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ABSTRACT Energy and economy are increasing the relationship over the years, where the energy becomes
a significant resource to keep a country developing, and it supports its economy. Then, more reliable the
energy should become, especially the distribution network, to keep the entire process running. In this level of
energy distribution, where residential consumers and medium and small industries are supplied, the number
of interconnections of the network is enormous. However, for economic and environmental aspects, these
complex systems, which are operating close to their capacity, needs to increase the automation, appearing
the concept of smart grids and the Advanced Distribution Management System (ADMS) and its methods to
control. Inside of the ADMS, there are a lot of essential techniques. Among them, there are two techniques
which are the most relevant for this paper: the self-healing and load management. In an ADMS system,
these two techniques are treated separately, but the best solution occurs when they are computed together.
In this paper, it is proposed an approach that can address both problems at the same time or individually, i.e.,
in place to have a sequential method to solve step-by-step the issues in the networks. The proposed algorithm,
through reinforcement learning technique, can handle both problems together. The proposed approach is
tested in a real urban distribution network with some created scenarios to compare the results with outages
and overloads. Some comparisons with other methods are carried out.

INDEX TERMS Computational intelligence, load management, q-learning, power distribution, power
operation, reinforcement learning, self-healing.

I. INTRODUCTION
The energy is an essential resource in human life that affects
directly in society, transports, security, life support, and all
these points together, having a significant economic impact
in a nation. Since years ago, researches tried to count how
much the cost impact of an interruption is for the consumers,
industrial, commercial, and residential [1]–[3]. With time,
the energy is growing in importance, and nowadays, how
much more power can be distributed, more development
occurs, factories can keep their production, the commerce can
maintain the trading, new ideas can emerge from the house
garages, andmany other uncountable good things can happen.
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High quality and reliability in all chains should be kept
to sustain energy distribution. This paper presents a contri-
bution in this direction for distribution networks, increasing
the operation quality. These networks have become complex
throughout the last decades, due to the number of devices
installed, the number of consumers, the environmental laws,
new regulations, aging of the equipment, among others [4].
These points bring so many possibilities to solve an issue that
the operator might take the wrong decision or take more time
to resolve a problem. Thus, a lot of studies have been made
to create autonomous systems, the major part of them with a
certain level of intelligence, to minimize the error from the
operator action, giving more instructions in a short period
of time to his decision making in a viable time before that
a blackout happens [5], [6].
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One possible investment to improve the control is the
Advanced DistributionManagement System (ADMS), which
is a software platform that includes many functionalities to
guide the distribution system to be more resilient, in other
words, to have the capacity to recover from any disaster,
be reliable and efficient in its operations [7]. A complete
ADMS is composed of algorithms for automated fault
location, fault isolation, service restoration, conservation
voltage reduction, peak demand management, volt/var con-
trol optimization, microgrid operation, and electric vehicle
support [8], [9].

For each one of these features, there is a unique algorithm
that will run independently when the correspondent trigger
occurs. In general, it is not possible to reach an optimal global
solution, resolving only a unique systemic problem; because
the algorithm tries to find the best case to solve an isolated and
unique issue. For instance, in the self-healing problem, there
are some articles showing techniques to solve it [10], [11],
by centralized, decentralized, or distributed systems, using
graph theory or artificial intelligence; but, in all cases, they
resolve an issue per time. Furthermore, other ADMS func-
tionalities can have independent techniques for Volt/Var [12],
microgrid [13], load management [14], and so on. Beyond
the self-healing problem, there is another important trigger of
outages, which is the overload, as pointed out in [3], so in this
case, there are techniques to mitigate the issues related to the
sudden growth of load in the system as showing in [15]–[17].
A combination of self-healing and load shedding can be seen
in [18], [19], where more than one problem occurs to be
resolved using the same technique, but it should address one
single trouble first and after another.

Thus, this current paper brings a new approach to recon-
figure the system, from two different triggers (fault and over-
load). Due to the complexity of this problem, it is hard to
find a single strategy that can handle different approaches at
the same time; the idea is to use the Machine Learning (ML)
methods [20]. There are a lot of techniques that can work in
complex environments, with a massive amount of data and in
real-time, once the action to avoid permanent fault requires
limited time to work. Some works can be seen in this area
applied in the electrical power system [21]–[23].

