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ABSTRACT Pattern recognition algorithms have introduced increasingly sophisticated solutions. However,
many datasets are far from perfect; for example, they may include inconsistencies and have missing data,
which may interfere with the classification process. Thus, the use of paraconsistent logic can provide a com-
pelling quantitative analysis approach in classification algorithms because it deals directly with inaccurate,
inconsistent and incomplete data. Paraconsistent logic is considered a nonclassical logic, which enables the
processing of contradictory signals in its theoretical structure without invalidating the conclusions. In this
context, the proposed approach aggregates the power of hybrid classifiers, the low noise susceptibility of
the random forest approach and the robustness of paraconsistent logic to provide an intelligent treatment of
contradictions and uncertainties in datasets. The proposed method is called paraconsistent random forest.
The computational results demonstrated that paraconsistent random forest could classify several databases
with satisfactory accuracy in comparison with state-of-the-art methods, namely, LDA, KNN, and SVM.
Regarding imperfect datasets, the proposed approach significantly outperforms most of these methods in

terms of prediction accuracy.

INDEX TERMS Decision trees, hybrid classifier, pattern recognition, paraconsistent logic, random forest.

I. INTRODUCTION

Despite the sophisticated solutions that are introduced by
pattern recognition algorithms, many datasets are far from
perfect; e.g., many datasets contain inconsistencies and miss-
ing data, which may interfere with the classification process,
as in the case of biological signals [1]-[4]. For instance,
one of the many issues reported in the area of myoelectric
prosthesis control consists that the acquired data is not reli-
able to represent the motion classes because of incomplete
information and signal contaminants. These data inconsis-
tencies interfere in the motion classification, leading to long
and continuous training sessions [2], [4]-[10]. Hence, it is
important to employ an algorithm that can take these elements
into account in order to diminish the added error when con-
fronting incomplete or inconsistent data, being able to main-
tain a stable classification without the need of continuous
interventions. However, many proposed solutions are based in
adaptive methods that continuously check the signal quality
and performs an under demand automatic retraining of the
classification model, that can be very time consuming.
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Thus, a machine learning algorithm that is robust enough
to signal degradations could possibly increase the clinical
and commercial impact of myoelectric prosthesis. A robust
algorithm could also be beneficial in others contexts that is
necessary to deal with uncertain data [11]-[13].

Via the use of nonclassical logic, one can incorporate an
additional step for improving the robustness and accuracy
of the decision-making method. Paraconsistent logic (PL) is
considered a nonclassic logic because it enables the treatment
of contradictory signals on their theoretical structure in a
nontrivial manner without invalidating the conclusions [14].
Paraconsistent logic has been applied in diverse areas, such
as image analysis, medical disease diagnosis, and character
and voice recognition [11], [15]-[18]. These studies reported
that PL is highly suitable for pattern recognition because it
can deal with imprecise, inconsistent and paracomplete data.
Similar approaches, which differ in terms of topology, were
also used to handle nondeterministic scenarios [19]—[21].

Another well-known algorithm is the random forest (RF).
Random forest can be considered an extension of deci-
sion trees because this methodology uses several uncorre-
lated decision trees for decision making, thereby increasing
the accuracy with low noise susceptibility, especially when
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dealing with stochastic signals [22]. When comparing RF
to traditional statistical methods, it shows advantages when
dealing with a high number of nonlinear iterations between
independent variables and discrete target values. Also,
it offers other advantages such as comprehensibility and mea-
sures of the variables importance [23]. RF is also an efficient
algorithm that can handle large datasets [22]—[24] and has a
proving record in dealing with noisy data [25], [26].

In the literature, although several algorithms based on
nonclassical logic, such as fuzzy logic [13], [19], [21], [25],
[27]-[31], have been proposed to deal with noise or lack
of information, the hybridization of the random forest and
paraconsistent logic has not yet been carried out. The absence
of such kind of algorithms represents an interesting knowl-
edge gap in the area of artificial intelligence. Therefore, the
contribution of this work is the proposal of a novel classifier
that is based on an ensemble of paraconsistent decision trees.
The primary objective is to merge paraconsistent logic with
random forest in a manner that utilizes the full capacity of PL
for dealing with inconsistencies, the comprehensibility that is
generated by decision trees and the low noise susceptibility
of the random forest approach for use in contexts involving
non-ideal data.

Additionally, a hybridization of the techniques of ran-
dom forest and paraconsistent trees can expand its repre-
sentative influence and, as a consequence, its applicability.
It has advantages that enable the algorithm to deal more
efficiently with the noisy and incomplete data that are typical
of advanced real-world applications in order to mitigate the
effects of theses contaminants on the classification accuracy,
on which this type of algorithm can excel compared to others.

Il. THEORETICAL BACKGROUND

A. DECISION TREES

Decision tree is a well-known algorithm in the literature
for several reasons [22], [25], [32]-[34]: First, the gen-
erated model is highly comprehensible, which facilitates
understanding [25]. Second, its accuracy, especially if used
with an ensemble of decision trees, is comparable or supe-
rior to other well-known algorithms in the area of pattern
recognition [22], [25]. Another important consideration is
that decision trees have very few parameters that require
adjustment, which renders the model less complicated to
define.

A widely used technique is the ID3 algorithm, which was
proposed by Quinlan [32], in which the system can han-
dle symbolic domains. Additionally, ID3 assumes discrete
domains with small cardinalities. This may help increase
the comprehensibility of the generated model, compared to,
for instance, the CART algorithm. CART creates numerous
thresholds for partitioning numerical data, thereby reducing
the comprehensibility of the generated model due to extensive
data partitioning [33]. However, although ID3 is easier to
understand, prior data partitioning is required. Both methods
use recursive partitioning to learn and create a discriminative
model, in which the details are represented in a tree.
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Decision tree is also widely used as a base classifier in
ensembles. For creating an ensemble, several techniques are
available [35]. One of the most famous is random forest [22],
which combines two techniques to generate a set of uncor-
related decision trees. Random forest uses the bagging tech-
nique, in which each classifier is created with a distinct data
set that is obtained from the training data set via resampling
with replacement. An adaptation of the randomization tech-
nique that was proposed by Dietterich [35] is also used in
random forest, in which the 20 best attributes are selected in
each node and one is randomly selected to split it.

Nonetheless, in supervised learning, one of the most impor-
tant aspects is the training set, whose classes are known in
advance. The main strategy of supervised learning is to create
a set of rules that can determine the class of any object
from a set of attributes [32]. However, the available attributes
cannot always deal with object ambiguity. For instance, if the
training data contain two objects with identical values, it is
impossible to distinguish them, even if these objects belong
to different classes; hence, there is a contradiction in the
database. Therefore, the use of binary categories may not be
the best option, depending on the type of signal. In this case,
the use of nonclassical logic can improve the robustness to
the decision algorithm if there may be contradictions in the
system [36].

