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ABSTRACT With the increasing demands for mobile users to obtain content, the heterogeneous net-
works (HetNets), which consolidate the backbone networks with mobile edge networks, have been regarded
as a promising paradigm to provide mobile users with high quality of experience (QoE). However, the limited
network resources and caching capacity become a new challenge to deliver content in HetNets. Therefore,
in this paper, a cooperative scheme between edge server and content provider in HetNets is proposed to
improve the performance of content delivery. Firstly, a novel framework of content delivery with backbone
networks and mobile edge networks is introduced. The edge servers are deployed at the edge of networks
and close to users. Secondly, a Q-learning based scheme for content caching is developed to securely cache
contents with the cooperation between edge server and content provider. Thirdly, the cooperative interaction
between edge server and content provider is modeled as the double auction game. Each player can obtain the
maximum utility from the equilibrium strategy. Finally, simulation results show that the proposed scheme
can improve the efficiency of content delivery and bring more utilities to edge server and content provider
than the conventional schemes.

INDEX TERMS Heterogeneous networks (HetNets), Q-learning, content delivery, cooperative scheme,
double auction.

I. INTRODUCTION
With the rapid development of wireless communication tech-
nologies and network infrastructure in heterogeneous net-
works (HetNets), the proliferating smart devices (e.g., smart
phones, smart watches, tablet computer) prompt the expo-
nential growth of mobile video streaming [1]–[6]. Moreover,
as the demand of high quality of service (QoS) exceeds the
available capacity in conventional network, the conventional
network structure suffers the unprecedented challenges [7].
On one hand, the cloud server is located at the remote cloud,
delivering contents to endpoint users consumes a number of
network resources (e.g., bandwidth, energy, etc.) and causes
the network congestion [8]. On the other hand, a large
number of content requests lead the redundant delivery to
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cloud server. As a result, the efficiency of content delivery is
low [9], [10].

HetNets enabled mobile edge networks have prevailed as
a dominant method for providing high-quality mobile ser-
vices [11], [12]. However, the attractive applications and ser-
vices mainly depend on high-speed data rates and low-latency
transmission. This poses critical challenges to the conven-
tional network with the following reasons: firstly, the network
resources in mobile edge networks are different from the
conventional network. For example, the storage capacity is
lower than that in the conventional network, and the wireless
backhaul is shorter than that in the conventional network.
Secondly, since the popularity of contents changes dynami-
cally, the number of contents provided by content provider
grows rapidly. It is hard to cache all contents in edge servers.
Thirdly, due to the variability of contents, the hit ratio of
cached contents is rather low in the conventional network.
Therefore, caching contents in edge servers is a promising
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way to cope with the huge traffic load over the conventional
network [13], [14].

However, edge caching-enabled content delivery is chal-
lenging with the following two aspects: 1) Content caching
strategy: the social interests of mobile users influence the
content distribution in edge servers. Moreover, the social
characteristics (e.g., preference, recommendation, etc.) of
endpoint users also affect the caching deployment of edge
servers. Thus, the content caching strategy should be effi-
ciently analyzed to improve the performance of content deliv-
ery [15], [16]. 2) Content updating strategy: since the storage
resources at edge servers are limited, the effect of content
caching is constrained by the number of content files [18].
The optimal content caching strategy can improve the hit
ratio andmobile users’ quality of experience (QoE). Recently,
researches on the Q-learning approach focus on caching
content over the conventional network [19]–[21]. However,
most of the existing caching schemes cannot be fully used
in HetNets. Therefore, the Q-learning based content caching
scheme for edge servers should be further analyzed.

There are many proposals for content delivery in Het-
Nets. The existing works mainly focus on the optimization
of content delivery scheme [22], [23], content caching sch-
eme [24], [25], and cooperative delivery scheme [26], [27],
etc. A collaborative multicast beamforming in cache-enabled
ultra-dense networks is presented in [28]. A cooperative con-
tent caching and delivery scheme is proposed in [29] to reduce
the transmission cost from the macro base stations to mobile
devices. However, the cooperative scheme for edge server and
content provider in HetNets is not further considered. On the
other hand, most conventional incentive schemes assume that
the idle caching resources are freely contributed by the edge
servers. It is infeasible to cache contents in edge servers
without incentives due to the selfishness. Therefore, how to
design an effective incentive scheme to improve the efficiency
of content delivery becomes a new challenge [30].

In order to address the above issues, a cooperative scheme
between edge server and content provider is proposed to
improve the efficiency of content delivery in HetNets. The
framework of HetNets for content delivery is firstly intro-
duced. Next, a Q-learning based scheme for content caching
is proposed to improve the hit ratio. Afterwards, the coop-
erative scheme between edge server and content provider
is established to deliver content to mobile users. Finally,
the interaction process between edge server and content
provider is modeled as a double auction game based incen-
tive. Each player can achieve the maximum utility based on
the optimal strategy.

In a nutshell, the main contributions of this paper are as
follows:
• Framework: We introduce the hybrid networks, which
are composed of backbone networks and mobile edge
networks. Based on the hybrid networks, contents are
cached in mobile edge networks from the backbone net-
works. Next, considering the limited caching capacity
of edge server, a Q-learning based scheme for content

caching is developed to cache the optimal contents in
edge servers to improve the hit ratio.

• Scheme: We present a cooperative scheme for edge
server and content provider. The contents are delivered
to mobile users based on the cooperative scheme to
improve mobile users’ QoE. Next, we model the cooper-
ative scheme as a double auction game based incentive
to improve the efficiency of content delivery.

• Validation: We evaluate the performance of the pro-
posed scheme and game model using extensive simula-
tions. Simulation results demonstrate that the proposed
scheme can not onlymaximize the hit ratio of content but
also improve the utility compared with the conventional
methods.

The remainder of this paper is organized as follows.
Section II reviews the related work. Section III presents the
system model. Section IV introduces the Q-learning based
content caching scheme. The cooperative scheme for content
delivery is described in Section V. Performance evaluations
are shown in Section VI, and Section VII closes this paper
with conclusion and future work.

II. RELATED WORK
In this section, we review the related work including the
content delivery scheme, cooperative scheme and incentive
scheme in HetNets.