The initial inspiration of this paper was based on these two
papers [24], [25], which use Reinforcement Learning (RL)
on Self-Healing for shipboard reconfiguration. In this paper,
the approach is to use the core of RL, including environment,
policy, reward, and penalty, changing points of convergence.
The structure of this paper begins with the motivation of
the proposed method. After, it is explained how the reality
of distribution networks inside of computer program was
modeled. In the sequence, a brief explanation about reinforce-
ment learning is presented, showing the proposed approach.
Following that, the application of the proposedmethod occurs
in a small system to explain how the strategy works. And
then, the proposed method is applied in a real distribution
network. Some results for different scenarios and operating

points are carried out, and some comparisons with other
sequential methods are made.

II. MOTIVATION
Currently, there are two processes to resolve the faults into the
distribution grid. The first tries a simple service restoration
where if a source is available to be used, a set of loads might
be transferred to this feeder, and the process ends up at this
moment. The second process considers the ADMS function-
alities designed to resolve each problem per time, i.e., in a
sequential way. For example, in a case where the self-healing
solution does not have an alternative source to transfer the
load without causing an overload, the service restoration will
not be executed a priori. However, a second functionality
might be triggered to avoid this overload. So, load shedding
can cut off part of the load, before the self-healing actions.
Then, self-healing is enabled after load shedding.

This second process is more complex, and it will require
operational experience or automatic triggering of functional-
ities to develop it. So, the motivation of this paper is based
on the idea of solving complex problems by several func-
tionalities simultaneously. The problem in this approach is
that the search space is increased exponentially, and sim-
ple techniques cannot find a solution or resolve in a short
time. Then, the contribution of this paper is to call on Rein-
forcement Learning, which is prepared to handle complexity
environments.

III. THE ALGORITHM PROPOSED: MODIFIED
Q-LEARNING AND THE ENVIRONMENT MODEL
The proposed method can be classified as Machine Learn-
ing (ML) techniques, which is a branch of Computational
Intelligence field that treats with algorithms, mathemati-
cal, and statistical models. More specifically, the proposed
method is a class (paradigm) of ML, named Reinforcement
Learning (RL), in which the concept of the model is substi-
tuted by multiple agents (which are model-free). Each agent
manages its interaction with the environment, and its actions
trying to maximize the notion of cumulative reward.

The proposed method uses a Modified Q-Learning (MQL)
adjusted to the power distribution environment. The original
Q-Learning algorithm, where Q represents quality, which is
also a class of RL, was proposed in [26], [27], that can’t be
used directly for the size of the real problem in distribution
systems. The main goal of each agent of the MQL is to
learn the operation policy of the distribution network, its
issues, and constraints, the current operating point, and to
act. Each action can produce changes in the current oper-
ating point of the distribution system, generating a reward
(positive or negative) for the agent and modifying its internal
behavior. The method proposed, in Figure 1, follows the
self-healing workflow (fault location, isolation, and service
restoration). The first step of the algorithm is to identify and
isolate the fault, saving the switches that were isolated (list
of actions). After, it is done the setup to run the training of
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FIGURE 1. Proposed algorithm workflow.

MQL, so the method is initialized, and the algorithm can
start to find the best actions to be executed and resolve the
problem. Inside the loop, the greed policy, represented by
equation (1), is used to determine the current state based
on the values in MQ-matrix. Note that for each new state
selected, the limits to avoid any new failure in the system
are verified, as permanent parallelism, current, and voltage
constraints. The reward calculation updates the MQ matrix
values, and it determines if the current state is valid or not to
be used, in case of the right solution, it is saved to be used:

π ′ (s) = argmax(MQπ (s, a)) (1)

where π is the policy applied, s is the current state, s ∈ S, Q
is the value function for a pair variable and a is the current
action, a ∈ A. The equation (1) is indirectly related with the
equation (3), where this equation selects the next state to be
verified by the algorithm.

Below is presented the relation between the MQL algo-
rithm and the distribution system to process and resolve the
problem.
• Agent: switch or load;
• Environment: Distribution System;
• Action: Open/Close switch, or Load Shedding [%];
• State: System topology;
• Reward: delta load, equation (2);
• MQ-matrix: Rows – the index represents the state in
decimal that should be converted in binary, Columns –
the actions to be performed, each index represents a
possible device to commute or a perceptual of the
shed, Figure 2 shows the general idea for MQ-matrix.
Furthermore, to have a better comprehension, see the
next section. The values are calculated based on equa-
tion (3). To initialize the matrix, it is used the load value
for each topology configuration according to the index.

A. LEARNING PROCESSING
The first state of the system is the device positions after
the isolation, so the algorithm finds the best action based
on the greed policy in the MQ-matrix. And then, a new
action changes the state, if the selection is related to a
device, or changes the load, whether a shedding action.

FIGURE 2. Understanding the MQ-matrix.

