SETUP
Mnist dataset is composed by images of size 28 × 28
and has 10 classes. We set training samples to 50, 000
(i.e. 5, 000 samples per class), and set test samples to 10, 000
(i.e. 1, 000 samples per class). Moreover, we use the modern
version of LeNet-5 [42], [43] as the model for CNN, and use
SGD as the optimization algorithm in the model. The archi-
tecture of LeNet-5 for CNN is shown in following Table 4.

TABLE 4. Architecture of LeNet-5 for CNN.

2) EXPERIMENTAL RESULTS
The results of CNN on the mnist dataset is shown in
FIGURE 8. In the left of FIGURE 8, we use 50, 000 samples
for the training process and respectively use four compared
loss function in CNN. In this part of experiments, the train-
ing accuracy of MPCE is the highest, which is about 98%.
Then, we use 10, 000 samples to test the accuracy of the
CNN model. From the right of FIGURE 8, we can see that
MPCE also obtains the highest test accuracy in this part
of experiments. Therefore, in CNN model on mnist dataset,
the accuracy of the proposedmethod is higher than other three
methods.

VI. CONCLUSION
In this paper, our work shows the importance of loss function
for muti-class classifier learning in neural networks. We have
proposed a new cross entropy loss function, named MPCE,
that utilizes the maximum probability of predictive value to
reduce the cross entropy loss of each iteration. We give the
mathematical expression and gradient derivation process of
MPCE. Moreover, the gradient derivation process shows that
MPCE has less loss than MSE and CE on theory. In order
to demonstrate the performance of MPCE on experiments,
we aim at three aspects on six public classification datasets.
The first set of experiments show that MPCE has a faster
convergence rate and a smaller cross entropy loss than other
compared methods. Moreover, the second set of experiments
show that MPCE has the highest training accuracy when
sample number is 20, 000, and the training accuracy ofMPCE
respectively is 95.12%, 71.14%, 90.61%, 95.33%, 90.43%
and 83.23%. Furthermore, the last set of experiments show
that MPCE has the highest test accuracy when test sam-
ple number is 10, 000, and the test accuracy respectively

is 85.25%, 60.27%, 80.27%, 85.36%, 79.83% and 73.42%.
We also use CNN to evaluate the performance of MPCE
on mnist dataset. MPCE has the highest training and test
accuracy on image classification in our experiments.
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