A. CONTENT DELIVERY SCHEME IN HetNets
There have been considerable works on content delivery in
HetNets. The caching placement strategy in two-tier wireless
content delivery networks was proposed by Sung et al. [31]
to improve the performance of content delivery. In [32],
the optimization problem of caching replication was formu-
lated based on the routing strategy to maximize the content
delivery rate. Ma and Jamalipour [33] presented a coopera-
tive caching-based content delivery framework to implement
the cooperative caching for encountering nodes. A study of
energy-efficient video-on-demand (VoD) content caching and
distribution was evaluated by Ayoub et al. [34] to reduce
the energy consumption of the network. To cope with the
explosive growth of mobile traffic, a novel content distribu-
tion architecture was presented by Xie et al. [35] to cache
content and ensure the reliability of the content distribution
architecture, respectively. Although most of these works have
discussed the content delivery in content delivery networks,
few of them focus on the content caching scheme for edge
servers in HetNets.

B. COOPERATIVE SCHEME DESIGN IN HetNets
The cooperative scheme design has recently become a hot
research topic for content delivery. Chae et al. [36] proposed
a probabilistic content placement to maximize the average
success probability of content delivery. A cooperative server
selection scheme was developed by Nishiyama et al. [37]
to maximize the robustness with the cooperation between
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the content delivery system and its users. Jia et al. [38]
proposed a novel cooperative content fetching scheme to
improve the quality of video delivery in wireless networks.
Jiang et al. [39] proposed a novel content distribution system
to improve mobile users’ QoE. The edge caching content
service market model was proposed by Xiong et al. [40] to
reduce the cost and improve the quality of content service.
However, the cooperative scheme for edge server and content
provider is still not discussed sufficiently in most of the
existing works.

C. INCENTIVE SCHEME DESIGN IN HetNets
There have been a number of studies that investigate the
incentive scheme in HetNets. Barua et al. [41] took the
selfish deviating users into account and proposed a car-
rier aggregation-based incentive mechanism. Shih et al. [42]
modeled the content delivery transaction as the auction game
to efficiently allocate the scarce radio resources and derive the
optimal pricing strategy. Xu et al. [43] proposed a coalitional
game based on the payoffs of content requesters to deliver the
popular contents. A new Bayesian coalition game for content
distribution was presented by Kumar et al. [44]. Zhang and
Li [45] presented a decentralized resale market model. The
transactions between arbitrary pairs of agents were mod-
eled as the decentralized strategic bargaining game to derive
the equilibrium prices. However, the incentive scheme for
improving the efficiency of cooperation between content
provider and edge server is neglected.

III. SYSTEM MODEL
In this section, we introduce the system model including the
user model, content model and incentive model. Table 1 sum-
marizes the symbols used.

A. USER MODEL
As illustrated in Fig. 1, HetNets operate over the hybrid
networks including backbone networks and mobile edge net-
works. The backbone networks locate in the content provider
layer. The mobile edge networks are close to mobile user
layer. The contents are delivered over the Internet from cloud
server to edge servers.

1) MOBILE USERS
The set of mobile users is denoted as i = {1, 2, . . . , I }.
Mobile users are interested in obtaining contents (e.g., popu-
lar movies, music, sports news, etc.) based on their interests.
Each mobile user can access the backbone networks and
edge networks to obtain contents. Considering the privacy
requirement of mobile user, the privacy preference of mobile
user i is denoted by ςi (0 ≤ ςi ≤ 1) [46], [47]. The higher ςi
indicates the greater requirement for mobile user i to obtain
content.

2) EDGE SERVERS
The set of edge servers is denoted by j = {1, 2, . . . , J}. Edge
servers are placed at the edge of networks (e.g., coffee shops,

FIGURE 1. Content delivery scheme in HetNets.

supermarkets, campuses, etc.) by the content provider. Each
edge server has limited storage to cache contents and the
caching size of edge server j is defined as sj, which follows the
interval

[
sjmin, sjmax

]
. Due to the short communication dis-

tance between mobile user and edge server, the transmission
delay can be significantly reduced to improve mobile users’
QoE.

3) CONTENT PROVIDER
Content provider locates at the end of cloud, which stores a
large number of contents in cloud servers. The contents are
cached in edge servers by the content provider in advance.
On the other hand, if the content requested by mobile user
is not cached in edge server, the content is delivered to
mobile user based on the cooperative scheme between content
provider and edge server [17].

B. CONTENT MODEL
There are a large number of contents in the networks. Let q =
{1, 2, . . . ,Q} denote the set of contents in the networks. The
size of content q is defined as sq, which follows the uniform
distribution in

[
sqmin, sqmax

]
[48]. Based on the caching size

of edge server j and the size of content q, the number of
contents cached in edge server j can be calculated by

Zj =
⌊

2sj
sqmax + sqmin

⌋+
, (1)

where b×c+ denotes the floor function. Moreover, due to the
limited caching size of edge server j, the contents cached in
edge server j should satisfy

∑Zj
k=1 xk,qsq ≤ sj, where xj,q is

a binary value. xk,q = 1 denotes that content q is cached in
edge server j and xk,q = 0 otherwise.

Each content q has the property level, which is described as
Hq =

(
fq, rq, lq, tq

)
[49]. fq is the filename, rq is the identifier,
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TABLE 1. Summary of notations.

lq is the packet, and tq denotes the time stamp. When mobile
users request contents, they generate a context information
with the propertyHq and send to edge servers. The objective
contents are delivered to mobile users when the accuracy of
context recognition is verified.

C. INCENTIVE MODEL
Due to the selfishness, edge server and content provider are
unwilling to deliver content without incentives. The effective
incentive scheme is designed to improve the efficiency of
content delivery in HetNets.Whenmobile user i requests con-
tent q and the content is cached in edge server j, the content is
delivered to mobile user i. Next, mobile user i pays payment
to edge server j based on the pricing strategy Pj,q, which is
defined in Section V-A.

When the content q is not cached in edge server j,
the cooperative scheme for edge server and content provider
is established. Next, edge server j and content provider
reach an agreement on the payment for delivering content q.
The content q is delivered to mobile user i by the con-
tent provider. Then, the payment based on the pricing strat-
egy Pj,qCP∗ , defined in Section V-A, is paid to edge server
j by mobile user i. The payment Pj,qCP∗ , which is deter-
mined in Section V-B, is paid to content provider by edge
server j.

