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ABSTRACT A profile is a functional relationship between two or more variables used to monitor the process
performance and its quality. Sometimes, the aforementioned relationship is linear or nonlinear depending
upon the situation. A monitoring method based on the linear profiles is known as linear profiling which
is commonly used due to its simplicity and efficacy. Linear profiling methods have been studied by many
researchers with a fixed effect model. However random effect model provides a more suitable interpretation
as compared to the fixed effect model under different real-time monitoring methods. Therefore in this article,
we are intended to propose a linear profiling EWMA method (EWMAx[R]-3 chart) and MEWMAx[R] chart
based on the random effect model using different ranked set sampling techniques such as ranked set sampling
(RSS), extreme RSS (ERSS), median RSS (MRSS), double RSS (DRSS), double ERSS (DERSS) and
double MRSS (DMRSS). The ranked set sampling (RSS) schemes are not only cost-effective method but
also an efficient mechanism as compared to simple random sampling. A designed simulation study used
Average Run Length (ARL) as an evaluation measure to witness the detection ability of newly offered
EWMAx[R]-3 chart,MEWMAx[R] chart and existing EWMAx[SRS]-3 chart. The extensive simulation showed
that the proposed EWMAx[R]-3 chart and MEWMAx[R] chart have superiority to detect faults in the process
compared to a competitive counterpart. The results are further justified with real data application related to
a combined cycle power plant.

INDEX TERMS Average run length, double RSS, EWMA, intercept, linear profiles.

I. INTRODUCTION
Product quality and cost are the most significant consumer
preferences in this modern era. This is the reason why most
of the production companies engaged in enhancing product
quality with the minimum cost of production, in competing
with other companies. To achieve this goal, a product should
be free from all defects, and these features of a product
can be made through effective monitoring of the process.
These processes occur with certain variations such as non-
assignable and assignable causes of variation. The first one is
the natural or integral part of the process that cannot be elimi-
nated from the process. However, the second one damages the
process unnaturally and needs intensive care through different
statistical tools to deal with it. Statistical tools under the
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umbrella of Statistical Process Control (SPC) are used for the
enhancement of process quality by minimizing the assignable
cause of variations Mahmood and Xie [1]. A control chart
introduced by Shewhart [2] is a primary tool of the SPC
toolkit which provides a graphical outlook of the process
quality. The control chart designed with the upper and lower
specification limits to decide whether the process is under the
In-Control (IC) or Out-Of-Control (OOC) state.

In recent times, the profile monitoring has drawn signifi-
cant consideration from the researchers in which the quality
characteristics of interest are defined by a regression model.
Such as the density of a wood board is dependent upon
the depth of board that is fixed. This functional relationship
can be represented by a profile model. This linear profiling
approach also terms as monitoring method of the process
through regression. Commonly, Phase II methods are applied
to distinguish shifts in process parameters defined under the
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linear profiles model through different performancemeasures
to run the process smoothly. Initially, Kang and Albin [3]
proposed methods based on combined EWMA and R chart in
which error term was examined through the EWMA control
chart whereas the dispersion of error terms was observed
through the R chart, and Hoteling’s T 2 charts were designed
to monitor the intercept and slope of the linear profiles model.
Reference [3] control charting structures are not able to prop-
erly advise the OOC parameters of linear profiles. To resolve
this problem, Kim et al. [4] recommended a methodology
established on the transformed simple linear profile model.
The proposed EWMA-3 structure consists of separate control
limits and test statistics for the error variance as well as for
regression parameters. The findings of the EWMA-3 struc-
ture were more illustratable as compared to ordinary EWMA
chart for linear profiles monitoring. Noorossana et al. [5]
proposed aMultivariate CUSUM (MCUSUM/R) chart for the
profiles monitoring. Zou et al. [6] and Mahmoud et al. [7]
suggested control chart structures based on change-point
techniques and Gupta et al. [8] made a comparison of the
methods used by [4] and Croarkin and Varner [9]. Auto-
mated control charts of periodic residuals of simple lin-
ear profiles were introduced by Zou et al. [10]. The linear
profiles model with autocorrelation problem was argued by
Jensen et al. [11]. Zhang et al. [12] recommended a likelihood
ratio-based charting structure for simple linear profiles and
Saghaei et al. [13] proposed a technique based on CUSUM
control chart. Mahmoud et al. [14] highlighted a linear profil-
ing study when the sample size is at most two in the process,
and a method based on the likelihood ratio test for change
point models was introduced by Yeh and Zerehsaz [15]. The
idea of considering the parametric uncertainty in fixed effect
model waswell addressed byAbbas et al. [16] using Bayesian
approach. The parametric uncertainty in profile model is fur-
ther investigated throughDouble EWMA and CUSUMcharts
in Phase II (cf. [17], [18]). Mahmoud et al. [19] proposed
several alternative methods based on the EWMA structure
which are comparatively efficient than the existing EWMA-3
structure. Recently, Saeed et al. [20] provided a charting
structure based on the progressive linear profile statistics
which is effective to monitor small-to-moderate shifts in the
parameters of simple linear profiles.

The aforementioned literature and references therein have
studied profiling defined by a fixed effect model. These
kinds of literature assumed specified values for explanatory
variables. However, there are certain situations where this
assumption may not hold. It is quite common in regres-
sion model applications where the level of the predictors in
a process cannot be controlled and are variable in nature.
These profiles models are usually referred as the random
effect models Greene [21]. For example Atmosphere Pres-
sure (Y ) is strongly affected by Wind Speed (X ). The func-
tional relationship among these quality characteristics can
be better represented by a profile model Abbasi et al. [22].
As the wind speed may vary at different sampling intervals
so modeling through fixed effect model is not an appropriate

choice and may produce misleading results. The suitable
option for such situation and situations similar to it is random
effect models. Sampson [23] study cases of random effect
regression models in simple as well as in multivariate situ-
ations. Noorossana et al. [24] considered a case study of tape
thickness that is dependent upon four random locations. This
functional relationship is efficiently modeled through random
effect model. Abbas et al. [25] explored the case in Bayesian
perspective for the efficient monitoring of random effect
models. There is lots literature available in which researchers
used random effect model to represent the profile model for
the monitoring of process parameters (cf. [26]–[28]).

