
Received September 11, 2019, accepted September 30, 2019, date of publication October 8, 2019, date of current version October 22, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2946240

Early Imaging-Based Predictive Modeling
of Cognitive Performance Following Therapy
for Childhood ALL
RAKIB AL-FAHAD 1, MOHAMMED YEASIN1, JOHN O. GLASS2, HEATHER M. CONKLIN2,
LISA M. JACOLA2, AND WILBURN E. REDDICK 2
1Electrical and Computer Engineering, The University of Memphis, Memphis, TN 38152, USA
2St. Jude Children’s Research Hospital, Memphis, TN 38105, USA

Corresponding author: Rakib Al-Fahad (ralfahad@memphis.edu)

This work was supported in part by the Electrical and Computer Engineering Department and the Institute for Intelligent Systems,
the University of Memphis, and the Departments of Diagnostic Imaging and Psychology, St. Jude Children’s Research Hospital,
and in part by the National Cancer Institute under Grant R01 CA090246 (PI: Reddick).

ABSTRACT In the United States, Acute Lymphoblastic Leukemia (ALL), the most common child
and adolescent malignancy, accounts for roughly 25% of childhood cancers diagnosed annually with a
5-year survival rate as high as 94%. This improved survival rate comes with an increased risk for delayed
neurocognitive effects in attention, working memory, and processing speed. Predictive modeling and
characterization of neurocognitive effects are critical to inform the family and also to identify patients
for interventions targeting. Current state-of-the-art methods mainly use hypothesis-driven statistical testing
methods to characterize and model such cognitive events. While these techniques have proven to be useful
in understanding cognitive abilities, they are inadequate in explaining causal relationships, as well as
individuality and variations. In this study, we developed multivariate data-driven models to measure the late
neurocognitive effects of ALL patients using behavioral phenotypes, Diffusion Tensor Magnetic Resonance
Imaging (DTI) based tractography data, morphometry statistics, tractography measures, behavioral, and
demographic variables. Alongside conventional machine learning and graph mining, we adopted ‘‘Stability
Selection’’ to select the most relevant features and choose models that are consistent over a range of
parameters. The proposed approach demonstrated substantially improved accuracy (13% – 26%) over
existing models and also yielded relevant features that were verified by domain experts.

INDEX TERMS Feature selection, stability selection and control, neurocognitive late effect, graph mining,
predictive modeling.

I. INTRODUCTION
Neurotoxicity associated with cancer, radiation therapy, or
chemotherapy plays a major role in neurocognitive impair-
ments among survivors due to a disruption of developing
neural circuitry. Commonly affected biological mechanisms
include: atrophy of grey matter (GM) and/or demyelination
of the white matter (WM), suppression of neural progenitor
proliferation, microvascular damage, dysregulation of proin-
flammatory cytokine cascades, oxidative stress, and general
vulnerabilities [3]–[6]. A study of Acute Lymphoblastic
Leukemia (ALL) survivors and controls revealed reduced
gray matter volumes in cortical regions associated with
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central executive and salience networks, as well as bilat-
eral reductions in the periventricular and subcortical WM
volumes [7]. The most relevant study conducted, analyzed
31 ALL survivors and 39 matched healthy controls with a
graph metric analysis of the diffusion based structural con-
nectome to demonstrate that ALL survivors had significantly
lower small-worldness and network cluster coefficient [8].
Reductions inWMvolume in the frontal lobes and significant
bilateral reduction in prefrontal cortices have been shown
to correspond with lower performances on tests of atten-
tion and short-term memory [9]. Diffusion Tensor Imaging
(DTI) studies have shown that fractional anisotropy (FA) in
right frontal, fronto-parietal, and temporal areas are associ-
ated with processing speed [10], [11] and working memory
[12]. The differential in FA between patients and controls
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was proportional to both IQ and processing speed. Another
study of ALL survivors 15 years off therapy and controls,
demonstrated higher FA on the left but not the right and
worse performance in processing speed and academics [2].
Taken together, data from the broader research literature and
our studies suggest that ALL survivors have reduced WM
volumes that correspond to decreased structural and func-
tional connectivity within regions of the central executive and
salience networks; this decreased connectivity may be asso-
ciated with deficits in cognitive performance in the domains
of processing speed, attention, and working memory.

In this study, our main goal was to develop a multivariate
data-driven model of ‘‘cognitive abilities’’ of ALL patients
from MRI-based volumetric measures, morphometry statis-
tics (e.g., surface area and cortical thickness) from diffusion
tensor imaging (DTI), and behavioral as well as demographic
variables.We used (i)Wechsler Intelligence Scale: Digit Span
Backwards (DSB), (ii)Woodcock-Johnson Tests of Cognitive
Abilities: Processing Speed (PS), and (iii) The Behavior Rat-
ing Inventory of Executive Function (BRIEF-Working Mem-
ory) to measure cognitive abilities (executive functions and
processing speed) and categorized them in two categories:
below-average and average. Performance below one standard
deviation of the mean was considered to be below-average.
The DSB and PS scores are performance measures completed
by the patients, whereas the BRIEF-Working Memory scores
are based on parent reports and were inversely coded relative
to the DSB and PS scores such that higher scores indicated
more difficulties. All scores were normalized for patient age.
For a patient to participate in the neurocognitive testing,
the patient must be English speaking or English language
dominant.