IV. Q-LEARNING BASED CONTENT CACHING SCHEME
This section first introduces the Q-learning based content
caching scheme. Next, the cooperative strategy for edge
server and content provider is established.

A. CONTENT CACHING PROBLEM
Since the limited caching storage in edge server, the content
caching strategy should be effectively designed to improve
the hit ratio of content. We consider the content caching
problem as a triplet {S,A,R (s, a)}, where S indicates the
caching state of edge server, A denotes the action of edge
server, and R (s, a) is the reward function when performing
action.

1) S = {s1, s2, . . . , sJ } is the set of caching states of edge
servers, where sj =

(
sj (1) , sj (2) , . . . , sj (Q)

)
denotes the set

of caching decision of edge server j. sj (q) = 1 means that
content q is cached in edge server j and sj (q) = 0 otherwise.
2) A = {a1, a2, . . . , aJ } is the set of caching actions

of edge servers, where aj =
{
aj
(
qm+, qn−

)
|qm, qn ∈ Q,

qm 6= qn
}
represents the action decision of edge server j,

i.e., what to newly cache content and what to discard con-
tent. aj

(
qm+, qn−

)
= 1 means that content qm+ is newly

cached in edge server j and content qn− is removed from
edge server j. Otherwise, aj

(
qm+, qn−

)
= 0. Moreover,
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the replaced content in an edge server cannot be the same as
the newly cached content.

3) R (s, a) = {R1 (s, a) ,R2 (s, a) , . . . ,RJ (s, a)} is the
set of reward functions of edge servers, which determines the
reward feedback of edge server when performing action a at
state s.

B. Q-LEARNING BASED CONTENT CACHING SCHEME
The optimal content caching strategy is determined based
on Q-learning. The Q-value of edge server j is described as
the state-action pair (i.e., Qj

(
sj, aj

)
). The optimal Q-value

Qj
(
sj, aj

)∗ of edge server j is obtained by the iterative method,
which is described as

Qjt+1
(
sj, aj

)
= (1− λ) · Qjt

(
sj, aj

)
+ λ

·
[
Rj

t (sj, aj)+ υ · Vjt (sj′, aj)] , (2)

where sj is the current state of edge server j and sj′ is the
next caching state after taking action aj at sate sj. λ is the
learning rate. υ is the discount factor that affects the effec-
tiveness of future reward to the current reward. Vjt

(
sj′, aj

)
=

max
aj

Qjt
(
sj′, aj

)
.

The objective of Q-learning is to find the maximum reward
by newly caching and replacing contents. To maximize the
hit ratio of content, we formulate the reward function as the
difference between the gain and the loss for content caching
strategy, i.e.,

Rj
(
sj, aj

)
= Gj

(
sj, aj

)
− Lj

(
sj, aj

)
, (3)

where Gj
(
sj, aj

)
and Lj

(
sj, aj

)
represent the gain and the

loss, respectively. The gain can be obtained by increasing the
number of hits for newly caching content, which is denoted
by

Gj
(
sj, aj

)
=

∑
q+∈Q+(sj,aj)

ϒCP
(
q+
)
+

∑
q+∈Q+(sj,aj)

ϒj
(
q+
)
,

(4)

where Q+
(
sj, aj

)
indicates the set of newly cached contents

by taking action aj at state sj. ϒCP
(
q+
)
and ϒj

(
q+
)
denote

the number of requests that content q+ is hit at content
provider and edge server j, respectively. From Eq. (4), we can
see that if a content q+ is hit many times by mobile users,
a higher gain is brought to edge server j.

Similarly, the loss is calculated based on the decreasing
number of hits for replacing content, which is described as

Lj
(
sj, aj

)
=

∑
q−∈Q−(sj,aj)

ϒCP
(
q−
)
+

∑
q−∈Q−(sj,aj)

ϒj
(
q−
)
,

(5)

where Q−
(
sj, aj

)
is the set of replaced contents by taking

action aj at state sj. Eq. (5) indicates that if a content q− is hit
many times by mobile users, a large loss will be led to edge
server j.

C. COOPERATIVE STRATEGY FOR CONTENT DELIVERY
When a large number of mobile users request contents and
the contents are not cached, edge servers cannot satisfy
the requirements of mobile users. The cooperative scheme
between content provider and edge server is established to
deliver contents. The size of content that mobile users request
from edge server j can be denoted as

Dj =
∑I

i=1

∑Q

q=1
αi,qsq, (6)

where αi,q is a binary value. αi,q = 1 means that mobile user i
requests content q from edge server j and αi,q = 0 otherwise.
Let cj

(
cj ∈ {0, 1}

)
denote the cooperative decision of edge

server j, we have

cj =

{
1, if Dj > sj,
0, otherwise.

(7)

If the contents’ size requested by mobile users is higher
than the caching size of edge server j, edge server j chooses
to cooperate with the content provider (i.e., cj = 1) and cj = 0
otherwise.

To meet the requirements of mobile users, the contents
requested by edge servers are associated with the number of
mobile users and contents. We formulate the requirements of
mobile users as the satisfaction function to obtain the optimal
decision. The cooperative content requested by edge server j
can be calculated by

qCP∗=

⌈
argmax

q
log2

(
1+ ρj

Ni,q
Ni
+
(
1− ρj

) Mi,q

Mi

)⌉+
,

(8)

where d×e+ is the ceiling function. ρj
(
0 < ρj < 1

)
denotes

the weighting parameter of edge server j. Ni,q is the number
of mobile users requesting content q, which satisfies Ni,q ≤
Ni ≤ Ni,max. Mi,q is the number of contents that mobile user
requests, which satisfies Mi,q ≤ Mi ≤ Mi,max.

V. COOPERATIVE SCHEME FOR CONTENT DELIVERY
In this section, the problem formulation is firstly introduced.
Next, we model the cooperative interaction as the double auc-
tion game based incentive. Finally, we obtain the equilibrium
strategy of the game.

A. PROBLEM FORMULATION
1) FOR CONTENT PROVIDER
If edge server cooperates with content provider and reaches
the payment agreement, the utility of content provider is
related to the price paid by edge server. Otherwise, the util-
ity of content provider is zero. We have the following two
cases:

Case 1: Edge server does not cooperate with the content
provider, or the payment agreement between each other is
not reached (i.e., cj = 0). The utility of content provider is
zero.
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Case 2: Edge server cooperates with the content provider
and reaches the payment agreement between each other
(i.e., cj = 1). The utility of content provider can be calculated
by the difference between the price paid by edge server and
the cost of delivering content.