The aforementioned studies have used Simple Random
Sampling (SRS) strategy to draw random observations from
a normal distribution for the case of fixed and random effect
models. As time proceeds and development occurred in sci-
ences, new sampling schemes were introduced and effec-
tively used in the different dimension of social and natural
sciences. These new sampling schemes not only enhance
the literature but also improve the efficiency of experimental
results. The notion of Ranked Set Sampling (RSS) was first
familiarized by McIntyre [29] to estimate the grazing land
and crops and modifications of RSS were provided by Taka-
hasi and Wakimoto [30]. Likewise, other fields of sciences,
the RSS schemes and its modified versions are extensively
and effectively used in SPC literature (cf. [31]–[34]). The
literature suggested above and references therein efficiently
used RSS techniques to make proposed control charts more
proficient and more reliable. In this study, we have investi-
gated randomness in the independent variable using different
RSS techniques. This study investigated the properties of
random effect model after the modification of control limits
coefficients, choice of sampling distribution for dependent
and independent variables using RSS. Three separate EWMA
control charts are designed under RSS techniques to monitor
the process parameters of profiles model defined by a random
effect model.

The rest of the article outlined follows: Section 2 provides
the estimation process of the linear profiles model under
RSS schemes. Section 3 presents the proposed and compet-
ing for control charting structures. Section 4 demonstrates
the detailed simulation setup and comparative analysis is
reported in section 5. The real data application is presented in
section 6, while conclusions and recommendations are made
in section 7.

II. SIMPLE LINEAR PROFILES USING RSS STRATEGIES
In this section, we will describe the structure of the ranked
set strategies used in the stated proposal. Further, the deriva-
tion of understudy profile model is discussed using the RSS
strategies.

A. RANKED SET SAMPLING SCHEMES
The RSS scheme was first proposed by [29], and reforms on
RSS were provided by [30]. The structure of RSS schemes
work such as n2 elements are selected, and n sets of n random

VOLUME 7, 2019 148279



T. Abbas et al.: Efficient Phase II Monitoring Methods for Linear Profiles Under the Random Effect Model

samples are constructed. The selected units are ranked in each
individual set with the help of auxiliary variable, personal
inspection or judgment without any actual measurement. The
smallest ranked element is selected from the preliminary set,
the second least ranked element from the subsequent set,
and then the third set used to pick the third least ranked
element. This procedure keeps going on until the highest
ranked element is obtained from the last set. In this way, n
elements are selected from n sets and if the above-mentioned
procedure is repeated l times than n∗lelements are obtained,
and the sampling scheme is named as RSS. Practically these
strategies come up with tangible benefits as Dell and Clut-
ter [35] illustrated that mean estimator of RSS is more effi-
cient compared to SRS even if there are errors in the ranking.
Further Stokes [36] proved that the estimated variance of RSS
is more competent as compared to variance of SRS.

Median Ranked Set Sampling (MRSS) is an extended form
of RSS introduced by Muttlak [37]. In MRSS n2 samples are
selected from the target population at random and arranged
into n sets just like RSS, every set having n units. All the
observations in each set are organized on visual scrutiny or
with the help of the auxiliary variable. For the case of odd,
we choose

(
n+1
2

)
th ranked element from every set or select

the median unit from each set. For the even sample size,
we choose

( n
2

)
th ranked elements from the first n

2 sets and(
n+1
2

)
th ranked elements from the last n

2 sets. In result, n
units are obtained through the aforementioned procedure, and
if the above-mentioned procedure is recurrent l times than n∗

l units are obtained from MRSS.
Extreme Ranked Set Sampling (ERSS) is another type

of RSS proposed by Samawi et al. [38]. For the case of
ERSS, n2 random units are arranged into n sets, where all
sets consist of n samples. All n observations are arranged in
each set on visual judgment. For the case of odd set size,
choose the smallest ranked elements from first

(
n−1
2

)
sets;

the largest ranked elements from last the
(
n−1
2

)
sets and

the median ranked element from
(
n+1
2

)
set. For the case

of even set size, we choose the least ranked element from
first half sets, and the largest ranked element from last half
sets to obtain the sample of n observations. The aforemen-
tioned procedure is repeated l times to get n∗l units from
ERSS.

Al-Saleh and Al-Kadiri [39] proposed another sampling
technique similar to RSS, where n3 sampling units are
selected and divided into n sets each set consisting of n2 sam-
pling units known as Double Ranked Set Sampling (DRSS).
These sampling units are arranged in each set with respect to
the auxiliary variable. The n2 sampling units are selected from
the total of n3 sampling units using RSS technique. Again n
sets are formed from these n2 units, and n units are chosen.
The process may be repeated l times to obtain n∗l observa-
tions from DRSS. The similar extension of MRSS and ERSS
can also be obtained and named by Double Median Ranked
Set Sampling (DMRSS), and Double Extreme Ranked Set

Sampling (DERSS) respectively. For a detailed understand-
ing, see [33] and [40].

B. ESTIMATION OF LINEAR PROFILES MODEL UNDER RSS
SCHEMES
This section describes the basic framework of the linear
profiles model under RSS schemes. The least-square method
is applied to obtain the estimates of intercept, slope and errors
variance, which are further used to design control charting
structures under RSS. The simple linear profilesmodel for the
jth order and k th cycle using RSS techniques can be defined
as:

Y[i]jk = β[0] + β[1]X[i]jk + ε[i]jk , i= 1, 2, 3, ..n,

k= 1, 2, 3, ..m (1)

where Y[i]jk denotes the ith ordered observation from the k th

cycle and jth profile using different ranked set sampling tech-
niques denoted by [R] such as RSS, MRSS, ERSS, DRSS,
DMRSS, and DERSS. The errors follow a standard normal
distribution, and the explanatory variable follows a normal
distribution with mean µx[R] and variance σ 2

x[R]. The model
provided in Equation (1) can be transformed to obtain the
independent estimators for intercept, slope and errors vari-
ance as follows:

Y[i]jk = A[0] + A[1]X∗[i]jk + ε[i]jk, i= 1, 2, 3, ..n,

k= 1, 2, 3, ..m (2)

where A[0] = β[0] + β[1]µx[R], A[1] = β[1] and X∗[i]jk =
X[i]jk − X̄[R]. The average of the predictor can be obtained

by X̄[R] =
∑n

i=1
∑m

k=1 X[i]jk
n∗m . This transformed model is further

used for the simulation study and comparative analysis. For
the case of perfect ranked set sampling, the estimated slope
coefficient for the jth profile and the kth cycle is obtained by
Â[1][R] =

Sxy[R]
Sxx[R]

, where Sxx[R] =
∑n

i=1
∑m

k=1 (X[i]jk − X̄[R])
2

and Sxy[R] =
∑n

i=1
∑m

k=1 (X[i]jk − X̄[R])Y[i]jk . The estimated
intercept can be obtained by Â[0][R] = β̂0[R] + β̂1[R]µx[R]
and the variances of slope and intercept parameters are

obtained by, Var
[
Â[1][R]

]
=

[
σ 2
(0)

Sxx[R]

]
, and var

[
Â[0][R]

]
=[

σ 2
(0)+Â

2
[1][R]σ

2
x[R]

n∗m

]
. Further, the estimated slope is standardized

to control the variability factor due to the random X , which
leads to fix the control limits of the slope parameter. Then the
standardized slope coefficient is defined as ST

(
Â[1][R]

)
=(

Â[1][R]−A1
)

√
σ2
(0)

Sxx[R]

, and the resultant standardized slope follows a

standard normal distribution. The mean square error defined

asMSE [R] =

∑n
i=1

∑m
k=1 e

2
[i]jk

n∗m−2 is the unbiased estimator of error
variance in which e[i]jk is the ith ordered error term from
the k th cycle and jth profile for [R] technique and defined as
e[i]jk = Y[i]jk − Ŷ[i]jk . Moreover, the variance of MSE[R] is

Var
[
MSE [R]

]
=

2σ 4
(0)

n−2 .
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III. LINEAR PROFILE MONITORING METHODS
In this section, control charting structures of competing and
proposed linear profile methods are presented by considering
the random effect of the predictor variable.

A. EWMA-3 CONTROL CHART UNDER SRS
Reference [24] proposed three independent EWMA statis-
tics for the intercept, slope and error variance monitoring
separately for the case of random X. In their study, random
samples are drawn from a normal distribution using the SRS
scheme. The EWMA statistics are defined as follows:

EWMAI [SRS] (j) = θ Â0j + (1− θ)EWMAI [SRS] (j− 1)

EWMAS[SRS](j) = θST
(
Â0j
)
+(1−θ)EWMAS[SRS] (j− 1)

EWMAE[SRS] (j) = max


θ ln

(
MSE j[SRS]

)
+ (1− θ)

EWMAE[SRS] (j− 1) , ln
(
σ 2
0

)
, j = 1, 2, . . .


(3)

where,

EWMAI [SRS] (0) = β0 + β1µx ,EWMAS[SRS] (0) = 0,

EWMAE[SRS] (0) = ln
(
σ 2
0

)
.

The smoothing constant θ must lies between 0 and 1 (i.e.,
0 ≤ θ ≤ 1). The corresponding control limits of the EWMA
statistics for intercept, slope and errors variance are given as
follows:

LCL = β0 + β1µx − LI [SRS]

√
θ

2− θ

σ 2
0 + β

2
1σ

2
x

n
,

UCL = β0 + β1µx + LI [SRS]

√
θ

2− θ

σ 2
0 + β

2
1σ

2
x

n

LCL = −LS[SRS]

√
θ

2− θ
,UCL = +LS[SRS]

√
θ

2− θ

UCL = ln
(
σ 2
0

)
+ LE[SRS]

√
θ

2− θ
Var

{
ln
(
MSE j

)}
(4)

where,
Var

{
ln
(
MSE j

)}
=

2
n−2 +

2
(n−2)2

+
4

3(n−2)3
−

16
15(n−2)5

(cf. [41]).

B. EWMA-3 CONTROL CHART UNDER RSS SCHEMES
In the case of the random effect model, the EWMA-3 chart
under different ranked set schemes is designed for the inter-
cept, slope and errors variance monitoring. This study has
considered the case of perfect ranked set schemes in which
main and auxiliary variables are perfectly correlated with
ρ = 1. The memory type structure considered here is
represented by the notation EWMAx[R] − 3 control chart.
Mathematically it can be proved that the variance of the inter-

cept transforms from
σ 2[0]
n∗m to

σ 2
(0)+Â

2
[1][R]σ

2
x[R]

n∗m after breaking the
condition of the fixed random variable. Then the EWMAI [j][R]
statistic for jth profile while monitoring of intercept and its

corresponding LCL and UCL using different [R] techniques
are:

EWMAI [j][R] = θ Â[0][R] + (1− θ)EWMAI [j−1][R]
j = 1, 2, 3 . . . (5)

LCLI [R] = β[0] + β[1]µx[R]

− LI [R]

√
θ

2− θ

σ 2
(0) + Â

2
[1][R]σ

2
x[R]

n ∗ m
,

UCLI [R] = β[0] + β[1]µx[R]

+ LI [R]

√
θ

2− θ

σ 2
(0) + Â

2
[1][R]σ

2
x[R]

n ∗ m
(6)

where, EWMAI [R] (0) = β[0] + β[1]µx[R]. The process is
considered under in-control state until the EWMAI [j][R] falls
within LCLI [R] and UCLI [R].

