
SPECIAL SECTION ON SECURITY AND PRIVACY IN EMERGING DECENTRALIZED
COMMUNICATION ENVIRONMENTS

Received September 12, 2019, accepted September 30, 2019, date of publication October 8, 2019,
date of current version October 21, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2946202

An Efficient Outsourced Privacy Preserving
Machine Learning Scheme With
Public Verifiability
ALZUBAIR HASSAN 1,2, RAFIK HAMZA 1,2, HONGYANG YAN1,2, AND PING LI3
1School of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou 510006, China
2Peng Cheng Laboratory, Shenzhen 518055, China
3South China Normal University, Guangzhou 510631, China

Corresponding authors: Alzubair Hassan (alzubairuofk@gmail.com) and Hongyang Yan (hyang.yan@foxmail.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61902081, Grant 61802078, and Grant
61702126, and in part by the China Postdoctoral Science Foundation under Grant 204728.

ABSTRACT Cloud computing has been widely applied in numerous applications for storage and data
analytics tasks. However, cloud servers engaged through a third party cannot be fully trusted by multiple data
users. Thus, security and privacy concerns become the main obstructions to use machine learning services,
especially with multiple data providers. Additionally, some recent outsourcing machine learning schemes
have been proposed in order to preserve the privacy of data providers. Yet, these schemes cannot satisfy the
property of public verifiability. In this paper, we present an efficient privacy-preserving machine learning
scheme for multiple data providers. The proposed scheme allows all participants in the system model to
publicly verify the correctness of the encrypted data. Furthermore, a unidirectional proxy re-encryption
(UPRE) scheme is employed to reduce the high computational costs along with multiple data providers. The
cloud server embeds noise in the encrypted data, allowing the analytics to apply machine learning techniques
and preserve the privacy of data providers’ information. The results and experiments tests demonstrate that
the proposed scheme has the ability to reduce computational costs and communication overheads.

INDEX TERMS Cloud computing, machine learning, public verifiability, proxy re-encryption, differential
privacy.

I. INTRODUCTION
Cloud computing, with its high data processing capabilities,
is important to all applications that require high process-
ing costs such as data processing machine learning [1].
Nonetheless, it is not appropriate to trust a third-party-
based cloud system, especially with storing sensitive data.
Cloud computing suffers from several security issues that
represent highly debated topics. Cloud computing provides
accessible computing services using on-demand, elastic,
and easy-to-use techniques. Indeed, cloud computing pro-
vides many resources but also possesses crucial security
issues. Third-party storage introduces different potential
risks, especially concerning data security [2].

The data storage paradigm in the cloud brings several chal-
lenges and issues which have a huge influence on the security
of the system [3], [4]. Data integrity verification at untrusted
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servers is one of the main issues with cloud systems. Mainly,
the existing schemes falling into two categories: private veri-
fiability and public verifiability. The private verifiability can
deliver higher system efficiency, while the public verifiability
allows anyone, not just the data providers, to challenge the
cloud server for the data correctness and without holding
private information. Cloud systems attempt to employ dis-
tinct security techniques. Yet, most of these systems cannot
guarantee either users’ privacy or data confidentiality without
using multi-layer cryptography techniques [5]–[7]. In this
case, encryption is the primary technique used to ensure data
security, where data are encrypted and then stored in the
cloud [8], [9]. Encrypted data exploitation is also extremely
difficult amidst the high complexity.

Homomorphic encryption displays a promising role in
cloud computing, developing the privacy of data providers.
Homomorphic encryption gives a way to achieve several
services on encrypted data and improves cloud users’ pri-
vacy. Accordingly, the companies store encrypted data in a
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public cloud as well as perform analytic services of the cloud
provider’s on the encrypted data. Homomorphic encryption
has properties that make these encrypted data useful for
companies such as random self-reducibility, re-randomize
encryption, and verifiable encryption [10]. Nevertheless,
the homomorphic encryption still suffers from the high com-
putational costs. Researchers presented several contributions
such as fully homomorphic encryption [11], [12], Partially
Homomorphic Encryption (PHE) [13], [14], and Somewhat
Homomorphic Encryption (SWHE) [15], [16]. Herein, dif-
ferential privacy is employed to guarantee the privacy of the
users’ data in the cloud. Differential privacy encourages the
companies to collect and share aggregate information regard-
ing the customers, at the same time they can maintain the
privacy of their customers. Differential privacy displays with
a probabilistic form, where the differential privacy algorithm
outputs a distribution that changes little in the dataset and
does not affect the privacy of an individual’s data [17].