B. PARACONSISTENT LOGIC

Most common technologies are based on classical logic,
namely, most of the machine decision basis is binary. How-
ever, this strictly binary topology does not accord with the
human decision basis, which does not always result in a
binary output. This complexity was the motivation behind
nonclassical logic research since they could provide a supe-
rior logical decision in situations that involve, for example,
uncertain, ambiguous, or contradictory information [21].

Paraconsistent logic was proposed approximately in 1910
by J. Lukasiewicz and N.A Vasilév independently. They envi-
sioned the possibility of a logic that predicted contradictions
in its basic structure [37]. However, only in 1954 was the
initial system of paraconsistent logic (PL) developed, which
included propositional calculations and all logic levels, by da
Costa [38]. Over the years, paraconsistent logic continued to
evolve, which enabled the manipulation of inconsistent sys-
tems without eliminating contradictions [37]. For instance,
a PL can be considered a discriminating logical system that
deals with data contradictions and uncertainties [19].

The paraconsistent annotated logic propositions corre-
spond to the type p(u, A), wherein p is a proposition and
their evidence degrees (or annotation constants) are p and
A € [0, 1]C fR, where p denotes the favorable evidence
degree of p and X the contrary evidence degree of p [17].

The certainty degree and the uncertainty degree are defined

as:
Ge=(m—2) ey

Gun=Wm+2r—-1) 2
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TABLE 1. Values of G ¢ and G yn and the corresponding logic states.

(Ge, Gun) Logic State
(1.0, 0.0) True
(-1.0, 0.0) False
(0.0, 1.0) Inconsistent
(0.0, -1.0) Paracomplete

We analyze the lattice with G, Gy, € [—1, +1] C R, and
the four extreme logic states that are presented in Table 1 with
the corresponding values of G, and Gyy.

Gun(u, A) represents the distance of the annotation constant
(u, A) from the inconsistent or paracomplete state. Similarly,
Gc(u, 1) represents the distance of the annotation constant
(u, A) from the true or false state [11].

The real certainty degree (Gy) is obtained through the
values of G, and Gy,,. The projection of the ordered pair (G,
Guyn) onto the certainty degree axis attenuates the effects of
their contradiction [18]. Then, the real certainty degree is
based on (3) if G¢ > O or (4) if G¢ < O:

Gre

1- \/<1 —1Gc)* + (Gun)*,  forGe >0 (3)

Gre = /(1 —1Gel? + (Gu)? — 1, forGe <0 (4)

To create a paraconsistent network, in which the output
of a node can be used as an input to another, G, must be
normalized. The resultant real evidence degree (igRr) is based
on the normalized value of G,. and is defined as (5):

Ger + 1
2

MER = 5

The paraconsistent analysis nodes (PANs) are based on
paraconsistent logic fundamentals. The PANs consist of an
algorithm for treating and controlling signs of imprecise and
contradictory information [7], [8]. Contrary to the theory of
probability, favorable evidence and contrary evidence are not
directly related. For instance, in the theory of probability, the
favorable evidence of an event C is specified by p(C), which
indicates the probability of occurrence of C. Thus, the prob-
ability of belief —C is 1-p(C). This relation is not considered
valid in paraconsistent annotated logic [39]. Therefore, it is
possible to obtain the real evidence degree (WER) from two
input evidence items that are related to the same proposition,
which are denoted as w1 and puy (A2 = 1 — uy), as described
in Algorithm 1.

Thus, a random forest with a paraconsistent decision tree
as a base classifier is proposed. Among the various ensemble
techniques that are based on decision trees, random forest
was chosen because, similar to boosting, it generates the
best results in terms of accuracy and noise susceptibility [3].
In addition, a multiple classifier system provides, as an advan-
tage, improvements in the results in terms of noise resistance
compared to an individual classifier, as concluded in [8].
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Moreover, the use of paraconsistent decision trees can pro-
vide the random forest with the advantages of this type of
technique, which were discussed previously: an increased
noise resistance and extended applicability to uncertain or
vague contexts. In the present study, paraconsistent logic is
used such that the pattern recognition system is considered to
have an intrinsic certainty degree that considers the contra-
dictions and uncertainties of the system [40].

Algorithm 1 Paraconsistent Analysis Node (PAN) Algorithm
Function PAN(in: input evidence degree w, where 0<
u1 <I, and input evidence degree w,, where 0< u, <I;
out: nE)

1. Calculate the unfavorable input evidence degree:
A= 1—pu
2. Calculate the degree of contradiction:
_ (utr)
/J/clr — 2
3. Calculate the certainty degree:
Gec=u—A
4. Calculate the uncertainty degree:
Gun = (/fL + }‘) —1
5. Calculate the vector that is formed by G¢ and Gyp:
D=1 —1Gc)?+ (Gun)?
6. Determine the quadrant to which G, belongs to and
calculate the projected value G, of the pair [G., Gyy] on

the G axis:
If (G.>0): G=1-D
If(G.<0): Gp=D-I
If (G.==0): G,=0
7. Calculate the output value:
pE = ©xth
end

Ill. PARACONSISTENT RANDOM FOREST: AN ENSEMBLE
THAT IS BASED ON PARACONSISTENT DECISION TREES
The proposed method is a random forest of paraconsistent
decision trees, namely, an ensemble of classifiers that are
based on Breiman’s methodology. The method is referred to
as paraconsistent random forest (PRF) in the text.

As a precondition for the PRF classification system,
the input data must be partitioned into multiple domains with
a corresponding pertinence degree. To calculate the inconsis-
tency among samples, it is essential for the divided partitions
to be fuzzy, instead of crispy, sets. Nonetheless, considering
that the data are fuzzy, a data sample can belong to more than
one partition; hence, it is possible to deal with this type of
inconsistency in a nontrivial manner based on the principles
of paraconsistent logic.

A. DOMAIN PARTITION PREPROCESSING

The fuzzy C-means algorithm (FCM) is used to obtain the
domain partition of the input dataset by creating clusters
from the inputs and defining Gaussian membership functions
that are based on the calculated clusters. In fuzzy C-means
clustering, each data item belongs to one or more clusters
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with a pertinence degree that is specified by membership
grades that vary between 0 and 1. This method, which was
developed by Dunn in 1973 and improved by Bezdek in 1981,
is commonly used in pattern recognition [41]. It is based on
the minimization of the following objective function:

N C
Im = Z,‘:] Zj:l uZl ”xi - C/|

where m is any real number that is greater than 1, u; is
the degree of membership of x; to cluster j, x; is the ith d-
dimensional measured data item, and ¢; is the d-dimensional
center of the cluster. The data are partitioned via the iteration
of the function that is specified above and the membership u;;
and the cluster centers ¢; are updated by:

2

l<m<oo (6)

1 S X
Ujj = 5 Cj = N—m (7)
5 (||xf—c~,-||)rn—l 2im1
k=1 \ Toxi—cll

The termination criterion for the iteration depends on the
condition max;; H”l('/]'(H) — uf‘/l
tion criterion that is between 0 and 1 and k is the number of
iteration steps. The process of iteration converges to a local
minimum of the objective function J,,,.