Based on case 1 and case 2, the utility function of content
provider can be denoted by

UCP
(
qCP∗

)
=


Ni,qCP∗∑
i=1

βi,qCP∗
(
Pj,qCP∗−CqCP∗

)
, cj = 1,

0, cj = 0.
(9)

βi,qCP∗ is a binary value of mobile user i. βi,qCP∗ = 1
means that mobile user i obtains content qCP∗ from content
provider and βi,qCP∗ = 0 otherwise. Pj,qCP∗ is the price
that edge server j pays to content provider for delivering
content qCP∗. CqCP∗ denotes the cost of delivering contents
qCP∗, which is related to the transmission time (i.e., C1qCP∗ )
and the number of mobile users (i.e., C2qCP∗ ). We have
CqCP∗ = C1qCP∗ + C2qCP∗ .

Let µCP denote the transmission rate of content provider,
the cost of content delivery can be calculated by

C1qCP∗ = ω1 ·
sqCP∗

µCP
, (10)

C2qCP∗ = ω2 · log2

(
1+

Ni,qCP∗

Ni

)
, (11)

where ω1 and ω2 are the adjustment parameters. sqCP∗ is the
size of content qCP∗ and Ni,qCP∗ is the number of mobile
users requesting content qCP∗. Thus, combining C1qCP∗ and
C2qCP∗ , the cost for content provider to deliver content qCP∗

is

CqCP∗ = ω1 ·
sqCP∗

µCP
+ ω2 · log2

(
1+

Ni,qCP∗

Ni

)
. (12)

2) FOR EDGE SERVERS
The utility of edge server is associated with the strategy
of whether cooperating with content provider. We have the
following two cases:

Case 1:When edge server cooperates with content provider
and reaches the payment agreement (i.e., cj = 1), the utility of
edge server is the difference among the price paid by mobile
users, the cost of delivering content and the price paid to
content provider.

Case 2: When edge server does not cooperate with content
provider (i.e., cj = 0), the utility of edge server is the
difference between the price paid bymobile users and the cost
of delivering content.

Combining case 1 and case 2, the utility of edge server j
can be calculated by

Uj
(
q, qCP∗

)
=



Ni,q∑
i=1

Mi,q∑
q=1

αi,q
(
Pj,q − Cj,q

)
,

cj = 0,
Ni,q∑
i=1

Mi,q∑
q=1

αi,q
(
Pj,q − Cj,q

)
+

Ni,qCP∗∑
i=1

βi,qCP∗
(
Pj,qCP∗−Pj,qCP∗

)
,

cj=1,

(13)

where Pj,q is the price of content q that mobile user pays
to edge server j. Cj,q is the cost for edge server j to deliver
content q. Pj,qCP∗ denotes the price that mobile user pays to
edge server j for obtaining content qCP∗.

Considering the unit price of content, the price that mobile
user pays to edge server j for obtaining content q and qCP∗

can be separately defined as

Pj,q = punit · sq, (14)

Pj,qCP∗ = punit · sqCP∗ , (15)

where punit is the unit price of content. Let ζunit denote the
unit transmission cost, the cost for edge server j to deliver
content q is denoted by

Cj,q = ζunit ·
sq
µj
. (16)

3) FOR MOBILE USERS
The utility of mobile user is associated with the satisfaction
of obtaining contents from edge server or content provider
and the price paid to edge server. The longer the time for
mobile user to obtain content, the lower the satisfaction of
mobile user. The satisfaction function should be a concave
and non-decreasing function for the transmission time, which
can be derived by

S
(
q, qCP∗

)
=ςilog2

[
σ −

(
αi,q

sq
µj
+ βi,qCP∗

sqCP∗

µCP

)]
,

(17)
where ςi is the adjustment parameter. σ is a positive number
to guarantee the satisfaction function is nonnegative. Let
di = 1 denote that mobile user i obtains content and di = 0
otherwise. Therefore, the utility function of mobile user i can
be obtained by

Ui
(
q, qCP∗

)
=

{
S (q)−αi,qPj,q−βi,qCP∗Pj,qCP∗ , di = 1,
0, di = 0.

(18)

B. STRATEGY ANALYSIS
We model the cooperative strategy between edge server and
content provider as the double auction game based incen-
tive. Let θCP,qCP∗ and θj,qCP∗ denote the valuation of content
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qCP∗ for content provider and edge server j, respectively.
The bidding strategy of content provider and edge server
can be separately given by BCP

(
θCP,qCP∗

)
and Bj

(
θj,qCP∗

)
.

If the content provider and edge server reach the payment
agreement, the payment Pj,qCP∗ of content qCP∗ is paid to
content provider by edge server j, which satisfies

Pj,qCP∗=γBj
(
θj,qCP∗

)
+(1− γ )BCP

(
θCP,qCP∗

)
, (19)

where γ (0 < γ < 1) is the proportion coefficient of bidding
strategy. Next, we analyze the valuation of content qCP∗ for
content provider and edge server to obtain the optimal bidding
strategy.

1) FOR CONTENT PROVIDER
The valuation of content qCP∗ is associated with the valuation
of transmission rate, transmission time, transmission cost and
punishment factor, which are listed as follows:

1) Transmission rate. The higher the transmission rate,
the larger the resource consumption (e.g., bandwidth, power,
etc.), and the greater the valuation of content. Let µCP,max
denote the maximum transmission rate of content provider,
we have the valuation of transmission rate as

ν1,CP = log2

(
1+

µCP,qCP∗

µCP,max

)
. (20)

2) Transmission time. If the size of content is lower, and the
transmission rate is larger, resulting in the lower transmission
time and the higher valuation of content. We have

ν2,CP = log2

(
1+

sqCP∗
/
µCP,qCP∗

sqCP,max

/
µCP,max

)
. (21)

3) Punishment factor is the adjustment parameter of valu-
ation of content. Based on the cooperative strategy, the trans-
mission rate of content provider should be not lower than that
of edge server. If the transmission rate of content provider
is lower than that of edge server, the valuation of content is
reduced. Otherwise, the valuation of content is increased, i.e.,

ν3,CP=
(
µCP,qCP∗−µj,qCP∗

)
log2

(
1+

µCP,qCP∗

µj,qCP∗

)
. (22)

4) Transmission cost, ν4,CP = CqCP∗ . It means that the
valuation of content qCP∗ should be higher than the transmis-
sion cost to guarantee that the content provider can obtain
the positive utility. Otherwise, the transaction between edge
server and content provider will be cancelled.