The foremost issue with cloud systems concerns the secu-
rity and data privacy stored in the cloud hosting system. Most
companies question their data security, and how they can
trust storing their sensitive data through third-party services
outside their off-line databases [18]. To this end, cryptogra-
phy techniques have been proposed using various approaches
that guarantee data security and users’ privacy. At the user
side, data encryption should be sufficient and considered as a
standard form of defense that provides a high level of security
in the cloud system [19].

To overcome the above issues, it is important to propose
an effective privacy scheme based on machine learning given
multiple data providers. Any proposed solution should reduce
the cost of implementation and maintain the privacy of the
participants [20]–[22]. Furthermore, it is important to address
multiple data providers’ problems. For example, Li et al. [23]
proposed a privacy-preserving machine learning framework
dealing with multiple data providers. However, this solu-
tion came with a high computational cost due to the depen-
dence on integer factorization in their proposed framework.
Additionally, none of the participating components in their
proposed model can publicly verify the correctness of the
outsourced data. This issue increases the overhead for all
parties. Furthermore, the analyst should start the transaction
with data providers through the cloud system and be online
during communication.

This paper aims to overcome the mentioned above issues
by proposing an efficient privacy-preserving machine learn-
ing scheme for multi-providers data in the cloud sys-
tem. We propose a privacy-preserving framework using the
additive homomorphic encryption scheme. First, the data
providers encrypt their sensitive data using the unidirec-
tional proxy re-encryption scheme and uploaded the cipher-
texts to the proxy server cloud. Then, the cloud re-encrypt
the received ciphertexts with a generated noise-data using
partially homomorphic encryption of the Hashed-ElGamal
scheme. Finally, the cloud will send the noisy-ciphertext to
the analytic to perform the machine learning techniques for

his predictive analytics. All the components of the proposed
framework can publicly check the correctness of ciphertexts
before performing any operation which ensures public veri-
fiability. The proposed framework guarantees a high level of
security and preserves the privacy of users.

The main contributions are highlighted as follows.
• This paper proposes an efficient privacy-preserving
machine learning scheme with public verifiability.

• The unidirectional proxy re-encryption allows different
data providers to delegate their data using the same
public key.

• All the participating parties in our scheme can check
the validity of the ciphertext before any operations are
performed. This feature can reduce the time that checks
for invalid ciphertext.

• This scheme can protect the privacy of the providers’
data in the cloud and of the data analyst.

• This scheme uses ε-differential privacy (ε-DP), which
improves the accuracy of applying machine learning
techniques.

This paper is presented as follows. The related works
are discussed in Section II. The preliminaries are given
in Section III. The proposed scheme is explained in
Section IV, while the result and discussion are introduced in
Section V. The security analysis of our protocol is discussed
in Section VI. The Finally, the conclusions are given in
Section VII.

II. RELATED WORK
Most companies currently believe that machine learning will
be a key customer expectation [24]. In this regard, machine
learning performs an important role in technology generally,
especially upon cloud computing. The extensive develop-
ments of the machine learning community have reduced the
network overhead. However, these developments affect the
computational cost, as most applications have high computa-
tional costs [1], [25]. Manymachine learning techniques have
been adopted to automatically employ complex mathematical
computations, thereby suffering high computational costs.

Recently, machine learning over encrypted data has
become an important topic in industry and academy. Var-
ious approaches have been introduced to overcome these
challenges such as Partial traditional homomorphic encryp-
tion schemes. Unfortunately, these approaches are ineffi-
cient because they suffer from high computational costs,
high network overhead and certain security issues. Several
protocols have been proposed by researchers such as [19],
[26]–[28]. For instance, Chen and Zhong [29] introduced
a two-party distributed algorithm to preserve privacy for
back-propagation neural networks (BPNNs). Their scheme
allows the two parties to train their data while ensuring
that the data are secure. They only considered training
datasets that are vertically partitioned. To improve on pre-
vious work, Bansal et al. [30] proposed another algorithm
that can be applied when the dataset is arbitrarily partitioned.
Both Chen and Zhong [29] and Bansalet al. [30] used the
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homomorphic properties to protect the privacy of the two
parties.