As discussed above, the data belong to each defined cluster
according to the representation of a membership function.
These membership functions are responsible for the fuzzy
behavior of the algorithm, in which the same data do not
belong exclusively to a well-defined cluster. In this sense,
the membership function indicates that each datum may
belong to several clusters with various values of the mem-
bership coefficient [41].

Another important consideration is that this research is
focused not on the fuzzy domain partitioning method, but
on the paraconsistent random forest algorithm. The fuzzy
domain partition is only used as a preprocessing stage.

} < ¢, where ¢ is a termina-

B. PARACONSISTENT RANDOM FOREST ALGORITHM
Breiman [22] proposed a random forest in which the deci-
sion trees can get as deep as the data permit and no prun-
ing is used. However, to construct each tree with low data
correlation, Breiman’s methodology includes two stochastic
elements during the tree construction. The first stochastic
element is found in the dataset input selection, where a
technique called bagging is used to select data for each tree
randomly. The second stochastic element is formed by ran-
domly selecting, at each node, a small group of input variables
for splitting [22], [25]. These randomizations can provide a
superior solution in terms of prediction accuracy due to the
diversity that is generated by the various trees, as described
in Algorithm 2.

Moreover, the random forest involves two parameters: the
number of trees and the number of subset attributes for the
node split. In the paraconsistent random forest, the size of the
subset is a fixed value that is based on the number of features
(\/ﬁ ), as proposed by Breiman [22]. Thus, the number of
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Algorithm 2 Paraconsistent Random Forest
Function PRF (in: samples E, number of trees T, domain
partition of the samples DP; out: PRF)
1. Fort=1to T
1.1. Et = Bagging (E)
1.2. ParaconsistentTrees(t) =
sionTree (Et, DP)

2. PRF = ParaconsistentTrees

ParaconsistentDeci-

end

trees is the only significant parameter in the paraconsistent
random forest method.

C. PARACONSISTENT DECISION TREE ALGORITHM

The paraconsistent decision tree algorithm is based on a
modification of the ID3 algorithm, which was proposed by
Quinlan [32]. Typically, in the ID3 algorithm, an attribute is
divided into one or more categories and the training example
memberships to these partitioned sets are binary, namely,
a sample either belongs or does not belong to that parti-
tion [33]. However, in the proposed modification, the parti-
tioned sets are fuzzy and, therefore, elements of nonclassical
logic must be employed. Paraconsistent logic is employed to
deal with the inconsistencies of the fuzzy domain partition.
Apart from the adaptations in the inference procedures and
the domain partition, the basic elements for building a deci-
sion tree are respected. The following are the notations that
are used to describe the proposed algorithm:

« E represents the set of samples that are used to build the

tree, where EN represents the samples that belong/lead
to node N;
« Crepresents the set of classification classes;
« FN denotes the feature set that leads to node N
o The set of features in node N is represented by FN = {F,
Fz, F3, ...Fi};

« PNand IV denote the total example certainty degree and
total information gain, respectively, of node N;

o I5F represents the calculated standard information for
feature i (F;);

. Gév = IV — ¥ represents the calculated information
gain for feature i (F;) in node N;

. Piv represents the propagated sample certainty degree
for class Cy in node N;

o« XN= {XJN} is the set of propagated certainty degrees of
the samples j that belongs to node N;

o ufy denotes the degree of membership on a specified

fuzzy partition.

The algorithm must initialize the variables XR°° and TRo°t
to 1, as the root node represents the entire description space
of a tree [33]. Additionally, the root node contains all training
samples of the tree, which were previously selected in the
bagging step, as specified in Algorithm 2 [22]. In each iter-
ation, the algorithm obtains a random subset of the available
attributes to be analyzed and selects the best attribute for
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the current node split. To select the best attribute, a popular
method is to maximize the information gain [25]. This mech-
anism is computationally simple, as it assumes independence
of the attributes [33]. Moreover, to calculate the information
gain (IN) of the node, it uses equations (8) and (9):

N N
N _ e [ Py Py N _ €
" = —Zkzl N -log, ZaE P = Zk:l Py ®)

N _ \E N
P = Z,'lej )

In the standard ID3 algorithm, the Pfcv function counts the
total number of samples that belong to class k. If the partition
is binary, a sample can belong or not to the attribute partition
X jN can be 0 or 1). Therefore, the value of Piv corresponds to
the total number of samples j that satisfy the conditions that
lead to node N.

However, to use a fuzzy domain partition, changes are
required in the algorithm if a sample can belong to one or
more clusters [33]. For the proposed method, the influence
value of each sample XJN is calculated according to the
paraconsistent certainty degree of the previous node and the
degree of membership of the sample to fuzzy partition pf;
via the PAN algorithm (1). Therefore, the value of X].N corre-
sponds to the certainty degree with which sample j satisfies
the conditions that lead to node N. The function is defined as
follows (10):

XY = PANCG ! uf ) (10)

As discussed previously, paraconsistent logic accepts that
the data from an attribute may not always be available, as is
the case of many practical applications. In the case of a
missing feature (uf; = NaN), XjN = PAN(Xijl, ufy) is
0.5, which represents the unknown value according to the
principals of paraconsistent logic [24].

After the node information gain IV is determined, the algo-
rithm selects a random subset of features of size +/FN for a
possible node split. Due to the randomness, not all attributes
are considered for each split. However, the attributes that are
not selected in a split can be used by other splits in the same
tree once the algorithm has recursively selected only features
that have yet to be used.

To select the optimal feature for splitting the node, the stan-
dard information gain for each feature (/%) must be cal-
culated. The standard information gain is calculated via the
same approach as the node information gain (IV), but with
a restriction that the information is calculated only for the
selected feature F;.

Therefore, the feature that maximizes equation (11) repre-
sents the most substantial information gain that is calculated
in that subset and that feature is selected for splitting the node.

GN =1V -5 (11)

Subsequently, the child node conditions are generated from
the domain partition of the selected feature. Thus, the samples
that belong in the parent node are partitioned into child nodes
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according to those conditions [33]. Additionally, if there is no
training sample to support a partition, the child node will not
be generated [32].

Consequently, the decision tree is built with each node that
represents the selected feature on which the domain partition
was split and the terminal nodes (or leaf nodes) that represent
the class label of the final subset of this branch [32]. The
decision tree growth is terminated (a leaf node is obtained)
if one of the following conditions is satisfied:

« A node is pure, namely, all remaining samples belong to
the same class. In this case, the node becomes a leaf and
is labeled with the corresponding class of the samples.

o There are no available features for the split node, but
the samples still do not belong to the same class. Then,
the node is converted into a leaf and labeled using major-
ity voting to select the class to which more samples are
associated in the subset.