Now for the monitoring of slope coefficients, it can be
seen that the EWMAS[j][R] statistic depends over explanatory
variable X . Under the scenario of random X the EWMAS[j][R]
will lead to variable control limit as it will depend on a new
sample, each time the process is repeated and the values of
EWMAS[j](R) will not match. To overcome this problem, stan-
dardized slope estimators are used. The EWMAS[j][R] statistic
for jth profile and its corresponding LCL and UCL for the
monitoring of slope are defined as:

EWMAS[j](R) = θST
(
Â[1][R]

)
+(1− θ)EWMAS[j−1][R] (7)

LCLS[R] = −LS[R]

√
θ

2− θ
, and UCLS[R]

= +LS[R]

√
θ

2− θ
(8)

where, EWMAS[R] (0) = 0. The process defined
under stable condition till the EWMAS[j][R] falls within
LCLS[R]andUCLS[R].

While discussing the randomness of the explanatory vari-
able of the profile model, it has no effect on EWMAE[j][R]
statistic, so the control limits and test statistic wouldn’t be
changed for errors variance monitoring defined for the jth

profile as:

EWMAE[j](R) = max

{
θ ln

(
MSE [j][R]

)
+

(1−θ)EWMAE[j−1][R], ln
(
σ 2
(0)

)}
,

j = 1, 2, 3 . . . (9)

UCLE[R] = ln
(
σ 2
(0)

)
+ LE[R]

√
θ

2− θ
Var

{
ln
(
MSE j

)}
(10)

where, EWMAE[R] (0) = ln
(
σ 2
(0)

)
. The under study process

assumed to be in-control as long as the EWMAE[j][R] is less
than UCLE[R].

C. MEWMAX [R]-3 CONTROL CHART UNDER RSS SCHEMES
In this subsection, we have considered a general case of pro-
files monitoring and assumed an in-control general profiles

VOLUME 7, 2019 148281



T. Abbas et al.: Efficient Phase II Monitoring Methods for Linear Profiles Under the Random Effect Model

model when explanatory variables are not fixed and defined
as:

Yj = XjC + εj, (11)

where C =
(
C (1),C (2),C (3), . . . ,C (k)

)
is the vector of

regression coefficients of k-dimension. The represented error
terms εj are identically and independently distributed with
a multivariate vector of standard normal distribution. In this
modelXj is provided in the form of (1,X∗j ) whenX

∗
j is orthog-

onal to 1 on 1 in the situation of nj-variates. We have further
assumed thatXj is themultivariate normally distributed vector
of nj-variates with mean vector µX and variance-covariance
matrix of σ 2

X .
Zou et al. [42] assumed a general profiles model with

fixed Xj’s and designed a MEWMA[SRS] chart to monitor
simultaneously, them+1 regression parameters that includes
m coefficients and the errors variances under SRS. We have
further extendedMEWMA scheme of [42] when the explana-
tory variables are random using different imperfect and per-
fect ranked set schemes (i.e., RSS, MRSS, ERSS) defined
with a notation [R]. Now from the model in Equation (11),
we defined a transformation under ranked set schemes as:

ωj
(
[R]
)
=

(
Ĉ[R]j−[R]

)
/σ[R] (12)

and

ωj
(
σ[R]

)
= 8−1

{
G

(
(n-m) σ̂ 2

[R]j

σ 2
[R]

; n− m

)}
, (13)

where Ĉ[R]j =

(
XTj Xj

)−1
XjYj,

σ̂ 2
[R]j =

(
Yj − XjĈ[R]j

)T (
Yj − XjĈ[R]j

)
, 8−1(.) is defined

as the inverse of a multivariate standard normal cumula-
tive function, while G (.; υ) is the represented chi-square
distribution with pre-specified υ degrees of freedom. The
standardization of regression coefficients in Equation (12)
and the transformation of the process standard deviations
in Equation (13) allows accommodating the effect of ran-
dom explanatory variables and sampling size (n) selection.

Now define a statistic ω[R]j =

(
ωTj

(
[R]
)
, ωj

(
σ[R]

))T
, that

combines the estimated regression coefficients and standard
errors and form a (m+1) variate of random vector. When
the process is in-control the statistic ωj multivariate normally
distributed that has zero mean vector and variance-covariance
matrix

H =
(
XTj Xj 0
0 1

)
.

Then we can define a MEWMAx[R] statistic under ranked set
schemes [R] as:

Z[R]j = λω[R]j + (1− λ)Z[R](j−1), j = 1, 2, . . . (14)

where, Z[R]0 represents the preliminary vector of (m+1)-
dimension. The value of smoothing constant λ can be any-
where between 0 and 1. The upper control limit for the

MEWMAx[R] chart for an out-of-control situation can be
defined as:

W[R]j = ZT[R]jH
−1Z[R]j > L[R]

λ

2− λ
, (15)

The value of the control limit coefficient L[R] is adjusted to
obtain a pre-specified in-control average run length (ARL0).

IV. SIMULATION SCHEME AND
PERFORMANCE MEASURE
This section discusses the simulative work, and comparative
analysis of the control charting structures based on simple and
ranked set sampling schemes. The original model in Equa-
tion 1 takes the intercept and slope as 3 and 2, respectively,
while the transformed model presented in Equation 2 takes
intercept as 13 and slope remain the same. The i.i.d. errors
are generated from a standard normal distribution, and the
explanatory variable X ∼ N (mean = 5, variance = 5/3).At
first, n2 bivariate random numbers are generated for errors
and explanatory variables through different RSS techniques
when n=4. The main variables are ranked with respect to
auxiliary variables, and four values are selected one in each
cycle. The values of the response variable are generated after
using Equation 2. Subsequently, parameters have been esti-
mated. In the next phase, all the test statistics are computed
on the subject of each control chart with θ = 0.2 as smoothing
constant. The shifts denoted by ϕ are incorporated in the
process parameters (i.e., intercept, slope and error variance)
in terms of σ units as: A0toA0 + (ϕI ∗ σ ),A1toA1 + (ϕS ∗ σ ),
and σ toϕE ∗ σ . The magnitude of shifts in intercept is taken
as 0.2-2 with a jump of 0.2, and for the slope, 0.025-0.25 are
taken with a jump of 0.025. In the error variance, shifts are
taken as 1.2-3 by a 0.2 shift difference.

