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ABSTRACT This paper presents a path planning problem with velocity and curvature constraints for coop-
erative aerial manipulators in obstacle environments. While potential-flow-based path planning approaches
can help generate smooth paths in which cooperative aerial manipulators can avoid obstacles, they do
not facilitate the consideration of velocity and curvature constraints. By contrast, while such constraints
can be considered in the optimization approach, the approach often requires a heavy computational load.
To overcome these drawbacks, we propose a simple approach based on curvature-constrained harmonic
potential flow and a streamline-changing algorithm. We also handle the initial and final velocity problem by
a smooth activation function, which is crucial for the tracking performance at the initial and final position.
The proposed approach can be used to generate a smooth path for cooperative robots in real time. For the
validation of the approach, the simulation results obtained with the proposed algorithm were compared with
those acquired with an existing approach including dynamic movement primitives(DMPs). Furthermore,
we performed load-carrying experiment using custom-made aerial manipulators.

INDEX TERMS Collision-free path planning, constraints, cooperative robots, multirotors, obstacle avoid-
ance.

I. INTRODUCTION
Cooperative manipulation enables handling of a heavy or
bulky payload beyond the limits of a robot’s transportation
capabilities. Researchers have demonstrated various appli-
cations of ground mobile manipulators [1] and human-
rocomputationally heavy optimizationbot collaboration [2].
Recently, owing to the affordability and simple hardware
structure of multirotor, cooperative aerial manipulation has
become an important research topics in the field of coop-
erative manipulation [3]–[11]. However, aerial cooperation
involves complexity associated with multiple aerial robots
such as coordination, synchronization of manipulators or sta-
bility due to the payload limits. For example, while avoid-
ing obstacles during cooperative transportation, aerial robots
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might lose stability because of unknown disturbances such as
interaction forces generated by other aerial manipulators.

This study is aimed at resolving the aforementioned coor-
dination and planning algorithm for cooperative aerial manip-
ulators in obstacle environments. Toward this end, a path
planning algorithm is designed for cooperative aerial manipu-
lators so that they can avoid obstacles and satisfy velocity and
curvature constraints. To reduce the interaction force for the
purpose of coordination, the specific distance between aerial
robots should be maintained during flight. These algorithms
are the main focus of this paper.

A. CONTRIBUTION
The contributions of this paper can be summarized as fol-
lows. First, we propose a simple and efficient framework to
consider velocity and curvature constraints for cooperative
aerial manipulators. Unlike existingworks for the constrained
optimization approach for single [12] or multiple drones [6],
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we develop a real-time motion generation algorithm for
constrained environments without using a computationally-
expensive optimization approach. A smooth path can be gen-
erated by exploiting smooth activati function and a harmonic
potential field. To the best of the authors’s knowledge, there
is no comparable published work on velocity and curvature
constrained path planning for cooperative aerial manipula-
tors. We also perform a thorough analysis and a simulation
to validate the final velocity and the stability concerning
internal forces. In comparison with the algorithm presesnted
in our previous work [11], the proposed algorithm gener-
ates a zero-speed path at the final destination by using a
smooth activation function and can reduce internal forces
while enabling the cooperative aerial manipulators to avoid
obstacles. Second, we implement the proposed algorithm on
custom-made aerial manipulators. Experimental result shows
the feasibility of the proposed algorithm in enabling cooper-
ative aerial manipulators to jointly carry a payload.

B. RELATED RESEARCH
The use of cooperative aerial manipulation dates back to
early works using a towed-cable [4]. In [4], the authors used
multiple aerial robots for transportation via cables, and they
considered the tension of the cables for the coordination.
Recently, a system comprising a bar tethered to two hetero-
geneous drones was presented [5]. While cooperative aerial
transportation with towed-cables [4], [5] has been a popular
and practical method, human operators are required to man-
ually tie the desired object to the cables. This requirement
may prevent the applications of the method in risky terrains.
However, aerial manipulation with multi-degree-of-freedom
(multi-DOF) robotic arm [13] can help lift and transport a
payload on its own.