Algorithm 3 Paraconsistent Decision Tree
Function ParaconsistentDecisionTree (in: E, DP, X)
1. Define XN=root — |, [N=Root _
2. If leaf node (termination criteria)
2.1. Leaf Node Class = Ck
2.2. end

3. Calculate the information gain of the node (IN)
4. Randomly select a subset of features (v FV) for pos-
sible node splitting

4.1. Calculate the standard information gain of each
selected feature F; (I57)

5. Select the feature F; for node splitting that maximizes
the equation ny =[N — 5

6. Split the node using the selected attribute (F;). Iden-
tify all feature domain partitions that contain an
example of set EN

7. Create the subnodes with all valid feature domain
partitions (DPs) from Feature F;

8. ParaconsistentDecisionTree (in: EN, DP, X): recur-
sive function

end

In Algorithm 3, the tree only considers the features that are
necessary for obtaining a path; thus, the tree is not required
to use all available features.

Furthermore, the proposed paraconsistent random forest
can combine the major concepts of Breiman’s random forest
with paraconsistent logic, as described in Algorithms 2 and 3.

D. PARACONSISTENT DECISION TREE EVALUATION

The paraconsistent tree evaluation procedure is almost the
same as that of ID3. The main difference is that a sample
traverses every path of the tree and all leaves generate a
certainty degree that is associated with the corresponding
class.
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The certainty degree of each leaf is calculated from the
propagation degree of the path using the function XjN , which
was described previously. Therefore, each leaf has an asso-
ciated class, which is associated with a calculated certainty
degree, as described in Algorithm 4.

At this stage, the evaluation of a sample generates several
certainty degrees and associated classes. To reach the final
decision and to define the winning class of the forest, it is
necessary to define one or more decision-making approaches,
which will be presented in the following.

Algorithm 4 Paraconsistent Decision Tree Evaluation
Function ParaconsistentDecisionEvaluation (in: e, DP,
X, out: leaf)

1. Define XN=root — |
2. If the node is a leaf:
2.1. leaf(N) = [Cy, XJN]
2.2. end
3. XJN“: PANCXY, ufy)
4. ParaconsistentDecisionEvaluation (in: e, DP, XN+1):
recursive function

end

E. DECISION-MAKING APPROACHES

Based on the paraconsistent decision tree evaluation that is
described above, every leaf i of every tree ¢ has a correspond-
ing class (Ck) with a certainty degree (ugr), which can be
represented by the vector leaf(i,t)=[Cy, ugr]. To calculate the
final classification that is assigned to a sample, it is necessary
to define two strategies: Strategy (1), which regards the forest
as a unique classificatory system, and Strategy (2), which
considers the individual classification of each tree in the
forest prior to the final class decision-making.

Strategy (1): Considering the certainty degree values of all
leaves in the forest, for identifying the class with the highest
associated degree, two approaches are proposed:

o Average forest (AF): Calculate the average certainty
degree for each class by considering the values of all
leaves in the forest and choosing the class according to
arg max, as follows:

AvgUg(ck) = average (leaf (Cx == k));
ForestClass = argmax(AvgUe;);

o Paraconsistent forest (PF): Calculate the -certainty
degree for each class via the paraconsistent extractor
algorithm (ParaExtr), which considers the values of
all leaves in the forest, and choose the class according
to arg max, as follows:

AvgU.,(ck) = ParaExtre(leaf (Cx == k));
ForestClass = argmax(AvgUe,);

The ParaExtre, algorithm, which was proposed by [42],
is an algorithm for removing the effects of contradictions
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from uncertain knowledge databases that employ PANS.
Considering that the PRF algorithm provides a list of cer-
tainty degrees G, for each associated class that represent
the calculated values for each possible path of the trees,
the ParaExtry, algorithm selects the maximum and minimum
evidence degrees (tmax and min) for composing the PAN
input. The primary objective of PANS is to extract the con-
tradiction effect by calculating the resulting evidence degree
between inputs i (4 = fmax) and A (A = 1 — pmin). The
two evidence degrees from G, are replaced by the resultant
evidence degree (ur1). This process is repeated until only one
evidence degree remains in the evidence degree list G, [16],
as represented in Algorithm 5. At the end of this process, each
class will correspond to a unique recognition evidence degree
(uM), which is the representative value of all considered
leaves.

Algorithm 5 Paraextr . Algorithm [42]
Function ParaExtr(in: G, out:uM)
1. Receive an input list of certainty degrees
Gy = (UE |, uEy, KE3, uEy, REs...)
2. Find from the list the maximum value
Mmax = max (Gy,)
3. Find from the list the minimum value
Mmin = min (G,)
4. Calculate the resulting evidence degree using the min
and max values as inputs of a PAN
ur1 = PAN (Wmax> Mmin)
5. Substitute the identified max and min values and add
the calculated resulting evidence degrees
G/L = G,u — Mmax — Mmin + LRI
6. Return to step 2 and continue until the length of G, is
1.
7. The output value is the last remaining evidence degree
from the list
uM =G,

end

Strategy (2): This strategy determines the winning class for
each tree (using the arg max approach) and selects the global
forest classification using the majority voting technique.

o Average tree with majority voting (ATMV): Calculate
the average certainty degree for each class by consid-
ering the values of all leaves in each tree. Choose the
winning class of the tree according to arg max. Finally,
majority voting is used to select a unique class of the
forest by considering the individual classification of
each tree.

« Paraconsistent tree with majority voting (PTMV): Cal-
culate the certainty degree for each class using the
paraconsistent extractor by considering the values of all
leaves in each tree. First, it is necessary to choose the
winning class of the tree according to arg max.Then,
define a single classification of the forest via majority
voting based on the single classification of each tree in
the forest.
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FIGURE 1. Average classification accuracies for the selected datasets and classification methods.

TABLE 2. Dataset characteristics.

Dataset Abbr. # instances # features # classes
Iris Plant IRS 150 4 3
Breast Cancer

Wisconsin PBC 198 34 2
(Prognostic)

Breast Cancer

Wisconsin DBC 569 32 2
(Diagnostic)

Glass

Identification GLA 214 10 6
Wine WIN 178 13 3
Cancer CNC 216 4000 2

IV. RESULTS AND DISCUSSION

The test methodology is used to obtain several results on
various datasets, which are used to evaluate the accuracies
of the proposed PRF and all proposed decision-making algo-
rithms. Additionally, the test experiments utilize a dataset
degradation approach to evaluate the accuracy and behavior
when dealing with imperfect data, for example, missing and
noisy values. Moreover, the PRF algorithm is compared to
well-known algorithms in the area of pattern recognition clas-
sification, such as RF, SVM, LDA, and KNN. The datasets
that are selected for the test methodology belong to the UCI
repository [43], which are commonly used for benchmarking,
and their characteristics are listed in Table 2.