The average run length (ARL) is the performance measure
used in this study for the evaluation of charts where ARL is
defined as themean points falling inside the specification lim-
its before a point falls outside of specification limits (cf. [18],
[22], [43]). Further, simulation study having 10,000 iterations
is carried out to draw the findings of the stated proposal.
To obtain the overall in-control ARL (ARL0) 200, the con-
trol limit coefficients for each chart are adjusted on the
ARL0 = 600, while for the overall ARL0 = 370, individ-
ual control limit coefficients are set on the ARL0 = 1110
(cf. Table 1).

V. COMPARATIVE ANALYSIS
This subsection explains the simulation results and finding of
existing and competing for profile monitoring methods. The
shifts are initiated in the procedure to check the detection
ability of the control charts. These shifts are the illustration
of the change in profile parameters in any manufacturing
process. We have computed OOC ARL’s (ARL1) for the
simple and different ranked set sampling techniques to eval-
uate the performance of EWMAx[SRS]-3 and EWMAx[R]-3
(i.e., EWMAx[RSS]-3, EWMAx[ERSS]-3, EWMAx[MRSS]-3,
EWMAx[DRSS]-3, EWMAx[DERSS]-3 and EWMAx[DMRSS]-3
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TABLE 1. Coefficients of control limits under SRS and RSS schemes.

TABLE 2. Performance comparison of EWMAx[SRS]-3 and EWMAx[R]-3 charts for intercept shift at RL0=200.

TABLE 3. Performance comparison of EWMA x[SRS]-3 and EWMAx[R]-3 charts for slope shift at ARL0=200.

TABLE 4. Performance comparison of EWMAx[SRS]-3 and EWMAx[R]-3 charts for error variance shift at ARL0=200.

under RSS, ERSS, MRSS, DRSS, DERSS, DMRSS
schemes) charts. For comparison purposes, the focus remains

on the small shifts because the proposed and competing for
control charts are efficient for the small shifts in a process.
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TABLE 5. Performance comparison of EWMA x[SRS]-3 for the joint shift in intercept and slope at ARL0=200.

TABLE 6. Performance comparison of EWMA x[R]-3 for the joint shift in intercept and slope at ARL0=200.

TABLE 7. Performance comparison for combine shift in intercept and slope at ARL0 = 200 using ERSS.

TABLE 8. Performance comparison for combine shift in intercept and slope at ARL0=200 using MRSS.

Thus, a control chart with smaller ARL on the small shifts
in intercept, slope and error variance will be considered as
the most efficient control chart. The ARL results are reported
in Tables 2–4 for the monitoring of intercept, slope and errors

variance under SRS and RSS schemes. The impact of ARL
performance on the proposed and competing charts with
accounting the shifts in intercept, slope and errors variance
are described in the following lines.
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TABLE 9. Performance comparison for combine shift in intercept and slope at ARL0=200 using DRSS.

TABLE 10. Performance comparison for combine shift in intercept and slope at ARL 0=200 using DERSS.

TABLE 11. Performance comparison for combine shift in intercept and slope at ARL 0=200 using DMRSS.

A. SHIFTS IN INTERCEPT PARAMETER
The intercept term in the profile model is the conditional
mean of the response variable whenX=0. Taking into account
a shift in intercept is vital, as a shift in intercept means
changing the origin point of the regression line. Now, con-
sidering the case of shifts in intercept, it is seen that at
the first shift ϕI = 0.2 when ARL0 = 200, the ARL1
values for EWMAx[SRS]-3, EWMAx[RSS]-3, EWMAx[ERSS]-
3, EWMAx[MRSS]-3, EWMAx[DRSS]-3, EWMAx[DERSS]-3
and EWMAx[DMRSS]-3 are 153.8, 129.6, 127, 120, 77.6,
107.8 and 60.5, respectively. The resultant ARL values indi-
cate that the proposed EWMAx[RSS]-3 charts based on [R]
schemes outperform the existing chart of EWMAx[SRS]-3
that is based on SRS. Among these ranked set schemes,
the EWMAx[DMRSS]-3 chart constructed by using DMRSS
scheme showed the best performance as compared to others

(cf. Table 2). It continues with the best performance at dif-
ferent shift values, but the magnitude of difference in ARL is
small at larger shift values.

B. THE SHIFT IN SLOPE PARAMETER
The slope parameter is vital as it explains the rate of
change in response with respect to a unit change in the
independent variable. This mean introducing a shift in
slope will change the original rate of change in response
that ends up with a false decision. For the case of slope
shifts, results are provided in Table 3. At fixed ARL0 =

200, the ARL1 values at shift 0.025 for the EWMAx[SRS]-3,
EWMAx[RSS]-3, EWMAx[ERSS]-3, EWMAx[MRSS]-3,
EWMAx[DRSS]-3, EWMAx[DERSS]-3 and EWMAx[DMRSS]-3
are 166.1, 140.6, 128.2, 140.9, 92.7, 92.6 and 92, respec-
tively. Similarly, the proposed EWMAx[R]-3 charts based
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TABLE 12. Performance comparison of MEWMAx[SRS] and MEWMAx[R] charts for intercept shift using imperfect ranked set schemes.

TABLE 13. Performance comparison of MEWMAx[SRS] and MEWMAx[R] charts for slope shift using imperfect ranked set schemes.

TABLE 14. Performance comparison of MEWMA x[SRS]and MEWMAx[R] charts for errors variance shift using imperfect ranked set schemes.

on perfect ranked set schemes have outperformed the
EWMAx[SRS]-3 chart. The significance in performance
decreases with the increase of shift values. Among the
proposed EWMAx[R]-3 charts the chart based on MDRSS
schemes has shown superiority over others.

C. ERROR VARIANCE SHIFTS
The basic assumption of error terms in the regression model
the normality with mean zero and fixed variance. This is the
scenario of process under IC state, and this assumption is
severally affected after shifts in error variance. This means
a change in error variance will change the parameter of the

regression model. For the case of shifts in error variance,
results of the linear profile monitoring methods are reported
in Table 4. In the presence of a 1.2σ shift in the errors, it is
seen that the EWMAx[DERSS]-3 chart showed the smallest
ARL1’s around 13.2 at the fixed ARL0 = 200. In conclu-
sion, it is observed that all the proposed EWMAx[R]-3 charts
outperform the EWMAx[SRS]-3 chart.