To employ cooperative aerial manipulation with a multi-
DOF robotic arm for effective transportation, several prob-
lems associated with multiple aerial robots, such as those
related to safety and complexity should be resolved. For
addressing the complexities of rigidly attached aerial robots,
researchers have developed a coordination algorithm [6]–[8].
In [6], the coordination problem was solved using
optimization-based force decomposition. In [7], a formation
control method for cooperatie robots based on constrained
optimization was presented for obstacle environments. The
authors proposed a local motion planner for an optimal
formation and a global planner based on a sampling-based
planning algorithm. The formation-based method was
demonstrated in two cases: a team of aerial robots flying in
formation and a team of mobile manipulators collaboratively
carrying an object. Despite satisfactory results, their method
involves a complex nonlinear optimization approach, which
requires heavy computational load. In [8], the authors pro-
posed a coordinated motion algorithm based solely on inverse
kinematics for aerial robotic manipulators and showed satis-
factory experimental results without using an actual payload.
However, this algorithm [8] was verified only for an obstacle-
free environment, and therefore, it is difficult to apply

it to velocity-constrained aerial manipulation in obstacle
environments.

To solve the path planning problem for cooperative aerial
manipulators in obstacle environments, the authors of [9],
[10], [14] applied a sampling-based planning algorithm such
as a rapidly-exploring random tree (RRT). Since RRT does
not depend on the explicit representation of obstacles, it is
widely applied to various motion planning problems in obsta-
cle environments [15]. In [9], [14], an online motion genera-
tion algorithm was developed for an obstacle environment by
exploiting RRT*, which is an extended version of RRT, and
dynamic movement primitives (DMPs). In [10], the motion
planning problem was formulated for an aerial platform with
the dual-arm manipulator and solved with RRT* algorithms
to optimize the performance of the trajectories in terms of
energy and time. However, obtaining the optimal path with
RRT* in offline motion requires a higher computational
load. To overcome this requirement, our previous study [11]
proposed motion generation with a combination of inverse
kinematics and DMPs for obstacle environments. However,
these studies [9]–[11], [14] did not consider the velocity and
curvature constraints.

A potential-based obstacle avoidance algorithm for coop-
erative manipulators was presented in [16], [17]. The poten-
tial field method is a popular obstacle avoidance method for
mobile robots [18], drones [19], and multiple underwater
vehicles [16]. In [17], the desired formation for cooperative
aerial manipulators was realized using a distributed con-
troller, while collision avoidance was guaranteed by using an
artificial potential function (APF) method. Since the use of
the conventional APF gives rise to the local minima problem
and sudden changes in the desired path, a harmonic poten-
tial function (HPF)-based approach has been presented for
cooperative mobile robots [20]. Although smooth trajectories
were generated in obstacle environment without perform-
ing any complex optimization or using a sampling method,
this approach was verified only for the formation control of
multiple mobile robots. Moreover, the velocity and curvature
constraints cannot be considered in the approach. For the con-
sideration of velocity and curvature constraints, an approach
based on streamline-based HPF was proposed in [21], but the
approach was designed for a single mobile robot. In addition,
since those algorithms [20], [21] were designed for a mobile
robot without a rigid grasp, additional studies are required to
adapt these algorithms for robots with a rigid grasp.

II. DECENTRALIZED DYNAMICS
In this section, we discuss the dynamics of cooperative aerial
manipulators with a multi-DOF robotic arm. Detailed kine-
matic relations and equations of motion can be found in our
previous work [11]. The coordinated frames 6I , 6b,i, and
6c,i denote the inertial frame, body frame of the multirotor,
and body frame of the end-effector for the i-th aerial manipu-
lator, respectively (see Fig. 1). 6o represents the body frame
of a common payload.
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FIGURE 1. Two cooperative aerial robots, each consisting of a multirotor
and a robotic arm, manipulate a common object.

A. AERIAL MANIPULATOR AND PAYLOAD DYNAMICS
Using the position of the center of mass of the multirotor in
6I , we define the states of the i-th manipulator qi ∈ R6+n

(i = 1, . . . ,N ) in terms of the position of themultirotor, Euler
angle of the multirotor and joint angles of a robotic arm. Here,
n is the number of degree of freedom (DOFs) of a robotic arm
and N represents the total number of aerial manipulators.