Table 2 lists the dataset name, the corresponding abbrevi-
ation “‘abbr”, and other essential characteristics, namely, the
total numbers of features, classes, and samples. The use of
well-known datasets is important because it facilitates com-
parison with other algorithms in the scientific community.
During the construction of the PRF trees, no pruning was
used, namely, the trees were constructed to their maximum
size. Additionally, the forest size for all datasets was defined
empirically with a fixed value of 100 trees.
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Moreover, the accuracy of the PRF algorithm was calcu-
lated for all decision-making algorithms that are proposed
for the paraconsistent random forest. The average accuracy
is plotted in Figure 1, along with those of other well-known
algorithms on six selected databases. According to the eval-
uation of the results of the PRF ensemble against those that
were obtained by a series of classifiers and multiclassifiers,
the PRF ensemble is an efficient classifier, with similar aver-
ages to those that are obtained with well-known algorithms.
The exception is the GLA database, on which the PRF method
obtained inferior classification results, with a difference of
~5%. This difference could be explained by the challenge of
generating a suitable fuzzy domain partition using the simple
method of fuzzy C-means.

A. EFFECT OF ABSENT DATA

To further evaluate the performance of the PRF in deal-
ing with inconsistent data, a percentage a% of missing
values were introduced in the datasets. Considering that each
dataset contains £ samples and each sample has M attributes,
a%(ExM) values were randomly selected among all the uni-
formly distributed attributes. Each selected value, which cor-
responds to an example and to an attribute, was substituted
by NaN. The classification models were created using the
complete available information and the missing data were
introduced only in the testing datasets. The objective of this
evaluation is to determine how well the algorithms behave
when dealing with incomplete datasets after the modeling,
since this can occur in real-world applications.

To visualize the impact in terms of the prediction accuracy
as a function of the defined percentage of missing values o %,
the decrease in the percentage of the average classification
accuracy was computed as follows (12):

Ydecreaseaccuracy = AO — AM (12)

where AM is the average classification accuracy for the
modified dataset with the addition of missing data and
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TABLE 3. Average decrease in accuracy when introducing missing values.

Algorithm % decrease in accuracy
@ % of added missing values
5% 10% 30% 50% 70% 90%

PRF,; 0.00% 2.82% 7.05% 12.68% 22.54% 21.13%
lll PRF,; 1.39% 5.55% 9.72% 11.11% 20.83% 20.83%
S PRF 1y 0.00% 2.78% 5.55% 11.11% 20.83% 19.45%

PRFpyy 1.39% 4.17% 4.17% 8.33% 19.45% 22.22%
p PRF,; 0.00% 1.35% 4.05% 0.00% 0.00% 8.11%
B PRF,; 1.43% 571% 1.43% 10.00% 10.00% 8.57%
Pe PRF 1y 1.32% 2.63% 7.89% 11.84% 14.47% 11.84%

PRFp v 0.00% 0.00% 1.39% 12.50% 11.11% 5.56%
D PRF,; 0.76% 0.76% 1.52% 2.68% 8.02% 6.49%
B PRF,; 2.26% 1.51% 1.88% 5.66% 12.08% 9.81%
C PRF 0.38% 0.00% 0.00% -0.76 % 4.51% 3.38%

PRF,p v 0.00% -0.38%  -0.38% 0.38% 6.39% 4.89%
G PRF,; 2.02% -2.05% 10.19%  10.19% 26.52% 22.45%
L PRF,; -2.13% 2.13% 6.38% 10.64% 3191% 17.02%
A PRF ;v 0.00% -191%  -5.76% 1.93% 7.69% 13.48%

PRFppyv 1.86% -1.86% 3.69% 0.00% 29.63% 22.22%
W PRF,; 0.00% 0.00% 3.33% 3.33% 11.11% 23.33%
1 PRF 0.00% 4.87% 8.54% 14.63% 19.51% 26.82%
N PRFuy 0.00% 241% 8.44% 13.25% 21.69% 25.30%

PRF 0y 247% 3.710% 6.18% 11.11% 11.11% 24.69%
c PRF,; 0.00% 4.87% 8.54% 14.63% 19.51% 26.82%
N PRF,; 0.00% 241% 8.44% 13.25% 21.69% 25.30%
c PRF 1y 2.47% 3.70% 6.18% 11.11% 11.11% 24.69%

PRFppyy 0.00% 1.20% 8.44% 7.22% 12.05% 16.86%

AO is the average classification accuracy for the original
dataset.

Table 3 lists the average decreases in accuracy for the
PREF algorithms with the four decision basis variations. In the
worst-case scenario, with 90% imperfect values in the testing
dataset, the maximum decrease in accuracy was only 19.45%
in the IRIS database via the PRFarmy approach. Consider-
ing only 5% missing values, the proposed algorithm could
maintain the average accuracy with no significant decrease
in classification performance.

Likewise, the decrease in accuracy results were also com-
pared with those of other well-known classifiers in the area
of pattern recognition, as presented in Table 6. In most cases,
5% of missing values resulted in a significant decrease in
the prediction accuracy for methods SVM, KNN and LDA,
which varied from 8% to 45% increase in the classification
error.

The proposed paraconsistent random forest outperforms
other algorithms in dealing with missing values. The PRF
classification accuracy is not affected by the 5% missing
values and with 90% invalid data, the classification error
increases by 3%-18.67%, depending on the database. The
increase in the error is larger when the database has more
classes, as in the Wine and Iris Plant datasets.

Analyzing Figure 2, for algorithms SVM, KNN, and LDA,
5% replacement of the data already has a severe impact on the
classification performance, with an accuracy reduction that
ranges from 8.26%-45%. For 30% invalid data, the reduction
in accuracy for these algorithms reaches a rate of at least
22.02%. In comparison to the proposed method, the impact
of the addition of invalid values only becomes noticeable
from 30%, for which the maximum error was approximately
8%. However, on the databases (GLA, DBC, and PBC), the
decrease in the classification performance remains low up
to 90% invalid data and varies between 3-6.42% for the
proposed algorithm
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TABLE 4. Algorithm comparison of the average decrease in accuracy
when introducing missing values.

Algorithm % decrease in accuracy
Q% of added missing values
5% 10% 30% 50% 70% 90%
PRF 0.00% 2.78% 4.17% 8.33% 19.45% 19.45%
I RF 0.00% 1.42% 2.82% 7.05% 12.68% 18.32%
R LDA 15.28% 29.17% 45.83% 59.72% 61.11% 63.89%
S SVM 15.28% 30.55% 45.83% 59.72% 61.11% 63.89%

KNN 14.09% 29.58% 45.07% 59.15% 60.57% 63.38%
PRF 0.00% 0.00% 1.39% 0.00% 0.00% 5.56%

P RF -3.92% 8.50% 1291% 21.24% 23.37% 25.49%
B LDA 22.22% 25.49% 25.49% 25.49% 25.49% 25.49%
C SsvVM 11.11% 11.11% 11.11% 11.11% 11.11% 11.11%
KNN 11.15% 23.99% 2297% 22.97% 2297% 22.97%
PRF 0.00% -0.38% -0.38% -0.76% 4.51% 3.38%
D RF 0.36% 0.36% 0.73% 1.81% 5.45% 8.36%
B LDA 27.74% 32.85% 34.67% 34.67% 34.67% 34.67%
C SsSvM 28.26% 32.97% 35.14% 35.14% 35.14% 35.14%
KNN 27.71% 3221% 32.95% 32.95% 32.95% 32.95%
PRF 0.00% -191% -5.76% 1.93% 7.69% 13.48%
G RF 0.00% -12.96% -5.55% -11.12% 0.00% 11.10%
L LDA 13.64% 33.33% 40.91% 43.95% 42.43% 42.43%
A SVM 15.88% 27.34% 46.04% 44.45% 44.45% 44.45%
KNN 17.46% 26.99% 38.10% 39.69% 39.69% 39.69%
PRF 0.00% 0.00% 333% 3.33% 11.11% 23.33%
w RF 0.00% 1.20% 8.44% 7.22% 12.05% 16.86%