A plethora of studies (e.g., [8], [13]–[15]) used DTI
tractography data and graph-theoretic approach to construct
structural networks and compare the topological parameters
of the network between ALL patients and healthy controls.
Commonly used network properties (features) are clustering
coefficient, small-worldness index, characteristic path length,
modularity, and nodal clustering. These properties are used to
evaluate cognitive abilities based upon the p-value or correla-
tion. For example, Zou et al. [13], reported significantly lower
small-worldness and network clustering coefficient, in addi-
tion to greater cognitive impairments in the ALL subjects.

The statistical testing methods provide concurrence of a
fixed hypothesis with the available data points but fail to
evaluate all possible hypotheses. Significance testing does not
describe how strongly two variables were related. Instead,
they say more about how large our supporting sample was.
However, parameter estimation from an experiment consists
of more useful information, than hypothesis testing [16].
Filter based multivariate feature selection methods use the
weighted schemes to select relevant features. But the selec-
tion of features is inconsistent and changes with the type of
estimator, range of model parameters such as regularization,
threshold selection, and hyperparameter tuning. Hence, most
of the wrapper-based feature selection methods fail to select

consistent and relevant features that are invariant and stable
over a range of model parameters.

To understand the non-linear embedding of the data,
we performed t-SNE visualization (t-distributed Stochastic
Neighbor Embedding [17]) with LDA projection of high-
dimensional DTI connectome data (i.e., cortical thickness,
average length of all fibers that interconnect Region of
Interests (ROIs), and demographic measurements) as shown
in the Fig. 2. It is easy to note that data exhibit com-
plex and linearly separable distributions. However, popu-
lar machine learning algorithm shows poor performance
(accuracy: PS (74%), DSB (62%), BRIEF-Working Memory
(62%)). Also, the AUC and F1 score for below-average group
remains nearly random guess (from 0.5 to 0). Presence of
noise, high correlation among variables, reparation, small
number of positive samples, and unbalanced distribution in
ALL connectome data prevent further improvements. It was
also observed that even the structural connectivity based
network features are less informative, discriminative, and
unable to describe the variability and structures inherent in
connectome data.

To overcome such limitations, we adopted a multivariate,
wrapper-based feature selectionmethod called stability selec-
tion [18]. It not onlyworks efficiently in the high-dimensional
data but also provides finite sample control for some error
rates of false discoveries in structure estimation. Besides
the error control approach, we also applied Randomized
Lasso for feature selection. The stability selection not only
significantly improved the model performances (PS (13%),
DSB (26%), BRIEF-Working Memory (23%) improvement
in accuracy), it effectively reduce the feature dimension and
selected features that were verified by the domain expert.
It was observed that few demographic variables, morphom-
etry statistics and up-to 8% structural connectivity among
ROIs are consistent and relevant features that are invariant
and stable over range of model parameters. Besides, stability
section ranks the importance of features, hence helps us to
interpret the relation between structural brain connectivity
and cognitive abilities.

The rest of the paper is organized as follows: In
Section II, III we discuss MRI data collection protocol,
visualization, and processing, respectively. Subsequently,
conventional graph mining approach on DTI connectome are
presented in Section IV. Following this, Section V presents
detail features selection approach, importance of stability
selection and its mathematical interpretation. Modeling, per-
formance evaluation, and empirical analysis are discussed
in Section VI, and VII. We discuss the findings from the
empirical analysis in the discussion section VIII. Finally,
Section IX concludes the paper with lessons learned and a
few remarks on future direction.

II. DATA COLLECTION
Survivors of childhood ALL treated on a chemotherapy-only
protocol (Total XVI([NCT00549848]), were prospectively
evaluated (N = 200; age on protocol 7.2 ± 4.4 years;
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FIGURE 1. Pie plot shows diversity in the dataset. The dataset has demographic measures of different sex, ethnicity, race
and age group. The sample size of the average and below-average group of DSB, PS, and BRIEF-Working Memory
measures are relatively unbalanced. Here, ethnicity Group1 represents Non-Hispanic and Group 2 represents not
otherwise specified Spanish, Hispanic, Latino group respectively.

61% male; 96 low-risk, 104 standard/high-risk). Subjects
underwent MRI within six months after beginning treatment
and neurocognitive testing two years later at the end of all
protocol directed therapy. Working memory and decision
speed were assessed using:
1) Wechsler Intelligence Scale: Digit Span Backwards

(DSB),
2) Woodcock-Johnson Tests of Cognitive Abilities: Pro-

cessing Speed (PS),
3) The Behavior Rating Inventory of Executive Function

(BRIEF-Working Memory).
All MR examinations were performed on a Siemens 3T

scanner. A T1-weighted imaging set was acquired with a 3D
MPRAGE sequence which provides excellent tissue contrasts
among white matter, gray matter and CSF as well as high
spatial resolution (1x1x1 mm). Diffusion tensor imaging was
acquired with 1.8x1.8x3.0 mm resolution with 12 directions,
a, b = 700, and 4 averages to increase signal-to-noise. For
each scan, the anatomic imaging set was processed using
FreeSurfer [19] to obtain the 82 cortical and sub-cortical
regions. Cortical thickness measures were evaluated for each
of these regions. DTI processing was performed using the
FSL FMRIB Toolbox [20]. To establish a reproducible net-
work graph for each exam, probabilistic fiber tracking was
then performed using FSL with 500 permutations from each
voxel of the anatomic structures. The connection pathway
between two nodes, which was the volume in image space
that the connection fibers passed through, was extracted for
each valid connection using a previously developed adap-
tation of the probabilistic fiber tracing technique [20]. The

mean fractional anisotropy (FA) values of the connection
pathway served as the quantitative measure for each edge.
All processing was performed in the patient’s native space.
Overall, the following three types of features were used for
model development:
1) Thickness of cortical regions (e.g., thickness of Left

Cuneus),
2) DTI measures (undirected, weighted ROI connectivity),
3) Demographic and clinical variables (e.g., Sex, race,

ethnicity).