When an aerial manipulator interacts with a payload,
the wrench λi ∈ R6 is applied to the end-effector of the
i-th aerial manipulator in 6c,i (See Fig. 1). In this case,
the dynamics of the i-th the aerial manipulator can be
obtained as

Mi(qi)q̈i + Qi(qi, q̇i)q̇i +Wi(qi) = τ i − JTi (qi)λi, (1)

where Ji(qi) ∈ R6×8 means the Jacobian matrix from 6b,i
to 6c,i. Mi ∈ R8×8 is the inertia matrix, Qi ∈ R8×8 is the
Coriolis matrix, and Wi ∈ R8 is the gravity term. τ i is the
control input in the inertial frame 6I .
The dynamics of a payload can be defined as

Hoq̈o + µoq̇o + Go =
∑N

i=1
Eiλi, (2)

where q̇o ∈ R6 is the twist of a payload. The twist is
represented as a six-dimensional vector comprising the trans-
lational velocity and rotational velocity of the payload in 6I .
We use Ho = diag(moI3, Jo) ∈ R6×6, where mo is the mass
of a payload and Jo ∈ R3×3 is the inertia, I3 is 3× 3 identity
matrix. The parameter µo ∈ R6×6 is a matrix containing
the Coriolis and centripetal terms and Go ∈ R6 is a gravity
matrix. Ei ∈ R6×6 is a grasp matrix and is given by

Ei =
[

I3 03
S(ri) I3

]
, (3)

where 03 is a 3 × 3 zero matrix and S(ri) is the skew-
symmetric matrix expressing the cross product from the posi-
tion of 6o with respect to 6c,i.

B. COMBINED DYNAMICS
With the assumption of a rigid grasp, the effective wrench λi
applied by the i-th aerial manipulator can be calcluated using
the force distribution solution [22] as

λi = ciE
†
i (Hoq̈o + µoq̇o + Go), (4)

where and E†
i can be obtained using the Moore-Penrose

pseudo-inverse solution as

ciE
†
i =

[
ciI3 −ciS(ri)5−1

03 ci5−1

]
,

with5 = I3+
∑N

i=1 ciS(ri)S
T (ri). For simplicity, we assume

that all aerial manipulators are homogeneous. Therefore, they
contribute torque of equal magnitude at the center of the
payload in 6o. In this case, we set ci = 1/N .
Since all positions and orientations of the common payload

and the end-effectors coordinates can be expressed relative
to a common reference frame, we can obtain the following
equation between qi and qo as

q̇o = E−Ti Jiq̇i. (5)

By substituting (4) and (5) into (1), we can express the decen-
tralized equation of motion of the i-th aerial manipulator with
the payload as

Di(qi)q̈i + Ci(qi, q̇i)q̇i + Gi(qi) = τ i. (6)

Here, the matrices are calculated as

Di = Mi(qi)+ ciMo(qi),Gi = Wi + ciWo(qi)

Ci = Qi(qi, q̇i)+ ciQo(qi, q̇i)+ ciJTi (E
†
i HoE

−T
i )J̇i (7)

where the following representations hold

Mo(qi) = JTi (E
†
i HoE

−T
i )Ji ∈ R8×8,

Qo(qi, q̇i) = JTi (E
†
i µoE

−T
i )Ji ∈ R8×8,

Wo(qi) = JTi E
†
i Go ∈ R8. (8)

C. ACTUATION COMMANDS
In the case of cooperative aerial manipulators as shown
in Fig. 1, the control input τ i can be converted into an the
actuation command as:

τ i = 4ifi (9)

where fi = [hTi , τ
T
η,i]

T in6b,i consists of hi for the input force
command of the i-th multirotor and τ η,i for the command to
the arm. The parameter 4i ∈ R(6+n)×(6+n) converts τ i into fi
and includes the motor mapping matrix which depends on the
arm length of the multirotor, drag coefficient (km) and thrust
coefficient (kf ) of motors . Since 4T

i 4i is always invertible
except when the pitch angle is a multiple of ±k π2 , we can
obtain the desired thrust for each motor and the robotic arm
[23] as:

fi = 4
†
i τ i (10)

where † denotes the Moore-Penrose pseudo-inverse. In this
case, since the thrust of the k-th motor can be computed as
hi(k) = kf (ωdk )