-

LDA 30.68% 39.77% 54.55% 57.96% 59.09% 59.09%
N SvM 46.19% 59.18% 71.24% 72.17% 72.17% 72.17%
KNN 31.03% 39.08% 54.03% 57.47% 58.62% 58.62%
PRF 0.00% 1.20% 6.18% 7.22% 11.11% 16.86%
RF 0.00% 0.00% 3.33% 3.33% 11.11% 23.33%
LDA 30.68% 39.77% 54.55% 57.96% 59.09% 59.09%
SVM 46.19% 59.18% 71.24% 72.17% 72.17% 72.17%
KNN 31.03% 39.08% 54.03% 5747% 58.62% 58.62%

aza

TABLE 5. Average decrease in accuracy when introducing noisy values.

Algorithm % decrease in accuracy
Q% of added missing values
5% 10% 30% 50% 70% 90 %

c PRF,, -0.61% 0.61% 2.45% 3.07% 6.44% 12.88%
N PRF,; 0.31% 0.00% 2.45% 245% 5.81% 10.40%
c PRF ;v 0.31% 0.61% 245% 1.83% 4.89% 9.79%

PRFpyy 0.00% 0.00% 1.22% 2.74% 7.01% 13.72%
G PRF 0.38% 1.53% 4.96% 13.36% 16.79% 18.32%
L PRF,; 0.75% 2.26% 5.66% 13.58% 16.60% 18.87%
A PRF ;v 0.38% 2.26% 4.14% 10.90% 14.66% 18.42%

PRFp1yy 0.00% 1.88% 3.76% 9.77 % 12.78% 16.54%
I PRF 2.78% 5.56% 5.56% 6.94% 18.06% 30.56%
R PRF,; 2.78% 5.56% 5.56% 6.94% 18.06 % 31.94%
S PRF 1y 2.78% 6.94% 9.72% 15.28% 20.83% 30.56%

PRFp\y 2.78% 5.56% 12.50% 15.28% 26.39% 37.50%
w PRF 0.00% 1.22% 3.66% 13.41% 20.73% 17.07%
I PRF,; 0.00% 6.02% 7.23% 18.07% 24.10% 15.66%
N PRFyy | -1.23% 2.47% 1.23% 9.88% 18.52% 16.05%

PRFp\y 1.20% 1.20% 241% 7.23% 14.46 % 12.05%
D PRF; 0.76% 3.82% 7.25% 9.16% 18.32% 18.70%
B PRF,; 1.13% 3.77% 7.55% 10.94% 19.25% 19.25%
c PRF 1y 1.13% 226% 6.02% 9.40% 1541% 15.79%

PRFp\y 0.00% 2.26% 4.14% 7.14% 15.04% 14.66 %
p PRF,; 1.35% -4.05% 0.00% -2.70% -2.70% -2.70%
B PRF,; -2.86% -143%  -143% -10.00% -8.57% -8.57%
c PRF, vy | -132% 0.00% 3.95% 0.00% 0.00% 0.00%

PRF,y | -417% 2.78% 0.00% -5.56% -4.17% -5.56%

B. EFFECT OF NOISE

Equally to the experiment of missing data, the performance of
the PRF method was also evaluated considering the presence
of noise in the dataset. To emulate noisy data, a percentage
a% of the dataset was substituted by uniformly distributed
random values.

Table 5 lists the average decreases in accuracy for the
PRF algorithms with the four decision basis variations for
the experiment with added noise. In the worst-case scenario,
with 90% noisy values in the testing dataset, the maximum
decrease in accuracy was only 30.56% in the IRS database via

147921



IEEE Access

G. W. Favieiro, A. Balbinot: Paraconsistent Random Forest: Alternative Approach for Dealing With Uncertain Data

CNC

Average accuracy

02 . . .
0% 5% 10% 30% 50% 70% 90%

% missing data

IRS

0.6 1

Average accuracy

04r 1

. . . J

3 .
0% 5% 10% 30% 50% 70% 90%

% missing data

BDC

Average accuracy

. . . . . |
0% 5% 10% 30% 50% 70% 90%

0.6

% missing data

—.— PRFPF —a— PF{FAF

PRFprmy —8—PRFopyy —8—RF

Average accuracy

0'5 | \\

0% 5% 10% 30% 50% 70% 90%

% missing data

WIN

Average accuracy

L L

02 . . .
0% 5% 10% 30% 50% 70% 90%

% missing data

PDC

0.8
0.75
0.7
0.65 ;
0.6

0.55

Average accuracy

0.5

0.45 . . . .
0% 5% 10% 30% 50% 70% 90%

% missing data

LDA —@—SVM KNN

FIGURE 2. Average classification accuracy graph comparison for the PRF algorithms and LDA, SVM and KNN with the addition of missing data.

the PRFarmy approach. Considering only 5% noisy values
the proposed algorithm could maintain the average accu-
racy with a maximum decrease in classification performance
of 2.78% in the IRS database. Besides, the introduction of up
to 30% of noise occasioned a maximum of 5% increase in the
classification error for all datasets.

Table 6 list the decrease in accuracy in comparison to
other well-known classifiers in the presence of noise. It is
noticeable that a 5% noise introduction causes a significant
impact in the classification prediction for the methods SVM,
KNN and LDA with an increase of the classification error
varying from 3% to 40%, depending on the database. The
PRF classification accuracy is not affected by the 5% noisy
values and considering 90% noisy data, the classification
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error increases by 3%-30.56%, depending on the database.
Hence, it is possible to affirm that the paraconsistent random
forest outperforms other algorithms in dealing with noise.

Figure 3 presents the overall classification accuracy for
the experiment when introducing noise. The PRF algorithm
has at least similar accuracies comparing to the RF method
considering up to 30% noisy data. Besides, above 30% of
added noise, the PRF presented a less susceptibility to noise
with superior classification accuracies in comparison to the
RF method. Also, analyzing the classification accuracy of
the methods LDA KNN and SVM for a 5% noise addition
it is noticeable a considerable reduction in the classification
performance, with an increase of the classification error up
to 40%.
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TABLE 6. Algorithm comparison of the average decrease in accuracy
when introducing noise.