The aforementioned works do not work properly in multi-
party environments because of the high communication over-
head. Samet and Miri [31] presented a protocol to protect the
privacy of both the input data and the created learning model
in a BPNN and extreme learning machine. Their protocol can
be applied when the dataset is vertically or horizontally par-
titioned. Graepel et al. [32] proposed a scheme to ensure the
confidentiality of the encrypted data during machine learning
over these data in the training and test phases. Their algorithm
can be applied to two types of classification algorithms: linear
means and Fisher’s linear discriminant [32]. Liu et al. [33]
worked on preserving the users’ privacy in social networks
and keeping their sensitive information secure, considering
the identity disclosure problem in weighted social graphs.

Nowadays, with the development of cloud computing and
outsourcing, several techniques have proposed to guarantee
users’ privacy. For example, Wei et al. [34] presented prac-
tical outsourcing algorithms for exponentiation computation
based on homomorphic mapping. Gao et al. [35] worked
to compute the social contiguity between users to identify
potential friends and keep their privacy based on a proxy re-
encryption scheme with additive homomorphism.

The notation of differential privacy approach has been
introduced to overcome privacy and accuracy issues [36].
Dwork and Roth [37] proposed the ε-DP approach, which
considers how much data can be revealed. Consequently,
researchers have introduced various approaches based on the
formal definition of DP, for instance, computational differen-
tial privacy [36] as well as the differential privacy consensus
algorithm [38], as discussed herein. Recently, Li et al. [23]
proposed a privacy-preserving machine learning framework
that is suitable to work with multiple data providers. They
employed a double decryption public-key encryption scheme
to ensure security and user privacy. However, their framework
has high computational costs and communication overhead.
Additionally, the framework consuming time on the invalid
ciphertext.

III. PRELIMINARIES
In this part, we illustrate some related notations and con-
cepts. First, the computational Diffie-Hellman assumption is
described below. We also introduce the divisible computa-
tional Diffie-Hellman assumption, which concerns the diffi-
culty of measuring the discrete logarithm in cyclic groups.
Then, we present unidirectional proxy re-encryption, which is
primary for the proposed protocol implementation. We illus-
trate the partial homomorphic hashed- ElGamal encryption
scheme for predictive analytics. Finally, we present a brief
introduction to Differential Privacy

A. COMPUTATIONAL DIFFIE-HELLMAN (CDH)
Let assume that we have g, ga, gb ∈ G, where ∀{a, b} ∈ Z∗q
andG is a cyclic multiplicative groupwith prime order q, then
gab ∈ G cannot be computed due to its difficulty.

B. DECISION DIFFIE-HELLMAN (DDH)
Let assume that we have two distributions A = (gx , gy, gxy)
and B = (gx , gy, gz) for randomly distributed x, y, z←− Zq.
Distinguish A from B [39].

C. DIVISIBLE COMPUTATIONAL DIFFIE-HELLMAN (DCDH)
In this part, we assume that we have g, ga, gb ∈ G, where
∀{a, b} ∈ Z∗q, then gb/a ∈ G cannot be computed due to its
difficulty. The DCDH and CDH are equivalent in the same
group [40].

D. UNIDIRECTIONAL PROXY RE-ENCRYPTION (UPRE)
SCHEME
The definition of the unidirectional PRE scheme [41] is com-
posed of six algorithms, described as follows:
• Initialization(k): This algorithm uses a security param-
eter k as input. Then, the algorithm returns the public
parameters param. Additionally, the message space M
description is given in this algorithm.

• KeyGen(): This algorithm calculates the users’ public
key and corresponding private key pair (pkui , skui ).

• ReKeyGen(skui , pka): This algorithm uses the private
key of the delegator skui and the public key of the
delegate pka. Then, the algorithm returns a re-encryption
key rkui→a.

• Enc(pkui ,m): This algorithm uses the public key pkui ,
the delegator and the message m ∈M. Then, the algo-
rithm returns a ciphertext Ci under pkui .

• ReEnc(rkui→a, Ci, pkui , pka): This algorithm uses rkui→a
as input to Ci. Then, the algorithm returns a ciphertext
Ca under the public key pka.

• Dec(sk, C): This algorithm uses sk and C. Then, if the
ciphertext is valid, the algorithm returns the plain mes-
sage m ∈M; otherwise, the algorithm throws an error.
This algorithm uses for the delegatorUser Dec() and the
delegate Analyst Dec().