D. JOINT SHIFTS IN INTERCEPT AND SLOPE
The efficiency of control charts using RSS techniques for
the case of joint shifts in the intercept and slope have
also been reviewed at ARL0 = 200 (cf. Tables 5–11).
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TABLE 15. Estimates of the simple linear profile parameters with control charting constant.

TABLE 16. Number of OOC profiles with respect to profile indices.

Study of joint shifts is important as the change in the origin
of the regression model will mislead in terms of rate of
change. The combine shifts are introduced for all possible
combinations of intercept and slope shifts using RSS sam-
pling techniques. The purpose is to observe detection abil-
ity of the EWMAx[SRS]-3, EWMAx[RSS]-3, EWMAx[ERSS]-3,
EWMAx[MRSS]-3, EWMAx[DRSS]-3, EWMAx[DERSS]-3 and
EWMAx[DMRSS]-3 charts by taking joint shifts into account.
The findings are described in the following lines:

The ARL1 is observed as 105.4, 66.5, 66, 60.5, 32.6,
45, and 24.5 for the EWMAx[SRS]-3, EWMAx[RSS]-3,
EWMAx[ERSS]-3, EWMAx[MRSS]-3, EWMAx[DRSS]-3,
EWMAx[DERSS]-3 and EWMAx[DMRSS]-3 charts respec-
tively, when slope is shifted around 0.025 and intercept is
shifted almost 0.2.. This indicates a significant improvement
in the performance of control charts at small shifts with
the use of perfect ranked set sampling schemes, particularly
using MDRSS strategy. For the EWMAx[SRS]-3 chart, it is
seen that the ARL1 = 5.3 for the pair of shifts (0.025,
2) while ARL1 is reported as 8.8 for the shifted pairs (0.25,
0.2). The EWMAx[RSS]-3 chart provides ARL1 = 3.1 and
5.1 at (0.025, 2) and (0.25, 0.2) pairs of shifts in the slope
and intercepts, respectively. At (0.025, 2) and (0.25, 0.2)
shifted pairs, results showed that the EWMAx[ERSS]-3 chart
provides ARL1 = 3.3 and 5.4, while the EWMAx[MRSS]-3
chart haveARL1 equals to 2.9 and 4.6. These findings provide
the evidence that the linear profile monitoring method under
MRSS scheme is slightly better than the ERSS, RSS and
SRS schemes. The EWMAx[DRSS]-3 and EWMAx[DERSS]-3
charts offers ARL1 = 2.1 and 3.1, and ARL1 = 2.5 and

3.9 respectively, at shifted pairs (0.025, 2) and (0.25, 0.2). The
EWMAx[DMRSS]-3 chart offer the best performance among all
with ARL1 = 1.8 and 2.5 at (0.025, 2) and (0.25, 0.2) pairs of
shifts in slope and intercept respectively. Overall significant
improvement in the detection ability is seenwith the proposed
EWMAx[R]-3 charts because ARL1 is reduced from 105.4 to
24.5 at the shifted pair (0.025, 0.2) (cf. Tables 5 and 11).

E. OVERALL
The ARL curves for the EWMAx[SRS]-3, EWMAx[R]-3 charts
are presented in Figures 1-6. Under the scenario of shifts
in intercept and slope, the EWMAx[DMRSS]-3 have lower
ARL curve as compared to all other charts, which is the
evidence of its superiority. The pattern of the ARL curves
also indicates that when there are shifts in errors variance,
the EWMAx[DERSS]-3 chart is on the lower side. This shows
a better performance of EWMAx[DERSS]-3 chart compared to
all competing charts. The amount of difference is high at a
smaller shift while this difference is low at the large shift
values among existing and competing charts.

F. EVALUATION MEWMAx[R] CHARTS
This subsection describes the performance of newly designed
MEWMAx[R] charts using the ranked set schemes of
RSS, MRSS, and ERSS at different settings of correla-
tion coefficients among main and auxiliary variable. The
MEWMA chart under SRS represented by MEWMAx[SRS]
chart, while under RSS, MRSS and ERSS are represented
by MEWMAx[RSS], MEWMAx[MRSS], and MEWMAx[ERSS]
charts respectively. The value of smoothing is chosen as
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FIGURE 1. ARL comparison of EWMAx[SRS]-3 and EWMAx[R]-3 charts for intercept shifts at ARL0=200.

FIGURE 2. ARL comparison of EWMAx[SRS]-3 and EWMAx[R]-3 charts for slope shifts at ARL0=200.

0.2, and for imperfect ranked set schemes we have selected
ρ = 0.25, 0.5, 0.75, and 0.9 while ρ = 1 for perfect ranked
set schemes. The control limit coefficients are adjusted to
obtain fixed ARL0 of 200 for SRS and ranked set sampling
at different values of ρ. The designed MEWMA charts under
ranked set schemes can be used to monitor the general linear
profiles while for a comparative perspective, let us assume
m=2 in Equation (1). For a comparative perspective, the in-
control parameter values are considered for the model in
Equation (1) as: C0 = 3,C1 = 2, σ 2

0 = 1. The explana-
tory variables are set to follow bivariate normal distribution
with µX1 = µX2 = 5 and σ 2

X1 = σ 2
X2 = 5/3. The

error terms are also set to follow bivariate normal distri-
bution with µ1 = µ2 = 0 and σ 2

1 = σ 2
2 = 1. The

designed and competing MEWMA control charts are eval-
uated for 10,000 simulations. The ARL values are computed
for proposed and competing MEWMA charts and reported

in Tables 12–14 taking into account shifts in intercepts, slope
and errors variance.