2 by using the rotational velocity of the k-th
rotor ωdk , we can provide the speed command for each motor
as ωdk =

√
hi(k)/kf . However, since a motor has a limited

maximum rotational speed as

ωdk < ωdmax , (11)
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FIGURE 2. Structure of the proposed method.

where ωdmax denotes the maximum rotational speed, it is
important to plan the desired trajectory so that it satisfies
this condition. Because of the vibrations of a multirotor,
in general, the actual maximum rotor speed ωdk is much less
thanωdmax , and therefore the planned trajectory should require
minimal changes to the motor. In addition, if the desired
trajectory of cooperative drones has sharp turns, then the
interaction forces can be increased. This is mainly because
a sharp turn requires a higher acceleration to follow, whose
value depends on the curvature of the desired trajectory.

In this study, we considered path planning by applying
constraints on the motor speed and curvature constraint to
reduce the interaction forces. After discussing the proposed
algorithm in Section III, we present simulation (Section IV)
and experimental results (Section V) obtained with the algo-
rithm.

III. A PLANNING FRAMEWORK
In this section, we propose a path planning framework for
cooperative aerial manipulators based on the decentralized
dynamics in (6). The structure of the proposed method is
shown in Fig. 2. The leader manipulator which detects obsta-
cles and generates an avoidance trajectory for the centroid of
the cooperative aerial manipulators under velocity and curva-
ture constraints. Subsequently, the follower and leader robots
calculate the trajectory of their own end-effector under veloc-
ity constraints. The desired trajectory of the end-effectors
(i.e., qde,i ∈ R3) can be converted into a trajectory in joint
space (i.e., qdi ∈ R6+n) by exploiting inverse kinematics.

A. HARMONIC POTENTIAL FUNCTION
To solve the problems of the APF including the local minima
problem and generation of a sharp trajectory near obstacles,
HPF-based planning has been proposed. In this subsection,
we briefly explain the basic formulation of a streamline-
based HPF on the basis of the description in [24]. In a two-
dimensional plane, the harmonic function φ can be computed
by solving Laplace’s equation ∇2φ = 0 with a boundary
condition that governs the flow of an incompressible inviscid
fluid motion at every point. The velocity potential can be

defined in the complex plane C2 as

f (z) = φ(x, y)+ jψ(x, y), (12)

where z = x + jy, j is the imaginary unit, and ψ(x, y) and
φ(x, y) are the stream function and the velocity potential,
respectively. The complex velocity is computed by differen-
tiating the velocity potential with respect to z as

df (z)
dz
= ẋ(z)− jẏ(z), (13)

where ẋ(z) and ẏ(z) are the velocity along the x and y axis,
respectively.

In this study, we consider an attractive function for goal
navigation and the obstacle potential function for obstacle
avoidance. The obstacle potential function fcyn(z) for a cir-
cular obstacle and fsk for sinking to the goal can be defined
as

fcyn(z) =
r2

z
, fsk (z) = csln(z), (14)

where cs is the user-defined control gain and r is determined
by the sizes of the obstacle and robot. Note that the principle
of superposition is used to generate the flow of multiple
elements.

The difference between the streamline-based HPF in
(14) and the conventional APF-based obstacle avoidance
technique proposed in [25] is shown in Fig. 3. Clearly,
the streamline-based HPF generates a more smooth path.

B. PLANNING UNDER VELOCITY AND CURVATURE
CONSTRAINTS
Before deriving the planning algorithm, we regulate the state
variables for the proposed method. Let us consider a situation
where two drones try to avoid each other. For cooperative
aerial manipulators in the decentralized control mode based
on eq. (6), it is difficult to modify the preset height difference
between the manipulators because of the constraints imposed
by the rigid grasp in (4). In addition, the goal is carefully
selected by making the following assumption.
Assumption 1: The desired altitude has already been cho-

sen to avoid an obstacle with a large horizontal extent.
Accordingly, for simplicity, we consider only the desired

trajectory in the horizontal plane, xdc = [xdc , y
d
c ]
T for the i-

th aerial manipulator to avoids the vertical obstacles. Here,
the superscript d denotes the desired value. Note that the
Assumption 1 can be relaxed by using a proper height plan-
ning algorithm such as the RRT, or a using different 2-
dimensional plane such as [xc, zc]T . Fig. 4 shows the detailed
structure of the centroid trajectory generation and the coordi-
nation in Fig. 2.