III. DATA VISUALIZATION
The dataset we used was 61% male, 94% non-Hispanic, with
the racial categories white, black, Asian, and multiple being
81%, 13%, 1%, and 5% respectively. The feature matrix has
186, 126 and 182 samples for PS, DSB and BRIEF-Working
Memory measures. The number of samples in the below-
average group is relatively low in our dataset (24 to 36%).
Hence, it is relatively unbalanced. Pie plots in Fig. 1 show
the data distribution for the different demographic variables
and cognitive measures. It should also be noted that while the
prevalence of below-average performance is relatively low
for this application, it is substantially greater than normative
expectation (16%).

Our dataset has 1019 variables overall. Before applying
any machine learning algorithm, it is expected to check
the assumptions required for model fitting and hypothesis
testing. The t-distributed stochastic neighbor embedding or
t-SNE [17] is a widely used unsupervised learning algo-
rithm used to visualize high-dimensional data. It converts
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FIGURE 2. The t-SNE embedded higher dimensional features are represented by 2-dimensional scatter and kernel
density estimation (KDE) plot. The green lines with dots and red lines with ‘+’ sign represents average and
below-average group data, respectively.

similarities between higher dimensional data points to joint
probabilities. Thus, this method provides a faithful represen-
tation of those data points in a lower-dimensional human
interpretable 2D or 3D plane. Such a projection brings insight
on whether the data is separable, the data lies in multiple
different clusters or inspecting the nature of those clusters.
We applied LDA on our two-class dataset and considered
50 dimensions for t-SNE visualization. The LDA based t-
SNE approach shows two distinct clusters for average and
below-average groups in cognitive measurements. Fig. 2
shows the t-SNE embedded scatter and kernel density esti-
mation (KDE) plot of our data distribution. KDE plot is a
non-parametric way to represent the probability density func-
tion. Besides, the scatter plot, the KDE plot is used here to
visualize the trend of data distribution. The green dot and red
‘+’ sign represent data points for average and below-average
groups respectively. It is evident that the distribution of DSB
is complex and linearly non-separable. This necessitates the
use of stability selection and control to choose features that
are relevant and stable.

IV. GRAPH MINING
Cognitive function is supported by distributed neural net-
works with highly segregated and integrated ‘‘small-world’’
organizations or clusters [21]–[24]. More specifically, those
organizations of neurons are densely intra-connected and
sparsely inter-connected. We applied graph theory to con-
struct and analyze the brain connectome from DTI data.
The 82 ∗ 82 undirected and weighted adjacency connectivity
matrix from DTI FA data is used to calculate 7 basic global
network features using BCT tools [25]: (i) Characteristics
path, (ii) Global efficiency, (iii) Average clustering coeffi-
cient, (iv) Transitivity, (v) Small-worldness, (vi) Assorta-
tivity coefficient, and (vii) Modularity (see Appendix for
mathematical definitions and interpretation of these network
features).

We computed the Wilcoxon rank-sum statistic on network
features to find significance across DSB, BRIEF-Working
Memory, and PS. There is no significant difference in mea-
surement across groups (except DSB: Transitivity (p <

0.048), Global efficiency (p < 0.030), Characteristics path

(p < 0.046)). Those global measurements are based on
normalized or averaged versions of clustering and community
structure. Therefore, we found a strong correlation between
the measurements except for modularity.

In the next step, we concatenated network features, applied
different classifiers and observed their performance (details
of parameter tuning and model fitting are explained in the
appendix). We also evaluated the performance of the combi-
nation of network features and demographic variables (named
as ND). The combination of network features and demo-
graphic variables with cortical thickness (named as NDI)
were also similarly assessed. Summary results of overall
empirical analysis are listed in Table 1. It was observed
that best classification accuracy among NI and NID features
are 74%, 69% and 62% for PS, DSB, and BRIEF-Working
Memory respectively. However, AUC scores (0.5 ∼ 0.62) of
this models indicates performances are not better than the ran-
dom guess. The mathematical definition of network features,
p-values, high correlation among features, and poor model
performances indicate overfitting, the presence of noise, and
repetition. Overall, the model’s performances differ from
previous studies [8] because of :

1) Less number of trials for average group rather than
below-average,

2) Connectivity matrix is highly sparse,
3) Network measurements are in average form. Average

value over space matrix with lots of outliers making the
features less discriminative,

4) Network features represent global properties rather than
local,

5) Few numbers of highly correlated features are used for
modeling. Hence there is scope for improvement using
multimodal features, feature fusion or decision fusion.

Therefore, we applied conventional machine learning on
weighted connectivity matrix with a stability selection. The
details of this approach are discussed below.

V. FEATURE SELECTION
Feature selection is used to reduce the dimensionality,
improve the estimator’s accuracy, and enhance gener-
alizations by reducing overfitting in high-dimensional
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FIGURE 3. Expected number of falsely selected variable E(V ) VS q3 graph and stability path for DSB class. Left side of the plot (a) show the variation of
E(V ) and pithr on model accuracy. Red solid lines of plot (b) show the relevant features (63) for best E(V ) and pithr and black dotted lines represents
stability path for irrelevant features (956) over a range of regularization parameter.

datasets [26]–[29]. Stability selection is a combination of sub-
sampling and high-dimensional feature selection algorithms.
Despite its simplicity, it is consistent for variable selection.
The main advantages of this algorithm are:
1) It works efficiently in the high-dimensional data with

less number of samples,
2) Stability selection provides finite sample control for

some error rates of false discoveries and hence a trans-
parent principle to choose a proper amount of regular-
ization for structure estimation,

3) The method is extremely general and has an extensive
range of applicability.