The values of run length measure show that MEWMAx[R]
charts outperformed the MEWMAx[SRS] charts under perfect
ranked set sampling. For the monitoring of the intercept
parameter, the MEWMAx[MRSS] chart showed better per-
formance compared to all other charts in this study when
ρ = 1. When shifts are introduced in slope coefficients
the MEWMAx[ERSS] chart outperformed other charts under
perfect and imperfect ranked set schemes and same is the
case for error variance monitoring. The simulation results
reveal that MEWMAx[ERSS] charts are best for slope and
errors variance monitoring while MEWMAx[MRSS] charts
have advantage over other charts for intercept shifts. Over-
all, the MEWMAx[R] charts are proposed for perfect ranked
set schemes for the monitoring of general linear profiles
(cf. Tables 12–14).
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FIGURE 3. ARL comparison of EWMAx[SRS]-3 and EWMAx[R]-3 charts for error variance shifts at
ARL0=200.

FIGURE 4. ARL comparison of EWMAx[SRS]-3 and EWMAx[R]-3 charts for error intercept shifts at
ARL0=370.

FIGURE 5. ARL comparison of EWMAx[SRS]-3 and EWMAx[R]-3 charts for slope shifts at ARL0=370.
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FIGURE 6. ARL comparison of EWMAx[SRS]-3 and EWMAx[R]-3 charts for error variance shifts at
ARL0=370.

FIGURE 7. Residual plots for model 11.

VI. A REAL DATA APPLICATION
To highlight the importance of the stated proposal, we have
applied proposed charts on the dataset related to combined
cycle power (CCP) plant. A CCP plant given in Figure 7 com-
prises steam turbines, gas turbines, and heat recovery steam
generators. In the mechanism of a CCP plant, gas generators
are used to generate electrical power, and waste heat of the
exhaust gases are further utilized by steam generators to
produce electricity.

In this study, we are using a dataset reported by
Tüfekci [44]. A CCP plant with electricity generating capac-
ity 480 MW was designed with 1 × 160 MW ABB steam
turbine, 2 × 160 MW ABB 13E2 gas turbines, and 2× dual
heat recovery steam generators. In a CCP plant, the main load
is dependent on the gas turbine which is sensitive to the ambi-
ent conditions such as atmospheric pressure (AP), ambient
temperature (AT), Vacuum (V) and relative humidity (RH).
Reference [44] used ambient conditions as explanatory vari-
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FIGURE 8. Residual plots for model 12.

FIGURE 9. EWMAx[SRS]-3 control chart under SRS scheme for shift in (a) intercept parameter; (b) slope parameter; and (c) error variance
parameter.

ables and full load electrical power output (PE) as a dependent
variable. On the bases of 9568 data points, a possible subset

regression is used to find the significant explanatory variables
for the dependent variable PE.
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FIGURE 10. EWMAx[MDRSS]-3 control chart under DMRSS scheme for shift in (a) intercept parameter; (b) slope parameter; and (c) Error
variance parameter.

FIGURE 11. EWMAx[DERSS]-3 control chart under DERSS scheme for shift in (a) intercept parameter; (b) slope parameter; and (c) Error variance
parameter.

Although, all ambient conditions play a role in the PE,
AT is the most influential factor and most widely studied

about gas turbines. Reference [44] reported that there
exists −0.95 correlation between PE and the AT. Further,
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a regression model was given as,

P̂E = 497.03− 2.1713AT (16)

which can be interpreted as: if AT increase a unit (◦C), then
PE reduced to 2.1713 MW. This model has R2 = 89.89
but might have the problem of mild normality (cf. Figure 7).
Hence, we used only the first 2500 data points and obtained
the following model,

P̂E = 497.362− 2.1860AT (17)

which can be interpreted as: if AT increase a unit (◦C), then
PE reduced to 2.1860 MW. This model has R2 = 90.06,
PP-plot is plotted in Figure 8 and Anderson-Darling test
with the summary numbers given as AD = 0.736 and
P-value = 0.055. From this analysis, we conclude that there
is no strong evidence against normality (cf. Figure 8). There-
fore, we are using model 12 as an in-control model. The
implementation of EWMAx[SRS]-3, EWMAx[DMRSS]-3 and
EWMAx[DERSS]-3 charts under SRS, DMRSS and DERSS,
respectively on the real data set is described as
follows:
Step 1: For the analysis, estimates of the simple linear

profile parameters are obtained using five random data points
(n = 5) drawn by SRS, DMRSS and DERSS schemes. Fur-
ther, these estimates are computed for a large number of time
(106 iterations) using extensive Monte Carlo simulations.
Hence, the average and standard deviation of the estimates
with respect to sampling schemes are obtained and reported
in Table 15.
Step 2: For the analysis, we have fixed the over-

all ARL0= 200 to obtain the charting constants of
EWMAx[SRS]-3, EWMAx[DMRSS]-3 and EWMAx[DERSS]-3
charts. These constants are computed by extensive Monte
Carlo simulations (106 iterations). The resulting control lim-
its are given in Table 15.
Step 3: Once, we have established the control limits,

we chose 100 profiles as IC profiles (pink shaded
in Figures 10-12) for EWMAx[SRS]-3, EWMAx[DMRSS]-3 and
EWMAx[DERSS]-3 charts.

Further, the following profiles are used to introduce several
amounts of shifts in terms of σPE = 16.58.
• For the shift in intercept, we have added 0.25σPE in the
values of PE, and the resulting 25 profiles with index
101 to 125 for EWMAx[SRS]-3, EWMAx[DMRSS]-3 and
EWMAx[DERSS]-3 charts are portrayed in Figures 10-12.

• For the shifts in slope, we havemultiplied 0.075σPE with
the values of AT, and the resulting 25 profiles with index
126 to 150 for EWMAx[SRS]-3, EWMAx[DMRSS]-3 and
EWMAx[DERSS]-3 charts are portrayed in Figures 9-11.

• For the joint shifts in intercept and slope, we have
added 0.25σPE in the values of PE and multiplied
0.075σPE with the values of AT, and the resulting
25 profiles with index 151 to 175 for EWMAx[SRS]-3,
EWMAx[DMRSS]-3 and EWMAx[DERSS]-3 charts are
portrayed in Figures 9-11.