E. PARTIAL HOMOMORPHIC HASHED- ELGAMAL
ENCRYPTION SCHEME
Hash-ElGamal is partially homomorphic using only xor oper-
ator. Assume that the encryption ofmessagem is known, then,
anyone can compute the encryption of a messagem

′

= m⊕K
for any selected value K ∈ {0, 1}. Lets us assume that we
have C = (c1, c2) with c1 = gr , and c2 = m ⊕ h(yr ).
Then, we can have C

′

= (c1, c
′

2) with c
′

2 = K ⊕ c2.
This is the hash-ElGamal encryption of m

′

. The partially
homomorphic based on Hash-ElGamal encryption supports
adding a mask on the ciphertext. Furthermore, this encryption
is known to be one-way under the computational Diffie-
Hellman assumption, and indistinguishability holds under the
DDH assumption [39].

F. DIFFERENTIAL PRIVACY
Differential privacy is a probabilistic mechanism, where the
algorithm outputs a distribution that changes little in the
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dataset and does not affect the privacy of an individual’s data.
Assuming that d1 and d2 are two data sets; d1, and d2 can
be neighboring if they are different in only one record [17].
Particularly, DP guarantees the security of the distributed data
by adding measured perturbations to the ciphertext using the
principal of homomorphic encryption [42].
Definition 1 (ε-DP): A randomized mechanism R is

ε-differentially private if we have any pair of neighboring
data sets d1 and d2, and K in Range(R). Then, the following
equation holds:

Pr[R(d1) = K ] 6 eε Pr[R(d2) = K ] (1)

Note that if epsilon can get smaller, implying more strin-
gent privacy. This randomized-based algorithm ensures dif-
ferential privacy during the analytic process.
Definition 2 (Sensitivity): Let f be a function f : d → Rd

in the input space of the dataset. The sensitivity of f represents
two neighboring datasets d1 and d2, given as follows:

1f = max
d1,d2
||f (d1)− f (d2)||1 (2)

In this equation, the maximum is over the pairs d1 and d2 in
Rd differing in one element (at most) and ‖·‖1 symbolize the
`1 norm.
Definition 3 (The Laplace Mechanism): The Laplace

mechanism adds noise from Laplace distribution by using the
probability density function.Where, noise(y) ∝ exp(−|y|/λ),
with a mean equal to zero and standard deviation equal to√
2λ. In our work, we use the Laplace mechanism which is

given as follows:

LP(x, f (.), ε) = f (x)+ (Q1, . . .Qn) (3)

where, we have a function f : N|x| → Rk . Laplace’s
mechanism relies on addingmeasured noises to the ciphertext
that we want to compute.

G. SYSTEM MODEL
The considered system model consists of data providers,
proxy servers and data analysts, as shown in Figure 1. The
communication between these components is explained as
follows:

1) Data providers ui ∈ {u1, u2, u3, . . . , ui} provide the
system with data from different sources. ui needs to
upload their sensitive data set di after encrypting it to
the proxy server and delegate the encrypted sensitive
data set [di] to the analyst.

2) The proxy cloud server (PS ) is responsible for redirect-
ing the encrypted data set by the users to the analyst.
PS is a semi-honest cloud with high computational
power.

3) Analyst DA receives the encrypted data set and trains
the machine learning model on it. The analyst can
perform training on these ciphertexts without compro-
mising the privacy of the data providers.

FIGURE 1. System Model of our proposed outsourced privacy-preserving
machine learning scheme.

H. SECURITY MODEL
Suppose that the data providers ui, PS , and DA are semi-
honest but untrusted. Furthermore, it is assumed that there is
no collusion between the parties participating in the system
model. Algorithm B answers the adversary queries according
to our scheme. AdversaryA has the following capabilities for
attacking the plaintext of the users:

1) A can collude with ui to obtain the plaintexts of all
encrypted data downloaded from the cloud.

2) A can attack PS to estimate the plaintexts of all cipher-
text outsourced to the PS by the users ui and all data
sent from DA.

3) A may corrupt some data from ui to produce the
plaintext from other users’ ciphertexts.

IV. THE PROPOSED FRAMEWORK
The following subsections explain the proposed frame-
work structure which contains an efficient privacy-preserving
machine learning scheme with public verifiability.

A. OVERVIEW OF THE PROPOSED SCHEME
In the proposed framework, the data providers encrypt their
data sets using the UPRE scheme and uploaded it to the proxy
server cloud. In this step, the data providers could asset their
data sets and decide which data are sensitive to be encrypted.
Then, the cloud re-encrypt the ciphertexts received from the
data providers under the public key of the analyst.