A. STABILITY SELECTION WITH ERROR CONTROL
With stability selection, data are perturbed many times and
features are selected that occur in a large fraction of the
resulting selection sets. Those variables are called the set of
stable variables (see Appendix for mathematical definitions).
The L1 penalized logistic regression was used to discard
the feature with zero coefficient and consider the non-zero
coefficient over a range of regularization parameters. This
process is iterated over multiple times (e.g. 10,000 times).
The stability selection with error control (EC) provides an
upper bound to the expected number of falsely selected vari-
ables E(V ). The boundary equation can be defined as [18]:

E(V ) ≤
1

2πthr − 1
q23
p
. (1)

where, E(V ) is the expected number of falsely selected vari-
ables, p is the number of variables, q3 is the average number
of selected variables over a range of regularization parame-
ter 3. The threshold value πthr in the equation 1 is a tuning
parameter.

How to select E(V ), πthr and q3?: The influence of πthr
parameter in equation 1 is negligible [18], [30]. For a value,
ranges from 0.6 to 0.9 results tend to be very similar. The
value of E(V ) is a design specification and can be controlled

at the desired level. For a specific the value of E(V ), πthr
and regularization parameter λ, the amount of stable features
q can be calculated from the equation 1. The stable fea-
tures are those which enters the regularization path first. For
E(V ) = 10, πthr = 0.70, the average selected feature is= 63.
The solid red lines of Fig. 3b are the 63 features that come first
in the regularization path, therefore, they can be considered
as the most relevant features. The rest of the black dotted lines
are irrelevant features. We can see some black dotted lines are
mixed with red solid lines, but those can be treated as false
positives for error tolerance (E(V )).

To find the effect of average number of selected variables
(and size of feature matrix) in modeling, we tuned different
combination of E(V ) and πthr and observed the model perfor-
mance (The modeling and performance evaluation process is
briefly described in modeling section). The points indicated
by * in Fig. 3a are accuracy and AUC for different values
of q. It is apparent that for a fixed value of E(V ) the impact of
πthr is similar. On the other hand, variations of E(V ) does not
change model performance significantly. Though E(V ) gives
stability selection more freedom or error tolerance, after a
certain level, the stability selection starts selecting more noise
features, hence degrading the model performance. Though
this algorithm allows freedom for error control, the bound has
some drawbacks. First, it applies to the population version of
the subsampling process. For a data set with small sample
size, it is unrealistic to use it in practice. Second, the bound
is derived under a very strong exchangeability assumption
on the selection of noise variables and a weak assumption
upon the quality of the original selection procedure. Shah and
Samworth [30] claims that this process is worse than random
guessing.

B. STABILITY SELECTION WITH RANDOMIZED LASSO
Stability selection with Randomized Lasso (RL) as an
alternative solution of EC [18]. The RL is a straightforward
two-step approach. Instead of applying a specific algorithm to
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the whole data set to determine the selected set of variables
based upon the weight of coefficient, RL is applied several
times to random subsamples of the data of size n/2 and
chose those variables that are selected consistently across
subsamples. By performing this double randomization sev-
eral times (e.g., 10,000 times), the method assigns high scores
to features that are repeatedly selected across randomizations.
In short, features selected more often are considered good
features even though the ‘‘irrepresentable condition’’ [31]
is violated. This approach is similar to the concept of the
bagging [32] and sub-bagging [33] algorithms. RL assigns
feature scores between 0 and 1 based on the frequency of
selection over 10,000 iterations. We need to specify the score
above which features should be selected to find out the best
representative stable features. Threshold selection is a design
parameter. We varied different the selection threshold (i.e.,
the number of selected features) and observed the effect on
model performance.

Fig. 4 shows the effect of different selection threshold on
modeling. The histogram illustrates the distribution of the
score. The first line of x label shows the bin ranges of scores
(0 to 1), second and third line shows the amount and percent
of features that have a nearly same score for a specific bin.
It was observed that 53% features have the score of 0 to
0.1. That means, out of 10,000 iterations they were selected
between 0 to 10% of the time. For a specific selection thresh-
old, e.g., 0.46, this algorithm selected 29 features. We built
a model using those 29 features, which then gave us 89%
accuracy (best model performance) with AUC = 0.87 for
BRIEF-Working Memory class. The bell-shaped solid black
and red dotted lines shows the Accuracy and AUC curves for
different selection thresholds. It was observed that the selec-
tion threshold higher than the optimal value (0.46) allowed
the model to consider more noise variables. Hence, degrading
model performance significantly.

FIGURE 4. Effect on section threshold over model performance for
BRIEF-Working Memory prediction. Three lines of x-label represent the
range of each bin of features score (range: 0 to 1), number and percent
of feature fall in each bin.

VI. MODELING
Modeling from selected features has several steps including
(i) Use mean imputation to remove missing or NaN values
(ii) Apply z-score normalization (Center to the mean and
component-wise scale to unit variance) to normalize the data
(iii) Test train splitting (80% for training and validation, 20%
for testing), (iv) Besides SVM, Random Forest (RF) and
Bagging (BAG) classifier are used as estimator. (v) Hyper
parameter tuning and model fitting using best estimator
and (vi) Performance evaluation. More about modeling are
explained in the appendix.