• For the detection of shifts in the variance of dis-
turbance term, we multiply 25 sets of PE with
0.1σPEand the resulting 25 profiles with index
176 to 200 for EWMAx[SRS]-3, EWMAx[DMRSS]-3 and
EWMAx[DERSS]-3 charts are portrayed in Figures 9-11.

For EWMAx[SRS]-3, EWMAx[DMRSS]-3 and
EWMAx[DERSS]-3 charts the number of OOC profiles
with their respective indices are given in Table 16. When
there is a shift in intercept parameter, the results revealed
that EWMAx[SRS]-3 chart offers 5 OOC signals while
EWMAx[DMRSS]-3 and EWMAx[DERSS]-3 charts alarms
18 and 19 OOC signals, respectively. In the presence of
shifts in slope parameter, EWMAx[SRS]-3 chart signaled no
OOC points while EWMAx[DMRSS]-3 and EWMAx[DERSS]-3
signaled 1 and 15 OOC signals, respectively. Further,
when the joint shift is introduced in intercept and slope,
EWMAx[SRS]-3 chart signaled 14 OOC points while
EWMAx[DMRSS]-3 and EWMAx[DERSS]-3 signaled 12 and
55 OOC signals, respectively. Moreover, a similar pattern is
also observed when shifts are introduced in error variance.
Hence, the EWMAx[DERSS]-3 has a better detection ability
relative to EWMAx[SRS]-3, EWMAx[DMRSS]-3 charts. The
findings of the real case study also showed the evidence that
the EWMAx[DMRSS]-3 chart performed well while consider-
ing shifts in intercept and slope and EWMAx[DERSS]-3 has a
better detection ability in case of shifts in error variance.

VII. CONCLUSIONS AND RECOMMENDATIONS
This study presented a new linear profiles monitoring method
for random effect model with the application of various
ranked set schemes like RSS,MRSS, ERSS, DRSS, DMRSS,
and DERSS. The structure is designed on the bases of
three independent EWMAx[R]-3 charts to monitor the pro-
cess parameters of random effect model such as intercept,
slope and errors variance. A comprehensive analysis based
on simulation and real data application is carried for the
comparison of proposed EWMAx[R]-3 charts and existing
EWMAx[SRS]-3 chart. The simulation study and practical
application provide evidence that the recommended charts
have higher detection ability as compared to the existing chart
while monitoring shifts in the intercept and slope. For the case
of errors variance monitoring, the EWMAx[DERSS]-3 charts
come up with the best detection ability. The significance
in performance is high at smaller shifts and its magnitude
decrease with the increase in shift values. Further, the joint
shifts in the slope and intercept of the transformed model are
incorporated, which indicates a significant improvement in
the performance ability of linear profiling structures. Overall,
findings of this study divulge that the ranked set sampling
schemes improve the detection capability of control charts
for the monitoring of linear profiles model. The scope of
the current research can be extended and enhanced with the
inclusion of Bayesian techniques, the run-rule schemes both
in classical and Bayesian setup. Further the current simple
linear random model can be extended for multivariate cases
and of course extension in a nonlinear profiles model.
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NOMENCLATURE
R; Sampling techniques
x; Random model
SRS; Simple random sampling
RSS; Ranked set sampling
ERSS; Extreme ranked set

sampling
MRSS; Median ranked set sampling
DRSS; Double ranked set sampling
DERSS; Double extreme ranked set

sampling
DMRSS; Double median ranked set

sampling
EWMAx[R]-3; EWMAx-3 chart using

specified ranked set
sampling

EWMAx[SRS]-3; EWMAx-3 chart using
simple random sampling

ARL; Average run length
ARL0; In-control ARL
ARL1; Out-of-control ARL
SPC; Statistical process control
IC; In-control: OOC;

Out-of-control
CUSUM chart; Cumulative sum chart
EWMA chart; Exponentially weighted

moving average chart
MCUSUM; Multivariate cumulative sum
MEWMA chart; Multivariate exponentially

weighted moving average
chart

MEWMAx[R]-3; MEWMAx-3 chart using
specified ranked set
sampling

MEWMAx[SRS]-3; MEWMAx-3 chart using
simple random sampling

n; sample size: l; a number of repetition
i; ith sampled a number of cycles
observation: k;
j; jth profile: Yi[j]k ; response variable (ith

sample of k th cycle in jth

profile)
Xi[j]k ; explanatory variable

(random)
β0; Original intercept term
β1; Original slope coefficient:

εi[j]k ; Error terms (ith value
of k th cycle in jth profile)

ρ; Correlation coefficient
A[0]; Transformed intercept
A[1]; Transformed slope

coefficient
X∗i[j]k ; Transformed random

explanatory variable (ith

value of k th cycle in jth

profile)

ei[j]k ; Residual terms (ith value of
k th cycle in jth profile)

MSEj; Mean square error for jth

profile
µx ; Mean of the explanatory

variable (random) under
simple random sampling

σ 2
x ; Variance of the explanatory

variable (random)
under simple random sampling

µx[R]; Mean of the explanatory
variable (random) under ranked
set sampling

σ 2
x[R]; Variance of the explanatory

variable (random) under ranked
set sampling

σ 2
0 ; Variance of error terms

under simple random sampling
σ 2
[0]; Variance of error terms

under ranked
set sampling

θ ; smoothing constant for
EWMA statistic

LCL; Lower control limit
UCL; Upper control limit
LI[SRS]; Control limit coefficient of

EWMA for intercept using
simple random sampling

LS[SRS]; Control limit coefficient of EWMA for
slope using simple random sampling

LE[SRS]; Control limit coefficient of EWMA for errors
variance using simple random sampling

LI[R]; Control limit coefficient of
EWMA for intercept using ranked set sampling

LS[R]; Control limit coefficient of
EWMA for slope using ranked set sampling

LE[R]; Control limit coefficient of EWMA for errors
variance using ranked set sampling

ϕI ; Shift in intercept; ϕS ; Shift in slope
ϕE ; Shift in errors variance
CCP; Combined cycle power
AP; Atmospheric pressure
AT; Ambient temperature: V; Vacuum
RH; Relative humidity: PE; Electrical power output
AD; Anderson-Darling test
PP; Probability plot
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