Accordingly, the server will add encrypted noised to the
data provider ciphertexts using the partially homomorphic
encryption of the Hashed-ElGamal scheme. After adding the
encrypted noise, the cloud forwards the noise-ciphertext to
the data analyst. In this step, the data analyst will decrypt
the noise ciphertext to get the noise dataset. Then, the ana-
lyst performs machine learning algorithms for his predictive
analytics. For instance, the analyst could use a k-nearest
neighbor classifier, support vector machine classifier, naive
Bayes classifier, and so on.
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The data analyst will decrypt first the noise ciphertext to get
the noise dataset using his private key. Then, the data analyst
chooses and performs the mentioned-above classifiers on the
noised data set using ε-DP without revealing the privacy of
the individual users.

In our proposed framework, all the components of the
model can publicly check the correctness of ciphertexts
before performing any operation which ensures public ver-
ifiability. This part explains a significant contribution to this
work because using this feature can reduce the waste time on
invalid ciphertexts.

B. STRUCTURE OF THE PROPOSED SCHEME
Our protocol consists of the following phases:
• Initialization Phase:
Here, the data providers prepare their public and pri-
vate keys. Then, they compute the re-encryption key to
use for redirecting their ciphertext to the data analyst.
To do that, the data providers need to prepare the pub-
lic parameters. p and q are selected as primes where
q|p− 1 and the bit-length of q is the security parameter
k . The g uses as a generator of group G, which is a
subgroup of Z∗q with order q. Four hash functions H1 :

{0, 1}e0 × {0, 1}e1 → Z∗q, H2 : G → {0, 1}e0+e1 ,
H3 : {0, 1}∗ → Z∗q and H4 : G → Z∗q are chosen. The
public parameters are (q,G, g,H1,H2,H3,H4, e0, e1).
The following algorithms represent this phase:
1) KeyGen(): Pick skui = (sui,1 ← Z∗q, sui,2 ← Z∗q)

and set pkui = (pkui,1, pkui,2) = (gsui,1 , gsui,2 ).
2) ReKeyGen(skui , pka): As input, with the private

key of the users skui = (skui,1, skui,2) and the
public key of the analyst pka = (pka,1,
pka,2), this algorithm generates the re-encryption
key rkui→a as follows:
a) Select h ← {0, 1}e0 , π ← {0, 1}e1 and com-

pute υ = H1(h, π)
b) Compute V = pkυa,2 andW = H2(gυ )⊕(h||π ).
c) Define rkui→a =

h
sui,1H4(pkb,2)+sui,2

.

d) Return (rk〈1〉ui→a,V ,W )
• Upload phase:
In this phase, the data providers will upload their
encrypted data to cloud. The data provider’s data set is
represented by di = {(x i, yi) ⊂ X ,Y }, where x i ∈ R
denoted the data vector and yi ∈ Y := {0, 1} denotes the
associated binary label. First, the data providers encrypt
their sensitive data x i using the Enc(pkui , x

i) algorithm
with their public key pkui = (pkui,1, pkui,2). Algorithm 1
details how the users encrypt x i ∈M.
The final result of the Enc(pkui , x

i) algorithm can also
be represented as tuple of [x i] = (Ei,Fi). Therefore,
the data set can be written as Enc(pka, di)= [di] =
([x i], [yi]) = ((Ei,Fi, ϕ, µi), [yi]), where ϕ,µi used as
signature to confirm the ciphertext correctness. Second,
the data providers determine the sensitivity level of their
query function1fi and the privacy level εi for di. Finally,

Algorithm 1 Encryption Algorithm
Input: leftmargin=4mm

– pka = (pkui,1, pkui,2): user’s public key
– x i: the message

1: Pick β ← Z∗q and compute ϕ = (pk
H4(pkui,2)
ui,1

pkui,2)
β .

2: Pick w← Z∗q and compute ri = H1(x i,w).

3: Compute Ei = (pk
H4(pkui,2)
ui,1

pkui,2)
ri and Fi = H2(gri ) ⊕

(x i||w).
4: Compute µi = β + ri.H3(ϕ,Ei,Fi)modq.
5: Output the ciphertext Enc(pkui , x

i) = [xi] =

(Ei,Fi, ϕ, µi)
Output: [xi] = (Ei,Fi, ϕ, µi): the ciphertext

they send the encrypted data set [di], 1fi, εi and the re-
encryption key rka→b to PS .

• Download Phase:
This phase illustrates how the data providers can down-
load their ciphertext from the cloud. The data providers
use the Dec(ski, Ci) algorithm to download their out-
sourcing encrypted data from PS . The Dec(skui , Ci)
algorithm takes skui = (ski,1, ski,2) and ciphertext Ci
as input to get back the corresponding data set. Data
providers can verify the correctness of Ci using (ϕ,µi) to
receive the valid ciphertext. This step was used for the
publicly verifiable experiments. Algorithm 2 describes
how the data providers can decrypt their encrypted data
and apply publicly verifiable data.