VII. EMPIRICAL ANALYSIS
In this section, we will discuss the processing pipeline and
results from the different experiment. The first step was data
preprocessing. Missing values (NaN) of the feature matrix
were replaced using the mean imputation along the column,
and z-score normalization was used for data standardization.
Preprocessed and standardized features matrix are then ran-
domly shuffled and split into 80% training and 20% test
examples. This testing data was kept unseen and used only
for the final model evaluation.

The condition number of a matrix X is defined as the
norm of X times the norm of the inverse of X [34]. In short
ConditionNumber = |X |

∣∣X−1∣∣. The condition number was
computed using singular value decomposition and L2 nor-
malization. If the condition number is less than infinity,
the matrix is invertible. There is no hardbound; the higher the
condition number (ill-condition matrix), the greater the error
in the calculation. The condition number of our feature matrix
is moderately higher for PS and BRIEF-Working Memory
than the DSB class (PS: 61.17, DSB: 22.63, BRIEF-Working
Memory: 56.11). However, stability selection has the ability
to work perfectly on ill-conditioned feature matrix, so we
applied it with EC and RL on this training data. For EC,
L1 penalized logistic regression with 10,000 iterations with
22 regularization parameters (ranges from 10−2 ∼ 102) was
used to get the stability path for each class label. In this study,
we did not specify the tolerance of error. Hence, we let the
empirical analysis to find optimality. Different combination
of E(V ) and πthr of equation 1 was evaluated to get the
best accuracy, AUC, and minimum amount of as discussed in
the method section. Our such grid search approach indicates,
the optimal E(V ) = 10 and πthr = 0.8, 0.7, 0.8 with accu-
racy 87%, 81% and 86% for PS, DSB and BRIEF-Working
Memory, respectively. Overall, 78, 63 and 78 features can
be considered stable. Besides EC, RL approach was also
evaluated on training data using the same range of regular-
izations parameter (22 continuous values) over 10,000 iter-
ations. It was observed that RL selected a small subset of
feature (except PS class) compared to EC.Overall 32, 136 and
29 features are the optimal number of feature for PS, DSB,
and BRIEF-Working Memory class respectively.

Though accuracy and AUC vary for the two-selection
method, there is a significant commonality between selection.
The Venn diagram of Fig. 5 shows the set of selected and
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FIGURE 5. Vin diagram of EC and RL selected features for (a): DSB, (b): BRIEF-Working Memory, (c): PS class. Cyan, Brown and blue colored circle
represent the number of stable features selected by EC, RL and common features among methods. Prediction accuracy and number of selected features
are relatively better for RL method. Here ACC represents accuracy.

common features among methods. The cyan, brown and blue
circles represent ES, RL and common features among two
methods. Aswe allowed some errors in selection (E(V)= 10),
EC method selected more features (except for PS) than RL
method. This method selects nearly 8% features from the fea-
ture matrix as stable features. However, RL method selected
nearly 4%. Those selected variables are then used to train
estimators.

Estimator learning has three steps: (i) Reshape the fea-
ture matrix with stability selection (reduce the dimension),
(ii) Random shuffle and split the selected feature matrix into
80-20% tainting and validation set and (iii) Iterative grid
search approach was used to find the model with the best
accuracy.

Same steps are applied for ensemble methods (RF and
BAG). Best tuned model is then evaluated on test data. Data
processing andmodeling pipeline are shown in Fig. 6. Table 1
shows the performance of different methods. It was observed
that the performance of RL method is not only better than EC
but also selected less number of stable and robust features.
On the other hand, SVM shows better performance than
ensemble methods.

The best F1 score for average category is greater
than or equal to 0.90 for all three estimators, that means SVM
with RL has less false negative. On the other hand, the best
F1 score for the below-average category is 0.71, 0.86 and
0.87 for PS, DSB, and BRIEF-WorkingMemory respectively.
Though this score for DSB and BRIEF-Working Memory
class is at a satisfactory level (less than false positive), as well
as the score for the PS class (0.71) with an accuracy 87%
has scope for further improvement. The main reason for this
poor performance is a fewer number of negative examples.
The PS class has only 24% negative examples. The estima-
tors got very few (only 35) training examples after 80-20%
split. Therefore, we need more negative instances for further
improvement.

Besides directionality redaction and model improvement,
Stability selection can be used for interpreting important

FIGURE 6. Schematic diagram of the processing pipeline. Feature matrix
is randomly shuffled and split into 80 and 20% as training and testing
data. Feature selection methods (EC and RL) are applied on training data
to find the stable features. Those selected features were used to tune and
estimator learning using shuffle-split grid search approach, and finally,
models are evaluated on test data.

features and their rank. Class label correlated shadow features
get high score even though necessary conditions (regular-
ization parameter or estimator) change. This illustrates their
strong and stable relationship with the response (class label).

Fig. 7a, Fig. 7b and Fig. 7c shows the circular visualization
of anatomical connectivity between different ROIs that are
closely related class labels. Those connectivities are selected
by RL method. Left and right sides represent left and right
hemisphere accordingly. The width of connection varies with
the rank of importance. Similarly, the outer green square
represents the related cortical thickness. The width of those
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TABLE 1. Overall result of empirical analysis, here All: whole dataset without feature extraction and selection, Net: Network features, ND: Network
features and demographic variables and NDI: Network features, demographic variables and cortical thickness, EC: Stability selection with Error Control,
RL: Stability selection with Randomized Lasso, AUC: Area Under the Curve, ACC: Accuracy, PS: Processing Speed Cognitive Abilities, DSB: Digit Span
Backwards, BRIEF-Working Memory: Behavior Rating Inventory Executive Function class.