To determine the new state, topology, and loading, three
constraints to avoid any new failure in the system are verified.
The first constraint is the permanent parallelism, where it
is executed a graph search for each feeder, and the same
point (device) cannot appear twice. The second verification
is the voltage limits, which is used the own software (similar
to OpenDSS software [28]) to calculate the power flow and
obtain the voltage profile. The last constraint is the maximum
capacity of current on the equipment. In this case, the over-
all capacity for all devices and branches of the distribution
system is used. If one of these constraints is exceeded the
reward for the new state is minus one. Notice, all values are
normalized, considering the total power calculated when the
system is in normal operation mode.

If all constraints are right, in the step ‘‘verify the network
limits’’ in Figure 1, the reward can be calculated according
to equation (2), which represents the variation between the
load from the previous state and the load for the current
state. The values can be positive, that represents an improve-
ment, or negative, where the new state has less load than
the previous, this load is calculated based on the topology
system from the current state (s) and the next state (s′) after
the action (a) defined by the policy in equation (1). Otherwise,
the reward should receive -1 as a negative choice for that
action.

R (s, a) = 1L = L
(
s′
)
− L(s) (2)

where R is the reward function, 1L load variation, L is the
total load of the system based on state s, s′ is the future state
when taking the action a, s′ ∈ S.
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FIGURE 3. Example system with five reclosers. (a) the normal system, and
(b) system after isolation.

Therefore, with a reward value for the current state, theMQ
value can be obtained based on the equation (3), where the
first term means how much the value function in position
(s, a) will be decreased based on the learning factor α, and
after, in the second term, the value function is increased based
on the reward and the maximum value for the next better
action (a′) from the next start (s′), so the result means if this
position will be interesting for future states. Notice that the
values for MQ are based on the load.

MQ (s, a) := (1− α)MQ (s, a)+ α[R (s, a)

+ γmaxa′MQ
(
s′, a′

)
] (3)

where α is the learning rate, 0 < α ≤ 1, γ is the discount
factor 0 ≤ γ < 1, a′ is the future action from s′. Both α and γ
are configured in the ‘‘Setup the parameters.’’

To determine the best solution, the algorithm saves, in the
end, the best state when there is no constraint violation.
The algorithm stops when the number of iterations reaches
the end, or there isn’t more variation for the policy choice
in 10 consecutive iterations.

B. UNDERSTANDING THE MODEL
To have a better comprehension of how the method is exe-
cuted; it is created a small hypothetical system to apply in a
few steps, the complete idea of the algorithm. Figure 3 shows
this system in a normal state (a) and in an isolated and restored
state (b). The equation (3) is the initialization for matrix MQ
after the isolation; notice that there are three possible simple

TABLE 1. The relation between MQ-matrix and system topology.

FIGURE 4. Real distribution network used for test of the proposed
method.

actions, which are: to close or open switches SW1, SW2,
and SW3, once SW4 and SW5 are out of scope. The initial
stage in the algorithm, which is represented in Figure 3 (b),
comprehends line 4 according to Table 1.

The first step of the algorithm is to determine the action
using the greedy policy, so the maximum value is in line 4,
inside of the matrix MQ, is 1 (60/60). This action is to close
SW3, and this carries for a new state where all devices are
closed and represent line 8 in Table 1.

Qinitial =



10/60 0 0
−10/60 30/60 0
30/60 0 0
−30/60 −20/60 60/60
10/60 0 0
−10/60 60/60 0
60/60 0 0
−60/60 −50/60 −30/60


(4)

Once reached a new state, it should be verified all con-
straints, and, if any violation is reached, the reward receives
a negative value, so the next step is to calculate the new
value for MQ based on equation (3). The MQ-matrix is only
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FIGURE 5. Distribution network example.

updated if the current state comprehends a better result from
the previous iteration, the state is saved from being used as a
solution at the end of the process. A new iteration starts with
the new state (all devices closed), and a new action should be
chosen again, in this case, the best solution is to open SW3,
but the result return in the initial state, so there isn’t a better
solution than all devices closed, in this case, the algorithm
can stop and show the best solution stored in the process.

IV. TEST ON A REAL DISTRIBUTION NETWORK
To illustrate the algorithm design, it is tested in a real urban
grid with two substations interconnected by three feeders and
disposed of 12 switches, where three of them are normally
open and interconnects the three feeders. Figure 4 shows an
aerial photo of the area supplied for this network. A snapshot
of the normal topology and the current load, in Ampere, for
each segment is demonstrated in Figure 5. Of course, in this
figure, only the main devices are included to facilitate the
representation. Table 2 shows some data from this network.
The total number of transformers is 283; it means, around
more than 5,000 consumers have their energy supplied by
this part of the network. The number of branches is 79, with
a total extension of about 18 km and the supplied power of
approximately 15 MVA.