Algorithm 2 User Decryption Algorithm
Input: leftmargin=4mm

– ski = (skui,1, skui,2): private key
– Ci = (Ei,Fi, ϕ, µi): the ciphertext

1: if (pk
H4(pkui,2)
ui,1

pkui,2)
µi = ϕ.EH3(ϕ,Ei,Fi,µi)

i then

2: compute (x i||π ) = Fi ⊕ H2(E
1

sui,1
H4(pkui,2

)+sui,2

i )

3: if E = (pk
H4(pkui,2)
ui,1

pkui,2)
H1(xi,w) then

4: return User Dec(skui , Ci)= x i
5: else
6: return ⊥.
7: end if
8: else
9: return ⊥.
10: end if
Output: x i ∈M: the message

• Re-encryption phase:
Here, the cloud uses Re-encryption algorithm and trans-
fers the generated ciphertext to the Analytic. The cloud
receives [di], 1fi and εi from the data providers.
Algorithm 3 details how PS re-encrypt Ci with mul-
tiple public keys using the public key of the analyst.
In this part, PS checks the correctness of the ciphertext
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Algorithm 3 Re-Encryption Algorithm
Input: leftmargin=4mm

– rkui→a = (rk〈1〉ui→a,V ,W ): Re-encryption key.
– pkui = (pkui,1, pkui,2): Public key of the users.
– pka = (pka,1, pka,2): Public key of the analyst.
– [x i]a = (Ei,Fi, ϕ, µi): ciphertext under user i.

1: if (pk
H4(pkui,2)
ui,1

pkui,2)
µi = ϕ.EH3(ϕ,Ei,Fi)

i then

2: compute γi = E
rk〈1〉ui→a

i
3: Return ReEnc(rkui→a, Ci, pkui , pka)=

[x i]a(γi,Fi,V ,W )
4: else
5: Return ⊥
6: end if

Output: [x i]a = (γi,Fi,V ,W ): the ciphertext

using ϕ,µi. PS uses the ReEnc(rkui→a, Ci, pkui , pka)
algorithm. Second, this algorithm uses rkui→a =

(rk〈1〉a→b,V ,W ) and (Ei,Fi) under the public key of
the data providers pkui = (pkui,1, pkui,2) as inputs.
Then, ReEnc(rkui→a, Ci, pkui , pka) returns a new cipher-
text [x i]a under the public key of the analyst pka =
(pka,1, pka,2). Which means that the inputs of Ci with
multiple public keys transfer to another ciphertext with
the public key of analyst pka = (pka,1, pka,2).
Third, the cloud uses the Laplace distribution to gener-
ate a d-dimensional noise vector δ with parameter 1fi

εi
.

Here, the cloud computes [x i] ⊕ [δi]. Then, the cloud
system encrypts these noise vectors, transforming them
into ciphertexts [δ]. In this step, the cloud uses par-
tial homomorphic hashed- ElGamal encryption [43].
Finally, the cloud sends [di]′ to the data analyst.

• Learning phase
Here, the analyst obtains the noisy ciphertexts from the
cloud. Algorithm 4 describes this phase in detail. First,
DA checks the validation of [di]′ using V ,W . Second,
the analyst decrypts E ′i with the associated public keys
of the data providers. Finally, the data analyst can obtain
a noisy data set and apply his machine learning classifi-
cation algorithms.

V. RESULT AND DISCUSSION
In this section, the implementation of the proposed scheme
is presented with different perspectives in terms of results,
performances, and discussions. The following subsections
describe the implementation setup, the experimental results,
and the discussions.

A. EXPERIMENT SETUP
To explain the theoretical analysis of computational complex-
ity of our scheme, We denote by Texp the computational cost
of exponentiation in G. Then, we have the Encryption time
is 3 Texp, re-Encryption time is 2.5 Texp, the user Decryption
time is 3.5 Texp, and analyst decryption time is 4 Texp.

Algorithm 4 Analyst Decryption Algorithm
Input: leftmargin=4mm

– Ca = (γi,Fi,V ,W ): public key

1: Compute (h||π ) = W ⊕ H2(V
1

sui,2 )

2: Compute (x i||w) = F ⊕ H2(γ
1
h
i )

3: if V = pkH2(h,π )
ui,2

then
4: if γi = gH1(xi,w).h then
5: Return Analyst Dec(skai , Ca)= x i
6: else
7: Return ⊥
8: end if
9: end if

Output: x i ∈M: the message

TABLE 1. Security levels (Bits).