FIGURE 7. Circular brain connectivity graph for a): BRIEF-Working Memory, (b): DSB, and (c): PS class using RL method. Left and right side of the circle
represents left and right hemisphere. The inner squires, outer squires and green connected lined indicate selected ROIs, cortical thickness of ROIs and
connectivity among ROIs, respectively. Shape and the size of the outer square varies with rank (importance) in predicting impairment.

squares varies with their rank as well. It was observed that
among 311 possible connectivity among ROIs 29.90% 7.3%,
7.71% anatomical connectivity is important in modeling PS,
DSB, and BRIEF-Working Memory respectively.

VIII. DISCUSSION
The hippocampus serves a critical function in long-term
memory (LTM), navigation, cognition, and working memory
maintenance. An increasing amount of evidence shows that
the hippocampus is involved during the processing of spa-
tial and spatiotemporal discontinuity, and relational memory
[35], [36]. Specifically, CA1 neurons in the hippocampus are
critical for autobiographical memory, autonoetic conscious-
ness, and mental time travel [37]. The medial orbitofrontal
cortex is necessary for the coordination of working memory,
manipulation, maintenance, and monitoring processes [38].
Stability selection ranked the volume of left and right CA1,

left CA2 of hippocampus, right Medial Orbitofrontal (RMO)
and right hippocampus as a very important features for work-
ing memory classification. Significant lesion (p < 0.0001) on
those areas are detected in below-average BRIEF-Working
Memory group.

On the other hand, memory span is the longest list of items
that a person can repeat back in correct order immediately
after the presentation. It is a standard measure of short-term
memory. Once digit sequence is presented, the participant is
asked to recall the sequence in reverse order in DSB related
task (to assess working memory). The Posterior Cingulate
Cortex (PCC) has a central role in supporting internally
directed cognition [39]. The PCC shows increased activity
when individuals retrieve autobiographical memories, plan
for the future, and regulate the focus of attention [40], [41].
We found the volume of left PCC is a highly ranked feature in
DSB classification and significantly lower (p < 0.02) for the
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below-average group. Hence, working memory is strongly
related to the volume of the left PCC.

However, CA4 neurons of hippocampus in the perikaryon
area, and dendritic branching of both CA4 and CA1 neurons
are less in autistic children [42]. We observed that right
CA4 and dentate gyrus of hippocampus (CA4-DG) is an
essential, highly ranked, significantly distinguishable fea-
tures to predict PS and BRIEF-Working Memory. The
decreased volume in CA4-DG volume is observed in below-
average group ( PS, DSB, and BRIEF-Working Memory).

Global efficiency is used to find how cost-efficient and
fault-tolerant a particular network construction is. We found
Global efficiency of DSB related network is significantly
(p < 0.03) lower in the below-average group. Which
indicates patients with below-average working memory are
unable to use brain connectivity effectively or adequately.
Besides Global efficiency, below-average groups exhibited
significantly (p < 0.04) reduced transitivity. Lower transi-
tivity indicates the loose connectivity and less potential for
integration among nodes to create a clique or complete graph.
Hence, the group with the below-average working memory is
less likely to have a complex, highly segregated, and densely
integrated structural network.

Selected network edges presented in figure 7 shows
remarkable connectivity pattern. Highly distinguishable
inter-hemispheric connectivity is evident among patient
with below-average working memory (DSB network).
However, cognitive abilities and working memory-related
distinct structural brain network are more intra-hemisphere
centric.

Networks presented in Fig. 7a and Fig. 7b contain many
of the brain regions known to be associated with executive
functioning, including working memory, fluency, and atten-
tion. Involvement of the superior and middle frontal regions,
the ventrolateral frontal regions of parstriangularis and par-
sopercularis, anterior cingulate, insula, and superior parietal
are critical components of the central executive and salience
networks. While these networks form the most reproducible
basis for these functions in both fMRI and cognitive neuro-
science, the involvement of the temporal lobe regions is also
consistent with short-term storage of information for manip-
ulation in the frontal lobes during the working memory tasks.

On the other hand, networks presented in Fig. 7c contain
many brain regions, which would be associated with process-
ing speed. Involvement of the superior and middle frontal
regions, the orbital frontal regions, anterior cingulate, insula,
and superior parietal regions are consistent with regions,
which would potentially be engaged during the processing
speed tasks. Some of the regions such as the insula and ante-
rior cingulate would be engaged in active switching between
tasks such as surveillance and response. While these net-
works form the most reproducible basis for these functions
in both fMRI and cognitive neuroscience, the involvement of
the temporal lobe regions is also consistent with short-term
storage of information for manipulation during the evaluation
process.

Besides cortical thickness and structural connectivity,
it was observed that sex, race, and ethnicity are important
demographic variables in modeling those cognitive functions.