TABLE 2. Data of the real distribution network.

In Brazil, the distribution network has not yet a high level
of automatism compared with North America and Europe.
However, there is a specificity the differs Brazil with other
countries, as the bigger amount of load concentrated and dis-
tance between the remote commanded devices. These points

are the reasons to increase the complexity to determine the
best configuration. Furthermore, as the idea of this paper is to
begin the discussion between the traditional way, where each
problem is addressed to one technique, and the new approach,
the size of the grid does not interfere with demonstrating the
real purpose.

The limits for capacity and voltage used to simulate the
scenarios were:

0.93 ≤ V (ib) ≤ 1.05

I (sw) ≥ cap

whereV is the voltage calculated for each bus, ib is the current
bus, sw is the index for each switch, I is the current in each
switch, cap is the capacity for the whole system.
Furthermore, the permanent parallelism between feeders is

also checked to avoid any serious damage to the equipment.
For the following tests, the maximum number of iterations is
2000, and the values for learning rate, α, and discount factor,
γ , are respectively 0.5 and 0.3. These values were defined
after some initial tests and demonstrated better results than
the other combinations.

The next subsections present two self-healing analyses
with two different values for capacities for the system and
one case when the system gets an overload.

A. SIMPLE FAULT ON FEEDER 1
In the first test case, the whole system has 500A of capacity,
and a fault between the switches SW1 and SW2 in FD1 is
simulated, where it is de-energized a total load in front of
SW2 of 1.93MVA (148.79A). The possible solution is shown
in Figure 6, where the SW11 is closed to transfer the loads
to FD3, but as the resource feeder cannot sustain 148.79A,
the shedding of 15% should be done to cut off 87.21A in
FD1 and FD3. The option via FD2 is not possible, once the
availability is just of 12.71A, far away from an ideal scenario
to be considered in the analysis because should be considered
a considerable shed to transfer the load that unfeasible the
solution.

A second analysis can be done when the fault contin-
uous the same, but the maximum capacity now is 560A,
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FIGURE 6. Case 1: capacity 500A, final topology.

FIGURE 7. Case 1: capacity 560A, final topology.

FIGURE 8. Case 2: capacity 500A, final topology.

according to Figure 7, the algorithm can split the blocks
in FD1 to be transferred one by FD2 via SW10 and the
another to FD3 via SW11, and a small shed of 5% is executed
on FD2 to alleviate 28.28A. When the capacity was 500A,
the total of power was 12.76MVA, less than 13.52MVA,
when the capacity was 560A. In this case, the algorithm
could determine that the better solution was to open the
SW3 and transfer the FD1-block1 to FD2 and FD1-block3
to FD3 in place of just commuting the normally open
switch.

B. SIMULTANEOUS FAULT
In this test case, two simultaneous faults are simulated. The
first fault is between the switches SW4 and SW5, where

the de-energized segment downstream of SW5 has 5.04MVA
(387.83A), and the second fault is between SW8 and SW9,
with 3.49MVA (268.93A) de-energized. The reconfiguration
when the capacity is 500A is demonstrated in Figure 8, where
SW11 closes to absorb the FD3-block3, the load limit in
FD1 is 276.81A, and the block transferred has 268.93A,
so FD2 stays completely de-energized because FD1 is in
maximum capacity.

Now, the second case is simulated with a capacity equal to
560A. The final configuration, demonstrated in Figure 9, tries
to restore the maximum load from FD2, but a shed of 10%
should be done to mitigate 61.10A, and more load should
be transferred instead of just the FD3-block3, the final result
increases the load in 11%.

VOLUME 7, 2019 145983



L. R. Ferreira et al.: RL Approach to Solve Service Restoration and Load Management Simultaneously

FIGURE 9. Case 2: capacity 560A, final topology.

FIGURE 10. Case 3: capacity 400A, final topology.

TABLE 3. Results of the presented cases.