FIGURE 2. Computational costs.

To evaluate the computational costs of the proposed
scheme, the experiment is conducted using Java pairing-
based cryptography (JPBC) Library [44]. In this work,
we employ a personal computer with CPU Intel Core i
7-3537U dual core (2.00 and 2.50) GHz and RAM 12 GB.
Additionally, we use the curve y2 = x3 + x over the field Fq
to obtain type A pairings for q = 3 mod 4. To obtain security
level, the experimental employ 80-bit, 112-bit, and 128-bit
AES key size security level as shown in Table 1.

B. COMPUTATIONAL COST
This part illustrates the computational cost of our proposed
framework. The processing costs of the proposed scheme are
given according to the computational time. Figure 2 shows
the computational times of our protocol phases using different
security levels 80-bit, 112-bit, and 128-bit, respectively.

C. CIPHERTEXTS SIZE
The proposed scheme computes the ciphertexts with differ-
ent security levels. For instance, we use the security level
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TABLE 2. Comparative study with relevant schemes.

with 80-bit. Then, the elliptic curve with q = 160/8 bytes is
employed. The size ofG1 is given as 1024 bits. The size ofG1
can be used with 65 bytes according to the related work [47].
As a result, the size of data providers’ ciphertexts uploaded
to the cloud is 3|G| + |Zq| = 3 × 65 + 160/8 = 215 bytes.
The re-encrypted ciphertexts size will be transformed to the
analyst is 2|G| + 2|Zq| = 2× 65+ 2× 160/8 = 170 bytes.

D. PERFORMANCE OF THE ε-DP
The proposed scheme transforms the encrypted data with
multiple public keys into noise-ciphertext. Accordingly, the
proposed scheme improves the efficiency and accuracy of
data processing.

The analyst performs the chosen machine learning algo-
rithm on noise- data set with ε-DP and without revealing any
information about the users. By using partial homomorphic
hashed- ElGamal encryption scheme, the evaluation of the
performances show excellent results in terms of accuracy
and efficiency according to several related works [23], [43].
The analyst can use different machine learning such as naive
Bayes classifier, support vector machine classifier, and a
k-nearest neighbor classifier, etc.

E. PUBLIC VERIFIABILITY
The public verifiability is an important property, enabling
a third party system to verify the integrity of the cipher-
text stored in the cloud on behalf of data providers. Hence,
the goal of our work is to guarantee data integrity with public
verifiability and availability.

In the proposed protocol, all the components of the pro-
posedmodel can publicly check the correctness or the validity
of all the ciphertexts in public before doing any operation
which is called public verifiability. Using this feature we can
reduce the time that consuming for working on the invalid
ciphertexts.

F. COMPARATIVE STUDY
In this part, we provide a comparative study between our pro-
posed scheme and some relevant state-of-art schemes [23],
[35], [45], [46]. Table 2 describes several points in our
comparison including the variations and contributions of
these schemes. The first column represents the state-of-art
schemes [23], [35], [45], [46]. The second column shows
whether a scheme needs to pre-sharing information or not
to perform the computations between the data providers and
the cloud. The third column illustrates whether all the actors
in the systems should be online or not during the opera-
tions. The fourth column presents the type of homomorphic
encryption used for each scheme. In this column, we denote

‘‘Fully Homomorphic Encryption’’ by ‘‘FHE’’ and ‘‘Additive
Homomorphic Encryption’’ by ‘‘AHE’’. The fifth column
illustrates the use of the differential privacy technique or not
for each scheme. The sixth column compares the ability to
work with multiple data providers or not. The seventh column
explains whether the delegator in these schemes can re-direct
the ciphertext to another actor in the system or not. The
eighth column shows the resistance of the schemes against the
collusion attack. Finally, the last line explains whether all the
components in the system model of these schemes [23], [35],
[45], [46] can check the correctness of the data providers’
ciphertexts publicly or not.

VI. SECURITY ANALYSIS
This section introduces the security analysis with the
ciphertext scenarios and the adversary relevant information.
In detail, We adopt two security definitions: Adver-
sary attacks the original ciphertext. Adversary attacks the
re-encrypted ciphertext.
Theorem: The UPRE scheme is indistinguishability

against chosen-ciphertext attacks (IND-PRE-CCA) secure in
the random oracle model, where the CDH assumption is hard
to solve in a group G.
Assume that there is an adversary A to attack the

IND-PRE-CCA security of the proposed scheme. Then, there
exists an algorithm B to solve the CDH problem.