IX. CONCLUSION
The aim of this study was to develop a data-driven multivari-
ate approach to accurately classify cognitive abilities in ALL
patients at the end of therapy. The state-of-the-art cognitive
neuroscience mainly uses hypothesis-driven statistical testing
to characterize and model neural disorders and diseases, and
while these methods provide concurrence of a fixed hypoth-
esis with the available data points, they fail to evaluate all
possible hypotheses. In this study, we developed models with
stability selection using MRI-based volumetric measures,
morphometry statistics and behavioral as well as demo-
graphic variables. Stability selection not only reduced feature
dimension and improved model accuracy but it selected con-
sistent and relevant connectome features that were invariant
and stable over a range of model parameters. This approach
also discovered brain regions and structural connectivity
which were strongly associated with processing speed and
executive functions including working memory, fluency, and
attention. The findings of this study suggest that the per-
formance and generalization capability of stability selection
based models are superior compared to the classical machine
learning and graph mining approach. Since this study was
limited to DTI based structural connectivity, it is inadequate
in explaining causal relationships among brain regions as
well as individuality and variations. Furthermore, a number
of possible fMRI based future studies using the same exper-
imental set up with a larger population are necessary for
further improvement.

APPENDIX
A. GRAPH MINING
1) CHARACTERISTICS PATH
The characteristic path length is the average shortest path
length in the network [43]. Hence, high characteristics path
value implies dense connectivity among nodes.

2) GLOBAL EFFICIENCY
Global efficiency is the average of inverse shortest path
length, hence inversely related to the average characteristic
path length. Global efficiency is used to find, how cost-
efficient a particular network construction and how fault tol-
erant the network is. Hence, high global efficiency implying
the excellent use of resources. In brain connectivity analysis,
structural and effective networks are similarly organized and
share high global efficiency. On the other hand, functional
networks have weaker connections and consequently share
lower global efficiency [23].

3) AVERAGE CLUSTERING COEFFICIENT
The clustering coefficient of a node is defined as the frac-
tion of triangles around a node [43].The mean clustering
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coefficient for the network reflects, how close its neighbors
are to being a clique or complete graph.

4) TRANSITIVITY
Transitivity is a classical variant of average clustering coef-
ficient. The value of the average clustering coefficient can
be influenced by nodes with a low degree. But transitivity
is normalized collectively and consequently hence, does not
have such problem [24].

5) SMALL-WORLDNESS
Small-world network (S) is formally defined as networks that
are significantly densely clustered and have larger character-
istic path length than random networks [43]. Mathematically
S can be expressed as:

S =
C

Crandom
L

Lrandom

.

whereC andCrandom are the clustering coefficients, and L and
Lrandom are the characteristic path lengths of the test network
and an equivalent random network with the same degree on
average respectively. For a small world network S > 1,
C � Crandom and L � Lrandom. Such network tends
to contain more densely connected cliques/ near-cliques/
sub-networks than random network. Those sub-networks are
interconnected by one or more edge.

6) ASSORTATIVITY COEFFICIENT
The assortativity coefficient is a correlation coefficient
between the degrees of all nodes on two opposite ends of an
edge. A positive assortativity coefficient indicates that nodes
tend to link to other nodes with the same or similar degree,
on the other hand, negative values indicate relationships
between nodes of different degree. Biological networks typ-
ically show negative assortativity coefficient as high degree
nodes tend to attach to low degree nodes [44].

7) MODULARITY
Modularity refers to the ability of subdivision the network
into non-overlapping groups of nodes (known as modules
or community) in a way that maximizes the number of
within-group edges. Networks with high modularity have
dense connections between the nodes within the modules
but sparse connections between nodes in different modules.
Hence, modularity quantifies the community strength of a
test network by comparing the fraction of edges within the
community with respect to a random network [45]. It is
widely used to discover anatomical modules corresponding
to groups of specialized functional area which is previously
determined by physiological recordings. Usually, anatomical,
effective and functional modules in brain connectivity show
extensive overlap [25].

B. FEATURE SELECTION
1) STABILITY PATH
The concept of ‘stability path’ comes from regularization path
of regression analysis. A regularization path is defined as
the coefficient value βλk of each features of a feature matrix
over a range of regularization parameter (λ ∈ 3). Let I be
a random subsample of n ∗ p feature matrix (n = number of
sample and p is the dimension of features) of size n

2 is drown
without replacement. The random sample size of n2 resembles
most closely to the bootstrap [33], [46] which is not worse
than random guessing [18]. For every set K ∈ (1, · · · , p),
the probability of being in the selected set Sλ(I ) is:

5k = P∗(Sλ(I )).

For range of regularization parameter 3 and a cutoff
threshold πthr with 0 < πthr < 1, the set of stable variables
is defined as:

Sstable = {max
λ∈3

5λk ≥ πthr }.

Fig. 8 shows the stability path of the feature matrix for
the DSB class. Each of the black dotted lines represents a
stability path of one feature out of 1,019 features, and each
dot represents the percent of times it was selected out of
all iterations. A red broken vertical line was drawn for the
regularization parameter α = 7. The * marked point of Fig. 8
indicates the most stable feature that was selected 57% times
out of 10,000 iterations.

FIGURE 8. Stability path of features matrix (for DSB) with a range of
regularization parameter (α = 0.01 ∼ 100) as a function of (α/αmax )1/3.
The power 1/3 scales the path and enables to visualize the progression
along the path.

2) STABILITY SELECTION WITH RANDOMIZED LASSO
We know Lasso has sparse solutions. For higher dimensional
data, many estimated coefficients of variables become zero.
Removing the variables can be used to reduce the dimension-
ality of the data. The limitations of Lasso for feature selection
are:
1) Lasso tends to select an individual variable out of a

group of highly correlated features,

VOLUME 7, 2019 146671



R. Al-Fahad et al.: Early Imaging-Based Predictive Modeling of Cognitive Performance Following Therapy for Childhood ALL

2) When the correlation between features is not too high,
the performance of Lasso is restrictive.