Combining Eqs. (20), (21), and (22) with the transmission
cost, the valuation of content qCP∗ for content provider can
be calculated by

θCP,qCP∗ =
∑3

k=1
ϕk,qCP∗νk,CP + ν4,CP, (23)

where ϕk,qCP∗ (k = 1, 2, 3) are the weighting parameters of
content provider in different cases.

2) FOR EDGE SERVER
The valuation of content qCP∗ is related to the content size,
the number of mobile users, punishment factor and payment
price, which are separately defined as follows:

1) Content size. The larger the content size, the greater the
resource consumption of content delivery, and the higher the
valuation of content. We have

ν1,j = log2

(
1+

sqCP∗

sqCP,max

)
. (24)

2) Number of mobile users. When the number of mobile
users requesting content is larger, more resources will be con-
sumed for content delivery, resulting in the higher valuation
of content, i.e.,

ν2,j = log2

(
1+

Ni,qCP∗

Ni,max

)
. (25)

3) Punishment factor is the adjustment parameter of val-
uation of content. If the transmission rate of edge server is
higher than that of content provider, the valuation of content
is increased. Otherwise, the valuation of content is decreased.
We have

ν3,j=
(
µj,qCP∗−µCP,qCP∗

)
log2

(
1+

µj,qCP∗

µCP,qCP∗

)
. (26)

4) Payment price, ν4,j = Pj,qCP∗ . It means that the valuation
of content qCP∗ should be less than or equal to the price that
mobile user pays to edge server j. Otherwise, the transaction
between edge server and content provider will be cancelled.

Combining Eqs. (24), (25), and (26) with the payment
price, the valuation of content qCP∗ for edge server can be
computed by

θj,qCP∗=ν4,j−
∑2

k=1
φk,qCP∗νk,CP + φ3,qCP∗ν3,j, (27)

where φk,qCP∗ (k = 1, 2, 3) are the weighting parameters of
edge server in different cases.

C. OPTIMAL COOPERATIVE STRATEGY
Based on the valuation of content qCP∗ for content provider,
the utility function of content provider can be rewritten as

UCP
(
qCP∗

)
=

Ni,qCP∗∑
i=1

βi,qCP∗
(
Pj,qCP∗ − CqCP∗

)
=

Ni,qCP∗∑
i=1

βi,qCP∗Pj,qCP∗−

Ni,qCP∗∑
i=1

βi,qCP∗CqCP∗

= UCP
(
qCP∗

)′
+ UCP

(
qCP∗

)′′
, (28)

163904 VOLUME 7, 2019



M. Dai et al.: Q-Learning-Based Scheme to Securely Cache Content in Edge-Enabled HetNets

where 

UCP(qCP∗)′ =

Ni,qCP∗∑
i=1

βi,qCP∗Pj,qCP∗

−

Ni,qCP∗∑
i=1

βi,qCP∗θCP,qCP∗ ,

UCP(qCP∗)′′ =

Ni,qCP∗∑
i=1

βi,qCP∗θCP,qCP∗

−

Ni,qCP∗∑
i=1

βi,qCP∗CqCP∗ .

(29)

Since the bidding strategy of content provider should be
higher than the transmission cost, the optimization problem
for content provider can be described as

Problem 1 :

max
BCP(θCP,qCP∗)

UCP
(
qCP∗

)′
s.t. BCP

(
θCP,qCP∗

)
≥ CqCP∗ . (30)

Based on the valuation of content qCP∗ for edge server j,
the utility function of edge server j can be rewritten as

Uj
(
qCP∗

)
=

Ni,q∑
i=1

Mi,q∑
q=1

αi,q
(
Pj,q − Cj,q

)

+

Ni,qCP∗∑
i=1

βi,qCP∗
(
Pj,qCP∗ − Pj,qCP∗

)
= Uj

(
qCP∗

)′
+ Uj

(
qCP∗

)′′
, (31)

where

Uj(qCP∗)′ =
Ni,q∑
i=1

Mi,q∑
q=1

αi,q
(
Pj,q − Cj,q

)
+

Ni,qCP∗∑
i=1

βi,qCP∗
(
Pj,qCP∗ − θj,qCP∗

)
,

Uj(qCP∗)′′ =

Ni,qCP∗∑
i=1

βi,qCP∗
(
θj,qCP∗ − Pj,qCP∗

)
.

(32)

The bidding strategy of edge server should be lower than the
price that mobile user pays to edge server j for obtaining
content qCP∗, the optimization problem for edge server j can
be obtained by

Problem 2 :

max
BCP(θCP,qCP∗)

Uj
(
qCP∗

)′′
s.t. Bj

(
θj,qCP∗

)
≤ Pj,qCP∗ . (33)

Definition 1 (Equilibrium Strategy): {BCP(θCP,qCP∗ )
∗,

Bj(θj,qCP∗ )
∗
} is the optimal bidding strategy of content

provider and edge server j, if it satisfies the following condi-
tions for any bidding strategy

{
BCP

(
θCP,qCP∗

)
,Bj

(
θj,qCP∗

)}
:

UCP(qCP∗)′
∗
≥ UCP(qCP∗)′ and Uj(qCP∗)′′

∗
≥ Uj(qCP∗)′′.

Based on the bidding strategy of each player, we have the
following cases:
Case 1: If Bj

(
θj,qCP∗

)
< BCP

(
θCP,qCP∗

)
, the transaction

between content provider and edge server j will be can-
celled and the utility of each player is zero. In this case,
mobile user cannot obtain the content (i.e., qCP∗). The content
provider needs to reduce the valuation of content and the edge
server should increase the valuation of content to reach an
agreement.
Case 2: If Bj

(
θj,qCP∗

)
= BCP

(
θCP,qCP∗

)
, the transaction

will be ended with the bidding price BCP
(
θCP,qCP∗

)∗. In this
case, mobile user pays the payment Pj,qCP∗ to edge server j
and the payment Pj,qCP∗ is paid to content provider by edge
server j. Both players can obtain utility from the transaction.
Case 3: If Bj

(
θj,qCP∗

)
> BCP

(
θCP,qCP∗

)
, since each player

wants to obtain more utility from the transaction, the equi-
librium strategy can be obtained by analyzing the bidding
strategy based on the double auction game.