C. OVERLOAD TRIGGER
When the capacity is set to 400A in the entire system, it is
triggered an overload on FD2 and FD3, shown in Figure 10,
which has respectively 22% and 8% more than the actual
capacity. In this case, the algorithm will process the best
reconfiguration and shedding to keep the maximum load
possible and inside of the constraints (voltage and current).
The reconfiguration is done in FD1 and FD2, where a whole
block in FD1 should be shed via SW3 to transfer the entire
block 3 of FD2 through SW10. The FD1 has 176.81A avail-
able, and the FD2 block3 has 231.15A, so when cutting
off the last block in FD1, the availability goes to 247.20A,

enough to shift the feeder. The second overload is resolved
with a simple shedding of 10% on the customer that rep-
resents 4.26MVA of saved load on FD3, and it is enough
to keep the system stable. Without this method, the final
topology should open SW6 and SW9 to alleviate 25% of the
system; instead of the 10% obtained by this method, it was
saved 171.47A.

V. DISCUSSION ABOUT THE RESULTS AND
COMPARISON WITH OTHER METHODS
In this article, it is shown five different cases using the
proposed MQ reinforcement learning methodology applied
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TABLE 4. Results of other methods for comparison.

to resolve the self-healing and load management simultane-
ously. Table 3 resumes all results for comparisons. Notice
that according to the problem, the functionality triggered was
different, but the technique used was the same.

Another critical point to highlight is the use of the load
shedding included in the self-healing approach, the cases 1
(500 and 560A), and 2 (560A) have the reconfiguration after
the fault and also the load shedding to avoid a new problem
after the reconfiguration and the final solution could bring
more load restored when compared with a complete shed.

Table 4 shows the results of two other methods: one cen-
tralized and another distributed. The strategy of the first one
is based on a Binary Particle Swarm Optimization (BPSO)
for switching and an Optimum Power Flow (OPF) for load
shedding [19]. The second one, the decentralized solution,
each agent, installed in the switches, has operational rules-
of-thumb [10]. Verifying the best solutions and comparing the
results, the following conclusions can be taken:

Case 1: MQL and Distributed methods cut less load than
BPSO+OPF method, 15% and 14% against 23% of load
shedding, respectively; and

Case 2: MQL has less load than BPSO+OPF and Dis-
tributed methods, 0% against 47% and 47%, respectively.

TABLE 5. Results of other methods for comparison.

The training and learning time can be seen in Table 5 for
each case. It is also compared with the MQ dimension.

The training and learning time are directly related to the MQ
size, but when the system has more availability, the process
increases in some seconds because there are more possibili-
ties to go through the MQ matrix.

According to Table 5, in cases where the number of
reclosers increases to more than 20, the search space of MQ
matrix falls in the concept known as, curse of dimensional-
ity. To avoid this problem, the idea of modified Q-learning
algorithm shown in this paper is from the fault location,
select the feeders nearby the unhealthy feeder to consider
in the solution, so it is not necessary to look the complete
distribution system, but just the relevant border, which can
resolve the majority of the cases of fault.

Another important aspect of the result of MQL is related to
the number of switching to restore the service during a simul-
taneous fault. It can be observed that MQL demands only one
switching while other methods require two switchings.

VI. CONCLUSION
The reinforcement learning method modeled, to compre-
hend the electrical environment based on a reward that repre-
sents the load variation, represents satisfactory results, better
than the operator can handle alone or with sequential pro-
grams. The proposed Modified Q-Learning shows that it is
possible to execute different actions (switching and shedding)
from an initial problem, as overcurrent and overload. The
greedy policy was enough; in this case, to helps the algorithm
to choose the best action in the next iteration.

The novelty of this article is to treat more than one prob-
lem in a single technique, simultaneously and not sequen-
tially. Instead of having multiple algorithms to solve the
various issues of distribution networks, a centralized method
is proposed to solve the problems at the moment of fault
and overload. The base of the article comes of learning by
reinforcement learning, in particular, Q-learning, which was
modified, generating the Modified Q-learning method, pro-
ducing a simultaneous solution of the issues for the distri-
bution network problems. Furthermore, the learning matrix
(matrix MQ), in addition to the modeling of the positions of
the keys is also included the percentage of load shedding to
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be selected for the final system back to a normal operating
state.

As demonstrated in the results, with an application in a real
network, depending on the load capacity in the system, the
algorithm could determine which are the better sequences of
switching to execute. Moreover, in all cases, the limits were
respected, keeping the grid safe and reliable to avoid any
new problem caused by the switching. The proposed MQL
method was also compared with the other two approaches
(centralized and distributed), which deal with self-healing
and load shedding sequentially, and the results were better.

A disadvantage of thismethod is that the utility should have
complete information for the grid to run the power flow. For
further works should be enhanced the process to analyze the
MQ matrix (the policy), in order to direct the searches for
the best solution in less time. This enhancement might help
to speed up the solution for more interconnected distribution
networks. The proposed method takes into account only two
functionalities, so when increasing more applications, some
other enhancement should be done.
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