Given the Cartesian position of an obstacle xk = [xk , yk ]T

and a target point xf = [xf , yf ]T , we define new variables

zck = (xdc − xk )+ j(y
d
c − yk ) := xck + jyck

zcf = (xdc − xf )+ j(y
d
c − yf ) := xcf + jycf . (15)
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FIGURE 3. Comparison between APF and SPF.

FIGURE 4. Detailed structure of the centroid trajectory generation and
the coordination.

From the obstacle potential function fcyn(zck ) in eq. (14),
we can obtain the following equation

dfcyn(zck )
dzck

= −
r2

z2
= −

r2

(xck + jyck )2

= −
r2(x2ck − j2xckyck − yck )

2

(x2ck + yck )
2 . (16)

Using the target point eq. (15), the sinking potential can be
calculated as

dfsk (zcf )
dzcf

=
−cs

xcf + jycf
=
−cs(xcj − jycf )

x2cf + y
2
cf

. (17)

In this method, we use the normalized sinking potential
function because of the initial and final velocity condition
which we will discuss later. Therefore, we can compute the
navigation velocity command for the target point (Ux in x
direction and Uy in y direction) based on eq. (17) as

Ux =
−csxcf

(x2cf + y
2
cf )

3/2 , Uy =
−csycf

(x2cf + y
2
cf )

3/2 . (18)

Then the velocity command can be computed by the super-
position rule with eq. (16) and eq. (18) as

ẋdc = Ux −
2A(x2ck − y

2
ck )

(x2ck + y
2
ck )

2 , ẏ
d
c = Uy −

2Axckyck

(x2ck + y
2
ck )

2 (19)

where A = Ur2 and U =

√
U2
x + U2

y is the velocity
in longitudinal direction. To calculate the curvature of the
desired trajectory, the acceleration ax and ay are required with
respect to xdc , which can be written as

adx =
δẋdc
δxdc

ẋdc +
δẋdc
δydc

ẏdc , a
d
y =

δẏdc
δxdc

ẋdc +
δẏdc
δydc

ẏdc , (20)

where

∂ ẋdc
∂xdc
=

cs(x2cf − y
2
cf )

(x2cf + y
2
cf )

5/2 +
4Axck (x2ck − 3y2ck )

(x2ck + y
2
ck )

3

∂ ẋdc
∂ydc
=

2csxcf ycf

(x2cf + y
2
cf )

5/2 −
4Ayck (x2ck − 3y2ck )

(x2ck + y
2
ck )

3

∂ ẏdc
∂xdc
=

2csxcf ycf

(x2cf + y
2
cf )

5/2 +
2Ayck (4xckyck − x2ck − y

2
ck )

(x2ck + y
2
ck )

3

∂ ẏdc
∂ydc
=
−cs(x2cf − y

2
cf )

(x2cf + y
2
cf )

5/2 +
2Axck (4xckyck − x2ck − y

2
ck )

(x2ck + y
2
ck )

3 .

Note that ∂xck/∂xdc = ∂xcf /∂xdc = 1. Finally, using (20),
we can compute the curvature of the trajectory as

κ =
ẋdc a

d
y − ẏ

d
c ax

d

[(ẋdc )2 + (ẏdc )2]
3/2 . (21)

The curvature is calculated as 1/κ , and therefore, a small κ
yields paths similar to a straight line.

Now, let us consider the velocity constraint. The equation
(19) gives commands for navigation to the target xf , but
this command cannot satisfy the velocity and curvature con-
straints. To resolve this problem, first, we design a velocity
command for the velocity constraint:

ẋvc =

 vmax
ẋdc
‖ẋdc ‖

if u ≥ umax

ẋdc otherwise,
(22)

where vmax ∈ R is the maximum velocity. Since the con-
ventional potential field approach [25] can lead to the drones
to lose their direction when the path is normalized because
of velocity commands that cause large velocity changes,
it is difficult to apply the velocity constraints in (22). How-
ever, the streamline-based HPF can help the drones maintain
their direction after normalization (22). This technique can
guarantee that the desired trajectory will approach the target
point when the velocity is below vmax . Nevertheless, in this
technique, the initial and final velocities are sufficiently large
because of normalization, resulting in an increase in the
acceleration. Accordingly, we define the activation function
for the navigation function in eq. (14) as

cs =


cs if

∥∥x − xf ∥∥ > bp

cs × hg(

∥∥x − xf ∥∥
bp

) otherwise,
(23)

where hg(a) = 6x5 − 15x4 + 10x3, which satisfies h(0) = 0,
h(1) = 1, ḣ(0) = 0 and ḣ(1) = 0. The parameter bp
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Algorithm 1 VCC Trajectory Generation Algorithm

1: Given :xinic , xf
2: while

∥∥xdc − xf
∥∥ > 0 do

3: uxy← using eq. (19), (23) and (24);
4: xdc ← Trajectory(Pxdc , x

ini
c )

5: if NewObstacle(xk) then
6: xin← xdc ; flag← 1;
7: while flag do
8: T in← Trajectory(Pxdc u, xin, xk )
9: κ ← FindMaxκ (Tin)

10: if κ > κmax then
11: if PlaneCheck(xin, xk , xf ) then
12: xin = xin + RIo[0, step]

T
;

13: else
14: xin = xin − RIo[0, step]

T
;

15: end if
16: else
17: xdc ← xin,flag← 0;
18: end if
19: end while
20: end if
21: xfc ← Filter(xdc )
22: end while
23: Returnxfc

is a user-defined constant, which represents a region of the
increasing or decreasing velocity. Near the target point xf , cs
converges 0 gradually. If cs is zero, the velocity command
will give zero value. Unlike the target point, cs increase from
a positive constant ε > 0 to cs near the starting point. This
is because the aerial robot will never leave the starting point
if the velocity command remains zero because of cs = 0.
Therefore, the function hg will be replaced by hs near the
starting point:

hs(a) =
1

1+ ε
(6a5 − 15a4 + 10a3 + ε). (24)

Here the function hs(a) satisfies hs(0) = ε
1+ε , hs(1) = 1,

ḣs(0) = 0, and ḣs(1) = 0. Therefore, cs varies from εcs
1+ε

to cs near the starting point, which prevents the robot from
remaining at the starting point.

We next discuss curvature constraints. The curvature
should be maximized to reduce the internal forces of cooper-
ative aerial manipulators, and the maximization corresponds
to finding the condition κ < κmax. In Algorithm 1, we provide
a pseudocode for velocity and curvature-constrained (VCC)
trajectory generation based on eq. (21). Given the initial point
(i.e., xinic ) and the final point (i.e., xf ), the velocity command
is computed using eqs. (19), (23) and (24) (Line 3). Using
the command, the algorithm generates the desired trajectory
(i.e., xdc , Line 4). If a new obstacle is detected (Line 5)
while following the desired trajectory, the algorithm saves
the current location (i.e., xin) and changes the boolean vari-
able flag(Line 6). Subsequently, a possible trajectory (Tin)
with respect to xin is calculated (Line 8). After checking the

FIGURE 5. Concept of waypoint selection algorith.

possibility of collision with an obstacle for Tin, the algorithm
finds the maximum value of κ for Tin (Line 9). If κ >

κmax , the saved current location xin is changed to satisfy the
curvature constraints (Line 11-18). On the basis of xf , xk , and
xin, the PlaneCheck function determines the direction of
motion for avoiding obstacles (e.g., going right or left). On the
basis of RIo, which denotes the rotation matrix of the relative
direction between a robot and an obstacle, the waypoint xin is
modified as shown in Fig. 5 (Lines 12 and 14).