For content provider, substituting (19) into (30), the utility
function for case 3 in Problem 1 becomes

UCP
(
qCP∗

)′
=

Ni,qCP∗∑
i=1

βi,qCP∗Pj,qCP∗ −

Ni,qCP∗∑
i=1

βi,qCP∗θCP,qCP∗

=

Ni,qCP∗∑
i=1

βi,qCP∗

{
γBj

(
θj,qCP∗

)
+ (1− γ )×

BCP
(
θCP,qCP∗

)
− θCP,qCP∗

}
. (34)

The expected utility function of content provider can be
described as

max
BCP

(
θCP,qCP

∗

)E {UCP(qCP∗)′}

= max
BCP

(
θCP,qCP

∗

)
Ni,qCP∗∑
i=1

βi,qCP∗

 γE
[
Bj
(
θj,qCP∗

)]
+ (1−γ )BCP

(
θCP,qCP∗

)
−θCP,qCP∗


× Pr

{
Bj
(
θj,qCP∗

)
> BCP

(
θCP,qCP∗

)}
, (35)

where Pr
{
Bj
(
θj,qCP∗

)
> BCP

(
θCP,qCP∗

)}
indicates the prob-

ability that the bidding strategy of edge server j is higher than
that of content provider.

For edge server j, substituting (19) into (33), the utility
function for case 3 in Problem 2 becomes

Uj
(
qCP∗

)′′
=

Ni,qCP∗∑
i=1

βi,qCP∗
(
θj,qCP∗ − Pj,qCP∗

)
=

Ni,qCP∗∑
i=1

βi,qCP∗

{
θj,qCP∗ − γBj

(
θj,qCP∗

)
− (1− γ )BCP

(
θCP,qCP∗

) }. (36)
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The expected utility function of edge server j can be calcu-
lated by

max
Bj
(
θj,qCP

∗

)E {Uj(qCP∗)′′}

= max
Bj
(
θj,qCP

∗

)
Ni,qCP∗∑
i=1

βi,qCP∗

{
θj,qCP∗ − γBj

(
θj,qCP∗

)
−

(1−γ )E
[
BCP

(
θCP,qCP∗

)] }
×Pr

{
BCP

(
θCP,qCP∗

)
< Bj

(
θj,qCP∗

)}
, (37)

where Pr
{
Bj
(
θj,qCP∗

)
> BCP

(
θCP,qCP∗

)}
is the probability

that the bidding strategy of content provider is lower than that
of edge server j.

LetVqCP∗
min andVqCP∗

max indicate theminimum andmaxi-
mum valuation of content qCP∗, respectively. θCP,qCP∗ follows
the uniform distribution with the interval

[
CqCP∗ ,VqCP∗

max],
while θj,qCP∗ follows the uniform distribution with the interval[
VqCP∗

min,Pj,qCP∗
]
. Therefore, the bidding function of con-

tent provider and edge server j can be separately expressed
as

BCP
(
θCP,qCP∗

)
= aCP + bCPθCP,qCP∗ , (38)

Bj
(
θj,qCP∗

)
= aj + bjθj,qCP∗ , (39)

where aCP and bCP are the valuation parameters of content
provider. aj and bj denote the valuation parameters of edge
server j.
Theorem 1. For content qCP∗, the optimal bidding strategy

of content provider can be given by

BCP
(
θCP,qCP∗

)∗
=
(1− γ )

(
aj + bjPj,qCP∗

)
+ θCP,qCP∗

2− γ
.

(40)

Proof: Refer to Appendix A.
Theorem 2. For content qCP∗, the optimal bidding strategy

of edge server j can be obtained by

Bj
(
θj,qCP∗

)∗
=
γ
(
aCP + bCPCqCP∗

)
+ θj,qCP∗

1+ γ
. (41)

Proof: Refer to Appendix B.
Therefore, the equilibrium strategy is obtained in the

proposed scheme, which is described as {BCP(θCP,qCP∗ )
∗,

Bj(θj,qCP∗ )
∗
}. Based on the optimal bidding strategy, each

player can obtain the maximum utility. The cooperative
scheme for content provider and edge server is shown in
Algorithm 1.

VI. PERFORMANCE EVALUATIONS
This section reports on simulations to evaluate the perfor-
mance of the proposed scheme. The simulation setup is first
introduced, then the numerical results and analysis are given.

A. SIMULATION SETUP
In the simulation scenario, there is a community consisting
of one content provider, 10 edge servers, and 100 mobile
users. There are 1000 contents stored in content provider.

Algorithm 1 : Cooperative Scheme for Content Provider
and Edge Server

1: Input: i ∈ I , j ∈ J , q ∈ Q, sj ∈
[
sjmin, sjmax

]
, sq ∈[

sqmin, sqmax
]
, µj, µCP, ϕk,qCP∗ , φk,qCP∗ , γ

2: Output: Pj,qCP∗ , Pj,qCP∗
3: Phase 1: The optimal content caching decision
4: Initialize Qj

(
sj, aj

)
5: Repeat
6: Edge server j determines its current caching state sjt ;
7: Edge server j selects a content replacement action ajt ;
8: Edge server j calculates the reward by using (3);
9: Update Q-value by using (2);
10: sjt+1← sjt ;
11: ajt+1← ajt ;
12: Until Q-value converges
13: Phase 2: The optimal cooperative strategy
14: for (i = 1; i ≤ I ; i++) do
15: if (content q is cached in edge server j) then
16: Edge server j delivers content q to mobile user i;
17: Mobile user i pays payment to edge server j by using

(14);
18: else
19: Edge server j calculates the content requested from

content provider by using (8);
20: Content provider delivers content qCP∗ to mobile

user i;
21: end if
22: end for
23: The optimal payments Pj,qCP∗ and Pj,qCP∗ are determined

in Phase 3;
24: Phase 3: The optimal bidding strategy for edge server

and content provider
25: for (j = 1; j ≤ J ; j++) do
26: Content provider computes the optimal bidding by

using (40);
27: Edge server j computes the optimal bidding by using

(41);
28: Mobile user pays the payment Pj,qCP∗ to edge server j

by using (15);
29: Edge server j pays the payment Pj,qCP∗ to content

provider by using (19);
30: end for
31: Return: Pj,qCP∗ , Pj,qCP∗ ;

The popularity of each content is determined based on the
Zipf distribution with the exponent value 0.5. The con-
tents are cached in edge servers by the content provider
based on Q-learning. The learning rate λ and discount
factor υ are set to be 0.7 and 0.8, respectively. The
maximum transmission rate of content provider is set to
be 5Mbps. Other parameters in simulation are given in
Table 2 [50], [51].