Algorithm % decrease in accuracy
% of added missing values
5% 10% 30% 50% 70% 90%
PRF 0.31% 0.61% 2.45% 1.83% 4.89% 9.79%
C RF 4.00% 9.43% 25.14% 38.29% 48.29% 56.00%
N LDA 18.82% 33.24% 54.41% 60.29% 56.18% 62.94%
C SVM 2209%  3808%  5727%  63.66%  64.53%  64.53%
KNN 2193%  3743%  57.02%  63.45%  63.74%  64.62%
PRF 0.38% 2.26% 4.14% 10.90% 14.66% 18.42%
G RF 0.47% 0.07% 15.00% 27.09% 39.78% 43.55%
L LDA 3223%  4303%  47.18%  4391%  5204%  50.21%
A SVM 3893%  4832%  4847%  47.89%  47.89%  47.89%
KNN 31.23% 36.81% 45.53% 46.11% 46.71% 46.41%
PRF 2.78% 6.94% 9.72% 1528%  20.83%  30.56%
I RF 2.78% 5.56% 12.50%  1528%  2639%  37.50%
R LDA 1389%  1944%  4028%  45.83%  51.39%  50.00%
S SVM 12.50% 23.61% 45.83% 55.56% 61.11% 62.50%
KNN 9.86% 19.72%  47.89%  53.52%  56.34%  54.93%
PRF -123% 247% 1.23% 9.88% 18.52%  16.05%
w RF -0.95% 0.76% 10.68%  2930%  4045%  46.12%
I LDA 30.66% 39.06% 62.08% 58.77% 51.04% 49.91%
N SVM 2592%  4592%  6507%  6620%  6620%  66.20%
KNN 3048%  3857%  57.05%  64.67%  61.90%  62.38%
PRF 1.13% 2.26% 6.02% 9.40% 1541%  15.79%
D RF 1.09% 3.28% 16.79% 33.94% 43.07% 54.74%
B LDA 3540%  5000%  5146%  5146%  4635%  46.35%
C SVM 2971%  3442%  35.14%  35.14%  35.14%  35.14%
KNN 40.82%  51.69%  6142%  59.55%  59.18%  60.30%
PRF -132% 0.00% 3.95% 0.00% 0.00% 0.00%
P RF 12.25% 9.15% 9.97% 16.18% 0.98% 19.44%
B LDA 3.59% 3203%  2124%  33.66%  24.67%  14.38%
C SVM 11.11% 741% 11.11% 11.11% 11.11% 11.11%
KNN 20.27% 22.64% 18.58% 22.97% 22.97% 19.76%

Moreover, according to the trend lines in Figure 2 and 3,
the four variations of the proposed algorithm follow a sim-
ilar tendency among themselves in the presence of incon-
sistencies. In addition, in terms of the average classification
accuracy, the decision algorithm that obtains the best average
result is the average tree with majority voting (PRFaTmv),
which is widely used in ensemble decision trees. The only
difference from the ATMV method is the need to first
calculate an average for each decision tree since in this
approach there is no single path to be covered. In this respect,
the ATMV algorithm is also more straightforward computa-
tionally because it requires fewer iterations compared to the
proposed decision algorithms in the decision making. The
computation time of the ParaExtr., algorithm [16] directly
depends on the size of the tree; hence, making a final deci-
sion with the forest can increase the execution time sub-
stantially without necessarily improving the classification
accuracy.

Furthermore, the structure of the tree is heavily dependent
on the fuzzy domain partition; hence, the definition of the
fuzzy sets can directly affect the accuracy of the created
tree. Therefore, further research into fuzzy domain parti-
tioning may improve the result of the algorithm. However,
the improved performance in dealing with inconsistent data,
represented by noise and missing values, is observed in the
plots in Figure 2 and 3, in which the PRF has a less abrupt
slope compared to the other algorithms.

C. STATISTICAL ANALYSIS
To validate the experiments, an analysis of variance (ANOVA)
and multiple comparisons were used. The ANOVA provides
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a statistical test for determining whether the differences in
a factor’s means are significant or not. In the design of
three-factor experiments, the mean accuracy is regarded as
the response variable. In relation to the controllable factors,
the classification methods, the percentage of inconsistent
data and the database were employed. Consider the com-
pletely randomized three-factor experiment with underlying
model (13):

Yik = tai+ B+ vk taftayy+ By + i (13)

where  is the overall mean effect, «; is the ith effect of factor
A (classification methods), B; is the jth effect of factor B
(percentage of inconsistent data), yy is the kth effect of factor
C (database) and &; is a random error component, which
follows a normal distribution with zero mean and variance o2

A confidence level of 95% was considered for the
F-test. According to the analysis of variance for a three-factor
experiment, all the main effects and their combination are
significant. Thus, there is a distinction among the average
accuracies of the classification methods. Further analyzing
the difference among the means using the Tukey method with
95% confidence, we conclude that the paraconsistent ran-
dom forest methods have significantly outperformed classic
algorithms LDA, KNN and SVM when introducing missing
data in the dataset, as presented in Table 7. The RF method
obtained similar average accuracy when compared to the PRF
method for the same scenario. As detailed previously, when
data is absent, the evidence degree for the missing attribute is
defined as 0.5 according to the principles of paraconsistent
logic; thus, for every missing feature the attributed value
is the same for the PRF method. However, in the random
forest approach, the solution for dealing with missing data
is to return the most probable class considering the larger
number of training samples that reached that specific node.
According to the analysis of the means, both approaches
obtained average accuracies without significant distinction;
hence, both methods PRF and RF present a satisfactory solu-
tion for dealing with missing data with an accuracy at least
20% higher in relation to the methods LDA, SVM and KNN.

Table 8 lists the comparison of the means (Tukey method)
with 95% of confidence among the classification methods
considering the introduction of noise in the database. It’s pos-
sible to affirm that the PRF method and their variations were
less susceptible to noise in terms of classification accuracy
compared to the algorithms RF, SVM KNN and LDA.

Moreover, the statistical analysis revealed that there are
no significant distinctions among the means for all four
PRF decision basis variations when introducing missing and
noisy values in the dataset. Thus, as there are no significant
differences in the classification accuracy, the best decision
method for PRF is ATMYV because of its lower computational
complexity, as discussed previously.

D. DISCUSSION

In the literature, others methods have been proposed with
the objective to reducing noise susceptibility, such as fuzzy

147923



IEEE Access

G. W. Favieiro, A. Balbinot: Paraconsistent Random Forest: Alternative Approach for Dealing With Uncertain Data

Average Accuracy Average Accuracy

Average Accuracy

CNC

0.3 -
0% 5%

10% 15%

% added noise

IRS

30%

50% 70% 90%

04 ’\.\+
03 | ‘ ‘ ‘ . |
0% 5% 10% 15% 30% 50%  70%  90%

% added noise

BDC

0.3 :
0% 5%

10% 15%

% added noise

—=—PRF,. —@—PRF,_

30%

50% 70% 90%

>
o
Y
3
3
<
[}
g
[}
>
P3
0% 5% 10% 15% 30% 50% 70% 90%
% added noise
WIN
1 [y
0.9
oy
3 081
3
071
Q
<
S 06¢
©
[}
051
z
041
0.3 | ! | = —a—=8
0% 5% 10% 15% 30% 50% 70% 90%
% added noise
PDC
>
o
g
3
Q
Q
<
(o]
jo))
o
[
>
<<

0.4 | | | |
0% 5% 10% 15% 30%
% added noise

PRF sy —8—PRFo 1 —8— RF —8— LDA ——SVM

KNN

50%

70% 90%
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TABLE 7. Comparison of the means with 95% of confidence among the
classification methods considering the missing values.