To avoid the sudden changes in the desired trajectory,
a filtered trajectory was finally selected as the desired tra-
jectory (i.e., xfc). In the Filter function (Line 21), we used
a moving average filter and a low-pass filter. In the desired
trajectory, since our VCC trajectory generation algorithm
reselects the waypoint to satisfy the curvature constraints
κmax , sudden changes in the waypoints could occur, as shown
in Fig. 5. If the newly-selected waypoint is far away from the
entry waypoint, the curvature of the desired trajectory may
increase. To prevent any such increase, we perform additional
path smoothing with a moving-average filter and a low-pass
filter. In our algorithm, we use trajectory data during a certain
discrete time step for applying the moving average filter, and
subsequently, the following low-pass filter was applied

αẋfc + xfc = xmc , x
f
c(0) = xmc (0) (25)

where xmc is the filtered output of the moving-average filter
and α is a user-defined time constant. Note that if the time
constant is too large, the desired trajectory may be severely
distorted, resulting in collision with obstacles along the path.
Due to such reason, we select α less than 0.5. The results of
this filter are discussed in the simulation section.

C. COOPERATIVE CONTROL
Our algorithm considers the sizes of the cooperative robots
and the size of obstacles to define r in eq. (16), and it gener-
ates the filtered trajectory of a centroid (i.e., xfc . By using x

f
c ,

each aerial manipulator computes its trajectory to maximize
the following cost function

J =
N∑

k=1(i6=k)

(
∥∥∥xdi − xdk

∥∥∥2 − dik )2 +
∥∥∥∥∥xdi + xdk

2
− xfc

∥∥∥∥∥ . (26)
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FIGURE 6. Simulation scenario.

FIGURE 7. Comparison results.

Here i 6= k . To find the xdi = [xdi , y
d
i ] ∈ R2 for each aerial

manipulator, we use the negative gradient as

ẋdi = −
δJ

δxdi
, (27)

where dij is the desired distance between the grasping points
of the manipulators. As evident in eqs. (26) and (27),
the aerial manipulator maintains the desired distance dij while
the current centroid trajectory (i.e., (xi + xj)/2) follows the
desired centroid trajectory xfc .

Since xdi is the trajectory in the end-effector frame as
shown in Fig 2, the trajectory should be converted to the
desired trajectory in joint space (qdi ). For this, we first define
the following desired trajectory of the end-effector:

qde,i = [xdi , y
d
i , z

d
i , cos(θo)] ∈ R4, (28)

where xdi and ydi are obtained from our proposed planning
algorithm. In qde,i, there exist additional terms including zdi
and cos(θo). Here, zdi is the desired altitude, θo is the desired
attitude of the payload and cos(θo) is the term representing
the desired attitude of the end-effector, which is essential for
applying the rigid grasping method. By adjusting θo = π

2 ,
we can change the direction of the end-effector. For example,
if θo = π

2 , the end-effector will face the downward direc-
tion. This adjustment is required when an aerial manipulator
grasps or releases a payload. Therefore, we can set cos(θo) =
1 in our scenario which concentrates on transporting a

payload after the manipulator grasps an object. Finally, qde,i is
converted into qdi by exploiting inverse kinematics. Details of
the inverse kinematics are provided in our previous work [11].

IV. SIMULATION
Before discussing the experimental validation of the proposed
method, two simulation results are presented to show the
performance of the proposed method. In both simulations,
each aerial manipulator consists of a quadrotor and a 2-DOF
arm. In the first simulation, we compare our proposedmethod
with DMPs in [11] to analyze the internal stability during
cooperative flight. In the second simulation, two different
types of curvature constraints are considered in multiple
obstacle environments.

We compare our proposed method with DMPs for a single
obstacle environment with vmax = 0.8 m/s and κmax <

2.5. Fig. 6(a) shows the 3D flight path obtained with the
proposedmethod. The curvature of the generated path and the
state tracking performance in joint space (i.e., qi and qdi ) are
shown in Fig. 6(b)-(c). Fig. 7 shows the comparison results
for the velocity constraint, control input, and internal forces,
respectively. While the final arrival time for our method
is longer than that for DMPs, our method can satisfy the
velocity constraint without requiring any computationally-
expensive optimization algorithm. Besides, since the desired
path obtained with our method is smoother than that derived
using DMPs, the control inputs are smaller than those for
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FIGURE 8. Simulation in obstacle environments.