Here, we consider two types of adversaries: the first type
of adversary attacks the original ciphertext of the users
(encrypted data uploaded to the cloud). We denote this type
byAor . The second type of adversary attacks the transformed
ciphertext from the proxy cloud to the data analyst.We denote
this type of adversary byAtr . Therefore, algorithmB answers
the adversary queries.
Setup: Assume that B submits the public parameters

(q,G, g,H1,H2,H3,H4, e0, e1) to A. B simulates the ran-
dom oracles of H1, H2 and H3 with lists {LH1 ,LH2 ,LH3},
respectively, to avoid collision and ensure consistency. B also
prepares two lists LK for the public and private key and LR for
the re-encryption key. B starts generating the original keys
and corrupted keys.
Lemma 1: Considering Aor for communicating with B

according to the IND-PRE-CAA game
Phase 1:Aor issues a series of queries, and B answersAor

as in the proposed scheme.
Challenge:Aor challengesB and returns (pku∗i ,1, pku∗i ,2) as

well as two messages of the same length m0,m1 ∈ {0, 1}e0 .
Then, B responds to Aor with the challenge ciphertext
C∗ = (E∗,F∗, ϕ∗, µ∗) contains the instance element
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of the DCDH problem in H1(mς ,w∗) = ab and
H2(gab) = (mς ||w∗)

⊕
F∗ for ς ∈ {0, 1}.

Phase 2: A continues to issue queries as in Phase 1 with
the restrictions described in the IND-PRE-CCAgame. Algo-
rithm B responds to these queries for A as in Phase 1.
Guess: Eventually,Aor responds with a guess ς

′

and sends
it to B. Finally, B returns the solution of the DCDH instance.
Lemma 2: ConsideringAtr communicating with B accord-

ing to the IND-PRE-CAA game.
Phase 1: Atr issues a series of queries, and B answers Atr

as in the proposed scheme.
Challenge: Atr challenges B and returns (pku∗i ,1, pku∗i ,2)

as well as two messages of the same length m0,

m1 ∈ {0, 1}e0 . Then, B responds to Atr with the
challenge ciphertext C∗ = (E∗,F∗,V ∗,W ∗) con-
tains the instance element of the DCDH problem in
H1(mς ,w∗) = r∗ = (b/a)(t/rki′→i∗ (xi∗,1H4(pki′ ,2) + xi′ ,2))

and H2(ga/b)
t/rk

i
′
→i∗

(xi∗,1H4(pki′ ,2)+xi′ ,2)
⊕

(mς ||w∗) = F∗ for
ς ∈ {0, 1}.
Phase 2: Atr continues to issue queries as in Phase 1

with the restrictions described in the IND-PRE-CCA game.
Algorithm B responds to these queries forAtr as in Phase 1.
Guess: Aor responds with a guess ς

′

and sends it to B.
Finally, B returns the solution of the DCDH instance. The
UPRE scheme is IND-PRE-CCA secure in the random oracle
model.

If A has corrupted DA or PS to get the outsourced data,
then,A cannot get the plaintext due to the IND-PRE-CCA of
our scheme. Additionally, if A obtains access to some data
providers and if the re-encryption key cannot provide access
to the plaintext of the data providers, our scheme achieves
ε-DP. Our scheme is secure under the DCDH in the random
oracle model.

VII. CONCLUSION
Cloud computing security is still considered as a major issue,
especially with privacy-preserving of the data providers to the
third party systems. This paper presents an efficient privacy-
preserving machine learning scheme for multi-providers with
the collaboration of a third party system. In this regard,
the proposed protocol employed a unidirectional proxy re-
encryption protocol to protect cloud data sets. All parties
can publicly verify the encrypted data sets, which reduces
the computational cost and network overhead. The proposed
scheme is secure under the CDH assumption in the random
oracle model. The proxy server adds noise to the ciphertext
using ε-DP, rather than the data providers, to facilitate data
analytics tasks. Our proposed protocol guarantees a secure
multi-party computation and privacy-preserving classifica-
tion based on partial homomorphic encryption.

For future works, we plan to study the parallel algorithm
for secure multiparty computation on Blockchain techniques.
We also aim to investigate the using of more complex com-
putations such as partial differential equations over encrypted
data.
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