Methods Samples Means Group'
RF 42 85,79% A
PRF\ruv 42 85,16% A
PRFpryy 42 84,65% A
PRF;; 42 84,56% A
PRF,¢ 42 82,40% A
LDA 42 60,31% B
KNN 42 59,73% B
SVM 42 58,11% B

t Means that do not share a letter are significantly distinct.

random forest (FRF) [25]. FRF uses a fuzzy decision tree
approach and outperforms well-known methods on data with
missing values. Comparing the results that are obtained with
the proposed PRF method with those of FRF, on databases
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TABLE 8. Comparison of the means with 95% of confidence among the
classification methods considering the noisy values.

Methods Samples Means Groupt
PRF\pmv 48 85,30% A

PRFpryy 48 85,17% A

PRF,;: 48 84,59% A

PRF,; 48 84.,44% A

RF 48 76 ,41% B

LDA 48 57,80% C
KNN 48 56,88% C
SVM 48 54,87% C

t Means that do not share a letter are significantly distinct.

IRS and WIN, PRF outperformed FRF [25] in data classifi-
cation with missing values, as presented in Table 9.

A larger distinction can be observed with 30% miss-
ing data, in which the PRF method obtained a decrease in
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TABLE 9. Algorithm comparison with the fuzzy random forest method.

% decrease in accuracy

Original £ missi 1
Dataset Method classification % of missing values
accuracy 5% 30%
IRS PRF 96,00% 0,00% 533%
FRF [25] 97,33% 1,23% 16,71%
WIN PRF 92,22% 0,00% 7,78%
FRF [25] 97,88% 441% 1421%

accuracy of approximately 5-7% in comparison to the FRF
method, for which the decrease was approximately 14-16%.
However, the FRF method obtained slightly better results
in the classification of the original data. This comparison
supports the hypothesis that paraconsistent random forest is
a suitable algorithm in contexts that involve the treatment of
incomplete data. Another difference between FRF and PRF
is that the fuzzy random forest was trained and tested with
the modified dataset. This distinction can lead to a reduced
decrease in accuracy once the method has been presented with
data of this type during model creation.

Moreover, a few methods have been proposed exploit-
ing paraconsistent logic in pattern recognition applications.
One of them is the paraconsistent neural networks (PNN),
a type of ANN based on paraconsistent logic. PNN have
been employed with success in the recognition of MICR
(Magnetic Ink Character Recognition) characters commonly
used in bank checks [16]. According to the authors, the PNN
outperformed other studies in the area with an accuracy
of 97.8%. PNN has also being applied, with promising
results, to aid diagnosis of Alzheimer disease by analyzing
EEG signals [11]. Besides the PNN, the paraconsistent logic
is also employed as a network of interconnected nodes (PAN-
net) in the treatment of Raman spectroscopy data to support
diagnosis of skin cancer [21]. The PANnet was able to clas-
sify Raman spectroscopy data with a better discrimination
in comparison to conventional statistical process. However,
despite the promising results achieved by the use of paracon-
sistent logic in pattern recognition, all the cited researches
used classification models that were manually defined and
application specific; hence, it was not possible to perform a
benchmark with a standard dataset for comparison between
distinct approaches of the paraconsistent logic.

Nonetheless, a discriminative paraconsistent machine
(DPM) was proposed by [19]. Contrary to the other methods
presented in the literature, DPM is a versatile method based
on a supervised training discriminative model that incor-
porates paraconsistency criteria. According to the authors,
the DPMs can be applied in innumerous fields, but it lacks
the evaluation of the algorithm with a standard database for
benchmarking purposes. Furthermore, the DPM was applied
to the classification of pathologies in voice data obtaining
similar accuracies to the traditional method SVM.

It is important to emphasize that the use of paraconsistent
logic in pattern recognition application is still recent in the
scientific community. Hence, it is difficult to perform a more
detailed comparison with the proposed method PRF, since
many researches are focused in the application and do not
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execute an evaluation of the algorithm using standardized
dataset.

Furthermore, it is clearly observed from the literature that
one of the possible applications that could benefit from the
PRF method is the classification of biosignals, as the motion
recognition thought myoelectric signals. Among the reported
issues in the motion classification is the model degradation in
the presence of signal contaminants. To overcame this con-
cern, several approaches were proposed as automatic model
retraining [4], [10], [45] and signal replacement by mathe-
matical models [7]. However, these solutions are not always
viable to commercial use since they demand a high computa-
tional time and memory usage. Hence, the PRF seems to be
an interesting alternative for its low parametrization and its
superior results in dealing with uncertain data.

V. CONCLUSION

In this paper, the ID3 algorithm was modified to enable it
to deal with inconsistent datasets by applying paraconsistent
logic and random forests. The new approach is called para-
consistent random forest. The proposed method combines the
well-known decision trees with the robustness of the paracon-
sistent logic in dealing with inconsistent/incomplete datasets.
It was demonstrated that a hybridization of random for-
est and paraconsistent trees presents advantages that enable
the algorithm to be more efficient when dealing with the
noisy, incomplete data that are typical of advanced practical
applications.

A complete algorithm was presented, starting from data
partitioning, building the paraconsistent tree and application
of the random forest approach to infer the winning class with
an associated certainty degree. Moreover, various methods
for combining the outputs of each paraconsistent tree in the
ensemble into a single classification were defined. Those
methods are based on algorithms that are frequently used in
the literature to obtain the final decision in ensembles and on
paraconsistent logic.

In the results section, several experimental procedures
were employed to analyze the feasibility and robustness of
the method. The results were compared with those of other
algorithms and missing and noisy data were incorporated into
the selected datasets. The PRF ensemble outperformed the
other methods on imperfect datasets. PRF was also compared
to FRF, which is an algorithm that was proposed in the
literature and also aims at solving the problem of imperfect
datasets. PRF outperformed FRF in dealing with missing
information in the dataset. Thus, according to the results,
the PRF ensemble presented itself as a promising versatile
classifier with superior capability to deal with inconsistent
inputs.

Moreover, new studies are suggested for evaluating the pro-
posed algorithm in contexts where it is necessary to deal with
uncertain data. For instance, in algorithms applied to biologi-
cal signals, new studies on the applicability of paraconsistent
random forest may consider the inherent inconsistencies that
are due to the presence of high levels of noise and the lack
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of adequate signal acquisition, thereby resulting in superior
classification performance and increased robustness.
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