Lasso penalizes the absolute value of coefficients | β |k
of every component with a penalty term proportional to
the regularization parameter λ ∈ R. On the other hand,
Randomized Lasso penalizes using randomly chosen values
in a range [λ, λ/α] where, α ∈ (0, 1) is the weakness param-
eter. The concept of weakness parameter is closely related to
weak greedy algorithms. Let Wk be an i.i.d. random variable
in a range from (α, 1) for K ∈ (1, · · · , p). The estimator of
Randomized Lasso can be written as:

β̌λ,W = argmin
β∈Rp

‖Y − Xβ‖22 + λ
p∑

k=1

| βk |

Wk
. (2)

Here, Y and X is the class label and feature matrix
respectively. Implementation of equation 2 is a straightfor-
ward two-stage process:

1) Re-scaling of the feature variables (with scale factorWk
for the k th variable),

2) LARS algorithm is applied on re-scaled variables [47].

In this approach, the re-weighting is simply chosen at
random. It is not sensible to expect improvements from ran-
domization with one random perturbation.

For stability selection with RL, we used Randomized
Logistic Regression. It works by subsampling the training
data and fitting a L1-penalized Logistic Regression model
where the penalty of a random subset of coefficients has been
scaled. We considered sample fraction = 0.75, number of
resampling = 10,000 with tolerance = 0.001.

C. MODELING
1) TRAIN-TEST DATA SPLITTING
Learning the parameters of a model (training) and testing it
on the same data is a methodological mistake. Such a model
would have perfect performance but would fail to predict on
unseen data. To avoid such overfitting, the whole data set is
divided into (i) training, (ii) validation and (iii) testing. The
hyperparameter of the estimator is tuned on the training set
and tested on the validation set on a grid-based approach. The
best performing tuned estimator is then selected as the final
model. The final evaluation can be done on the unseen-test
set. However, splitting a small dataset into three parts is
a bad idea because it reduces the sample size in each set.
On the other hand, without randomization and shuffling each
set may contain highly unbalanced samples. A solution to
this problem is a procedure called cross-validation (CV).
In this approach, test set should still be held out for final
evaluation, but the validation set is no longer needed. In the
basic approach, called k-fold CV, the training set is split into
k smaller sets and an estimator is trained using k-1 of the
folds as training data. The resulting model is validated on the
remaining part of the data. The hyperparameter is tuned on
a grid-based approach. The performance reported by k-fold
cross-validation is the average accuracy of all folds.

2) ESTIMATORS
In this study, we mainly used SVM with RBF kernel.
However, our data set is unbalanced. The performance of
SVM is limited in such a condition, but some machine learn-
ing packages use optimization algorithms that can overcome
such problems [27], [28], [48]. Ensemble method (EM) is
often used to get better predictive performance, general-
ization or robustness for unbalanced data. Besides SVM,
we adopted EM for robust modeling. The most popular
ensemble methods are known as 3B or Bagging, Boosting,
and Blending. Bagging or Bootstrap Aggregating is an
ensemble method that divides data set into smaller parts
and build classifier on that dataset. Results of those models
are then combined using average or majority voting to get
the outcome. Besides SVM we decided to adopt Random
Forest (RF), Bagging (BAG) classifier as estimator.

3) PARAMETER TUNING
The performance of an estimator depends on proper hyperpa-
rameter tuning. For example, hyperparameters for SVM are
C and gamma. Similarly, RF has the number of estimators,
maximum depth, minimum samples split, minimum samples
leaf, and criterion. On the other hand, BAG has the number
of estimators as hyperparameter. In this study, we adopted
the iterative shuffle-split approach to overcome overfitting.
In each iteration training data is randomly shuffled and split
into 80% training and 20% validation data. A pre-specified
estimator was trained using different combination of hyper-
parameters and tested on validation data. The best performing
estimator was used as final model. In this study, we used
grid based parameter tuning and 80-20% shuffle-split with
10 iterations on training data to find the best predictivemodel.
For example, we tuned 169 (13*13) combination of C and
gamma (C: 1e−9 to 1e+3, gamma: 1e−2 to 1e+10) in 10 iter-
ations. Therefore, the grid search approach finds the best
predictive model out of 1690 fit. The Figure 9 shows the
learning curve of SVM with RBF kernel for DSB class. For
a specific value of C and gamma, the red and green solid line

FIGURE 9. Learning curve for DSB class using random shuffle-split
approach. This method reduces the chance of over or under fitting. Green
and red lines indicate that the amount of training example increase cross
validation accuracy and decrease the training accuracy.
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shows the average accuracy of 10 iterations for different size
of training example. The red dotted line indicated the training
score where the estimator learned parameter and evaluated
on the same dataset. This curve starts with 100% accuracy.
With the increase of training example, it starts to degrade.
The solid green line represents the shuffle-split (80-20% split
and 10 iterations) and cross-validation score for different
size of training example. With a small amount of sample,
the model accuracy was poor, but an increase of the training
sample, decreased not only the width (variance of accuracy)
but increased model accuracy significantly.
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cognitive deficits following treatment for child-
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and developing empirically supported interven-
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underlying bio-behavioral mechanisms, identify
risk and resiliency factors, and develop and eval-
uate cognitive interventions.

WILBURN E. REDDICK, PhD Member, St. Jude
Faculty in Department of Diagnostic Imaging and
Director of Structural and Connectivity Imaging
Research. His lab focuses on using MRI to under-
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