We compare the proposed scheme with the conventional
schemes, which are listed as follows:
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TABLE 2. Simulation parameters.

FIGURE 2. The changes of bidding strategy with different number of
mobile users.

• The least frequently used (LFU) scheme [52]: In this
scheme, the content is eliminated based on the historical
request frequency. If a content has been accessed multi-
ple times in the past, the content will be requested more
frequently in the future.

• The least recently used (LRU) scheme [53]: In this
scheme, the content is eliminated based on the historical
request records. If a content has been requested recently,
the probability that the content will be requested in the
future is high.

B. PERFORMANCE COMPARISON
In this subsection, we first evaluate the bidding strategy
(i.e., BCP

(
θCP,qCP∗

)
, Bj

(
θj,qCP∗

)
) of the proposed scheme

with different parameters. Fig. 2 shows the changes of bid-
ding strategy with different number of mobile users. As we
can see that the bidding strategy of content provider increases
with the increase of the number of mobile users, while the
bidding strategy of edge server decreases. Moreover, the bid-
ding strategy of edge server is higher than that of content
provider. The reasons for these are as follows: on one hand,
with more mobile users request content, the transmission
cost for content provider becomes high, resulting in the high
valuation of content. Thus, it brings a high bidding strategy to

FIGURE 3. The changes of content’s hit ratio with different number of
iterations.

FIGURE 4. The changes of transmission delay with different number of
iterations.

content provider. On the other hand, the valuation of content
for edge server is inversely proportional to the number of
mobile users. When the number of mobile users increases,
the bidding strategy of edge server decreases.

Next, we study the performance of the proposed scheme by
comparing it with other conventional schemes. Fig. 3 shows
the changes of content’s hit ratio with different number of iter-
ations. It can be seen that the proposed scheme outperforms
the other schemes with different number of iterations. The
content’s hit ratio increases with the increase of the number
of iterations in LFU and LRU. The reasons for these are
as follows: the contents are cached in edge servers based
on the Q-learning and the reward function is designed based
on the gain and loss of caching contents. The optimal content
can be cached in each iteration, which leads to a high hit ratio
in the proposed scheme. As for the LFU and LRU, when the
content request pattern changes, a large number of iterations
should be taken to update the request pattern. As a result,
the hit ratio in LFU and LRU is lower compared with the
proposed scheme.

Fig. 4 shows the changes of transmission delay with differ-
ent number of iterations. As we can see from Fig. 4, with the
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FIGURE 5. The changes of content provider’s utility with different number
of mobile users.

increase of the number of iterations, the proposed scheme can
obtain the lowest transmission delay than other schemes. It is
because that the optimal content can be cached in edge server
based on the Q-learning. More contents can be delivered to
mobile users by edge severs, resulting in the low transmission
delay. As for the LFU and LRU, if the content is not cached in
edge server, more iterations for content replacement are taken
to obtain the objective content. Consequently, the transmis-
sion delay is high in the LFU and LRU.

Fig. 5 shows the changes of content provider’s util-
ity with different number of mobile users. It can be seen
that the proposed scheme can obtain the highest utility for
content provider than other schemes. Moreover, with the
number of mobile users increases, the utility of content
provider increases. The reasons are two-fold: first, with
more mobile users request contents, the number of cooper-
ations between content provider and edge server becomes
large. Second, the optimal bidding strategy is determined
based on the double auction game. Therefore, the proposed
scheme can bring high utility to content provider. As for the
LFU and LRU, without considering the optimal transaction
price, the number of transactions for content provider to
deliver content is low, resulting in the low utility for content
provider.

Fig. 6 shows the changes of edge server’s utility with
different number of mobile users. From Fig. 6, we can see that
the proposed scheme can achieve the highest utility for edge
server compared with other schemes. Moreover, the utility
of edge server increases with the increase of the number
of mobile users. The reasons for these are as follows: first,
with the optimal content caching strategy, the probability
that mobile user obtains content from edge server is high.
The number of transactions between edge server and mobile
users is great. Second, the optimal transaction price is deter-
mined based on the double auction game. Third, the coop-
erative scheme for edge server and content provider can
increase the utility of edge server. Consequently, the proposed

FIGURE 6. The changes of edge server’s utility with different number of
mobile users.

scheme leads the highest utility to edge server than other
schemes.

VII. CONCLUSION AND FUTURE WORK
In this paper, we have proposed a cooperative scheme for
edge server and content provider to improve the efficiency
of content delivery in HetNets. Firstly, the framework with
backbone networks and mobile edge networks for content
delivery is introduced. Secondly, a Q-learning based scheme
for content caching is proposed to cache the optimal content
in edge servers. Thirdly, to improve the QoE of mobile user,
the cooperative scheme for content delivery between edge
server and content provider is modeled as the double auction
game based incentive. The equilibrium strategy is derived by
analyzing the bidding strategy. Finally, the performance of
the proposed scheme is evaluated through simulations. The
simulation results demonstrate that the proposed scheme can
jointly improve the efficiency of content delivery and bring
more utility for edge server and content provider compared
with the conventional schemes.

In the future work, we plan to expand this work from
the following aspects: first, we expect to study the security
content delivery scheme for edge server and remote server
to further improve the reliability of content. Second, we pay
attention to design an energy-efficient scheme for HetNets to
reduce the cost of content delivery.