DMPs. The control inputs are closely related to the maximum
motor speed. The comparison of the internal force is shown
in Fig. 7(c). The red line denotes the trajectory when an aerial
manipulator avoids obstacles, but another aerial manipulator
wants to maintain the original desired trajectory. This is the
case when the internal force during flight is maximum. The
red dotted line is the trajectory obtained with DMPs. Unlike
the aforementioned method, DMPs modify their desired tra-
jectory to reduce the internal force. However, a large internal
force is generated near obstacles, and this force should be
reduced for internal stability. By employing ourmethod along
with an on-line path smoothing method, we can reduce the
internal force near obstacles to achieve a more stable system.

Fig. 8 shows the planning results in the multiple obstacle
environments under velocity and curvature constraints. The
velocity constraint is 0.8 m/s, and κmax < 3.5 or κmax < 2.5.
In Fig. 8(a), the magenta line denotes the centroid trajectory
generated by Algorithm 1, the red dotted line is the desired
trajectory for each aerial manipulator, and the blue line is

FIGURE 9. Experimental setup.

FIGURE 10. Three-dimensional trajectory tracking performance.

the actual trajectory. Fig. 8(b) shows the actual velocity and
curvature during flights. For filter, in the simulation, we used
trajectory data during 0.5 seconds, and we set α = 0.5 for the
low-pass filter. As evident in Fig. 8(a), the filtered trajectory
is smoothed by our proposed method.

V. EXPERIMENTS
In this section, the experimental results are described. In the
experiment, two custom-made aerial manipulators were used
to carry an unknown payload.

A. HARDWARE SETUP
The multirotor used in this study is based on the DJI F550-
based platform, and it is equipped with 6 DJI E300 motors.
For the indoor flight test, we use a motion capture system
(Vicon). The Vicon measures the position information at
100 Hz and transmits it to an on-board computer of the aerial
manipulator through a Crazyradio PA module. The on-board
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FIGURE 11. Position and attitude tracking performance.

compuer was Intel NUC7i7BNH with a 3.5GHz Intel Core
i7-7567U processor. Furthermore, a Pixhawk autopilot was
attached to the center of the multirotor and connected to the
onboard computer via universal serial bus (USB). The total
mass of the aerial manipulator is 2.5 kg. We implement the
trajectory-tracking controller proposed in [14], as a trajectory
tracking controller to generate the desired thrust and angular
velocities. In this experiment, for simplicity, we assumed that
a single-DoF robotic arm was attached to the aerial robot.
Details of the experimental setup are provided in [9].

B. EXPERIMENTAL RESULTS
On the basis of the motion-planning framework discussed in
Section III, we performed a experiment with two unknown
obstacles, which are shown in Fig. 9. In the experiment,
we assumed vmax = 1/3 m/s and κmax = 3.5 m. The
experimental data are shown in Figs. 10-11. In Fig. 10,
the black line indicates the size of an obstacle and the black
dotted line is the imaginary size of an obstacle, used for
calculating the desired centroid trajectory xfc . Figs. 11(a-b)
present the trajectory tracking results for a common object.
The red and black lines denote the desired and the actual state,
respectively. In our experiment, since the size of a hexacopter
was relatively large compared with the size of the indoor
flight area, a strong downwash effect was produced by the
other manipulator. Therefore, the velocity of a manipulator
violated the velocity constraint. However, this problem can be

easily solved through the appropriate selection of the velocity
constraint and by considering a safety factor. Our experiment
confirmed that the proposed algorithm shows satisfactory
tracking performance in the obstacle environments while sat-
isfying the velocity and curvature constraints.

VI. CONCLUSION
This paper presents a real-time path planning and smooth-
ing algorithm for cooperative aerial manipulators in obstacle
environments; the algorithm satisfies velocity and curvature
constraints. For the transportation of an object, the desired
centroid trajectory was generated by using a streamline of an
HPF and a smooth activation function. To consider the veloc-
ity and curvature constraints for reducing the internal force,
we proposed a new trajectory generation algorithm that does
not use any complex optimization approach. Subsequently,
the centroid trajectory was converted to the desired trajec-
tory in joint space by using the formation control method.
On the basis of the decentralized dynamics with the aid of a
controller, each aerial manipulator follows its own trajectory.
We performed successful flight simulation and experiment,
by using multiple aerial manipulators. A comparison of
the proposed algorithm with the previous method involving
DMPs showed that the former requires a smaller control input
and generates a smaller internal force.
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