APPENDIX A
PROOF OF THEOREM 1
Given the bidding strategy of content provider (i.e., θCP,qCP∗ ),
the probability that the bidding strategy of edge server j is
higher than that of content provider can be calculated by

Pr
{
Bj
(
θj,qCP∗

)
> BCP

(
θCP,qCP∗

)}
= Pr

{
aj + bjθj,qCP∗ > BCP

(
θCP,qCP∗

)}
=

aj + bjPj,qCP∗ − BCP
(
θCP,qCP∗

)
bj
(
Pj,qCP∗ − VqCP∗

min) . (42)
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The bidding strategy Bj
(
θj,qCP∗

)
of edge server j follows

the uniform distribution in the interval [aj + bjVqCP∗
min, aj+

bjPj,qCP∗ ]. The probability density function of Bj
(
θj,qCP∗

)
can

be obtained by

fj
[
Bj
(
θj,qCP∗

)]
=

1

bj
(
Pj,qCP∗ − VqCP∗

min) . (43)

Therefore, the expected bidding strategy of edge server j
becomes

E
[
Bj
(
θj,qCP∗

) ∣∣Bj (θj,qCP∗) > BCP
(
θCP,qCP∗

) ]
=

∫ aj+bjPj,qCP∗
BCP

(
θCP,qCP

∗

) fj [Bj (θj,qCP∗)] xdx
Pr
{
Bj
(
θj,qCP∗

)
> BCP

(
θCP,qCP∗

)}
=

∫ aj+bjPj,qCP∗
BCP

(
θCP,qCP

∗

) xdx
aj + bjPj,qCP∗ − BCP

(
θCP,qCP∗

)
=

1
2

[
aj + bjPj,qCP∗ + BCP

(
θCP,qCP∗

)]
. (44)

Substituting (42), (44) into (35), we can obtain

max
BCP

(
θCP,qCP

∗

)E {UCP(qCP∗)′}

= max
BCP

(
θCP,qCP

∗

)
Ni,qCP∗∑
i=1

βi,qCP∗


γ
2

[
aj + bjPj,qCP∗

]
+

γ
2

[
BCP

(
θCP,qCP∗

)]
+

(1−γ )BCP
(
θCP,qCP∗

)
−θCP,qCP∗


×
aj + bjPj,qCP∗ − BCP

(
θCP,qCP∗

)
bj
(
Pj,qCP∗ − VqCP∗

min) . (45)

The first-order derivative of E
{
UCP(qCP∗)′

}
with respect to

BCP
(
θCP,qCP∗

)
is

∂E
{
UCP(qCP∗)′

}
BCP

(
θCP,qCP∗

)

=

Ni,qCP∗∑
i=1

βi,qCP∗


(1−γ )

(
aj+bjPj,qCP∗

)
bj
(
Pj,qCP∗−VqCP∗

min
)+

(γ−2)BCP
(
θCP,qCP

∗

)
+θCP,qCP

∗

bj
(
Pj,qCP∗−VqCP∗

min
)

. (46)

Let
∂E
{
UCP(qCP∗)

′
}

BCP
(
θCP,qCP

∗

) be equal to zero, we have the optimal

bidding strategy of content provider as

BCP
(
θCP,qCP∗

)∗
=
(1− γ )

(
aj + bjPj,qCP∗

)
+ θCP,qCP∗

2− γ
.

(47)

This completes our proof.

APPENDIX B
PROOF OF THEOREM 2
Given the bidding strategy of edge server j (i.e., θj,qCP∗ ),
the probability that the bidding strategy of content provider

is lower than that of edge server j can be expressed
as

Pr
{
BCP

(
θCP,qCP∗

)
< Bj

(
θj,qCP∗

)}
= Pr

{
aCP + bCPθCP,qCP∗ < Bj

(
θj,qCP∗

)}
=

Bj
(
θj,qCP∗

)
− aCP − bCPCqCP∗

bCP
(
VqCP∗

max
− CqCP∗

) . (48)

The bidding strategy BCP
(
θCP,qCP∗

)
of content provider fol-

lows the uniform distribution in the interval [aCP + bCPCqCP∗ ,
aCP + bCPVqCP∗

max]. The probability density function of
BCP

(
θCP,qCP∗

)
can be calculated by

fCP
[
BCP

(
θCP,qCP∗

)]
=

1

bCP
(
VqCP∗

max
− CqCP∗

) . (49)

Therefore, the expected bidding strategy of content provider
becomes

E
[
BCP

(
θCP,qCP∗

) ∣∣BCP (θCP,qCP∗) < Bj
(
θj,qCP∗

) ]
=

∫ Bj(θj,qCP∗)
aCP+bCPCqCP∗

fCP
[
BCP

(
θCP,qCP∗

)]
xdx

Pr
{
BCP

(
θCP,qCP∗

)
< Bj

(
θj,qCP∗

)}
=

∫ Bj(θj,qCP∗)
aCP+bCPCqCP∗

xdx

Bj
(
θj,qCP∗

)
− aCP − bCPCqCP∗

=
1
2

[
Bj
(
θj,qCP∗

)
+ aCP + bCPCqCP∗

]
. (50)

Substituting (48), (50) into (37), we have

max
Bj
(
θj,qCP

∗

)E {Uj(qCP∗)′′}

= max
Bj
(
θj,qCP

∗

)
Ni,qCP∗∑
i=1

βi,qCP∗


θj,qCP∗ − γBj

(
θj,qCP∗

)
−
(1−γ )

2

[
Bj
(
θj,qCP∗

)]
−
(1−γ )

2

[
aCP+bCPCqCP∗

]


×
Bj
(
θj,qCP∗

)
− aCP − bCPCqCP∗

bCP
(
VqCP∗

max
− CqCP∗

) , (51)

The first-order derivative of E
{
Uj(qCP∗)′′

}
with respect to

Bj
(
θj,qCP∗

)
is

∂E
{
Uj(qCP∗)′′

}
∂Bj

(
θj,qCP∗

)
=

Ni,qCP∗∑
i=1

βi,qCP∗


γ
(
aCP+bCPCqCP∗

)
+θj,qCP

∗

bCP
(
VqCP∗

max−CqCP∗
)

−
(1+γ )Bj

(
θj,qCP

∗

)
bCP

(
VqCP∗

max−CqCP∗
)

. (52)

Let
∂E
{
Uj(qCP∗)

′′
}

∂Bj
(
θj,qCP

∗

) be equal to zero, we have the optimal

bidding strategy of edge server j as

Bj
(
θj,qCP∗

)∗
=
γ
(
aCP + bCPCqCP∗

)
+ θj,qCP∗

1+ γ
. (53)

This completes our proof.
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