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ABSTRACT In this paper, we propose a method to test the stability of two-dimensional (2D) linear discrete
systems described by transfer function. And a complete region of disturbance parameters is solved to
ensure the considered system with perturbations stability. Different from any other traditional algebraic
methods, the algorithm of this method is explicit, which a large number of higher-order polynomial iterative
operation doesn’t need to be carried out. By the fractional linear transformations, new condition is given
in Hurwitz theorem, which doesn’t involve fractional calculation. The method is non-conservative for
stability analysis and solving stable parameter region of 2D systems. It simplifies some existing methods.
The computational cost is reduced. And it is better to solve the stability problems for 2D systems with
disturbances. Examples illustrate the efficiency for testing the stability of higher-order 2D system and solving
the robust stability problem of uncertain 2D systems.

INDEX TERMS 2D systems, stability analysis, robust stability, explicit algorithm, transfer function.

I. INTRODUCTION
Two-dimensional systems, traced back to the mid 1970s
[1]–[3], are a class of dynamic systems which propagate
information in two independent directions [4]–[6]. Recently,
2D systems have attracted a lot of attention due to their
widespread applications in various areas such as image and
video processing, multi-dimensional digital filtering, batch
process, thermal process, signal processing, and sensor net-
works [7]–[11]. The methods of stability and robust stability
of 2D system can be widely applied in these practical appli-
cations to keep them in normal operation. Different from 1D
systems, 2D systems depends on two independent variables
and the available related 2D preliminaries are insufficient.
That makes the analysis and synthesis of 2D systems much
more complicated and difficult than the 1D systems [4], [12],
especially for uncertain 2D systems. The characteristic of
stability is one of the main research problems in control
theory. For the above factors, the stability of 2D systems
has received extensive interests.There are a lot of results on
the stability of 2D systems have been proposed [13]–[18].
Note that, with focus on applied researches, we refer the
readers to some practical works in [18]–[21]. Although lots
of significant results on the stability of 2D discrete linear
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systems have been derived now, there are many limitations
in these results. Hence, it is meaningful to study the stability
and robust stability of 2D systems.

Themethods for 2D systems described by transfer function
to analyze the stability may be divided into two classes. One
is finite verification algorithm in frequency domain. For this
class ofmethods, some are sufficient [22] and some are neces-
sary [23], [24]. The other one is algebraic, and the conditions
of the results of this class are sufficient and necessary, such
as Sturm’s theorem criterion [25], [26], the Hurwitz-Schur
algorithm stability criterion [27], [28] and the method of
polynomial discriminant system theory [29].While due to the
complexity of the structure of 2D system, the stability analy-
sis of 2D systems is complicated and difficult, especially for
higher-order systems.

Note that one of the algebraic methods, the method of
polynomial discriminant system theory, is based on Jury array
[29], [30]. It transforms the conditions of testing stability
into new conditions of checking whether a polynomial has
real roots [30]. For this new problem, it can be solved using
the discriminant system method in [31]. This method in
detecting 2D system stability is simpler than other tradi-
tional algebraic methods. However, the testing stability steps
include Jury Array. This calculation of Jury Array [29], [30]
is recursive and involves a higher-order matrix fractional
computation. It’s difficult to check the 2D systems with
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uncertain parameters. The process of this method is not
tractable since the computation of Jury array is implicit and
increases rapidly with the increasing of variables.

This paper shows a concise method. Different from the
above method based on Jury array, this process doesn’t
include Jury array. By the fractional linear transformations,
new condition is given in Hurwitz theorem, which doesn’t
involve fractional and recursive calculation. The method is
non-conservative for stability analysis and solving stable
parameter region of uncertain 2D systems. It simplifies the
existing method. The computational cost is reduced. And it
is better to solve the robust stability problems for 2D systems
with disturbances without fractional calculation. We change
the problem of stability analysis to a new problemwhether the
polynomials are Hurwitz stable by fractional linear transfor-
mations. Then, the new problem can be easily dealt with by
the discriminant system of polynomial in [31]. This method
is more efficient and explicit without fractional computation
and iterative operation.

The rest of the paper is organized as follows. The problems
that need to be solved is specified by mathematical descrip-
tion in section II. In section III, a transformation from the
Schur Stability criterion to Hurwitz theorem and two efficient
algorithms for analyzing the stability and robust stability are
presented. In Section IV, examples are given for proving the
effectiveness of the algorithms. And it gives a comparison
between the method of this paper and the method based on
the traditional algebraic methods to illustrate the former is
more efficient. Conclusions are given in Section V.

II. MATHEMATICAL DESCRIPTION
The given recursive model for 2D linear discrete system is as
follow:

m∑
i=0

n∑
j=0

bijy(k − i, l − j) =
m∑
i=0

n∑
j=0

aiju(k − i, l − j), (1)

where u(k, l) and y(k, l) are 2D input signals and 2D output
signals, respectively. aij and bij are constants. The transfer
function of this system is given by:

H (z1, z2) =
A(z1, z2)
B(z1, z2)

, (2)

where A(z1, z2) =
∑m

i=0
∑n

j=0 aijz
i
1z
j
2,B(z1, z2) =

∑m
i=0∑n

j=0 bijz
i
1z
j
2.

Remark 1: We take a recursive model as an example to
analyze the stability. If one transfer function of other linear
discrete model is given, then we can also use this method to
analyze stability of the system.

The stability of the system (1) depends onwhether denomi-
nator polynomialB(z1, z2) of the transfer function (2) is Schur
stable, that is, whether the denominator polynomial satisfies
the following definition.
Definition 1 [29]: The 2D polynomial B(z1, z2) is called

Schur stable, if B(z1, z2) satisfies

B(z1, z2) 6= 0, ∀(zi1z
j
2) : |z1| ≤ 1, |z2| ≤ 1. (3)

Remark 2: We assume that H (z1, z2) in this paper doesn’t
have any nonessential singularities of the second type.
Specifically, there is no (z∗1, z

∗

2) which satisfies A(z∗1, z
∗

2) =
B(z∗1, z

∗

2) = 0. So it’s obvious that the proposedmethod has no
the disadvantages of the bilinear applications for 2D systems
described by transfer function in [32]. We can further get the
discussion as follows.

The BIBO stability of the system is equivalent to Schur
stability [23]. It is difficult to determine the Schur stabil-
ity of a 2D polynomial by directly using condition (3).
Literature [23] simplified this determination process,
H (z1, z2) is Schur stable if and only if

B(z1, 0) 6= 0, ∀z1 : |z1| ≤ 1, (4)

and

B(z1, z2) 6= 0, ∀(zi1z
j
2) : |z1| = 1, |z2| ≤ 1. (5)

Through variable substitution, the condition (4) is equiva-
lent to a new condition whether the real polynomial is Hur-
witz stable, which can be solved by a lot of methods such as
Hurwitz criterion. It’s easily tractable.
Stability detection of a 2D linear system is mainly focused

on testing condition (5). Many literatures have studied this
problem and put forward different test methods. The sta-
bility analysis method of the polynomial discriminant sys-
tem theory makes fractional transformation of variable z1
in B(z1, z2). Condition (5) is turned into checking whether
a polynomial has real roots. In the calculation of Jury
array, the computational complexity of this algorithm will be
increased with the increasing number of variables.We have to
think about whether the denominator is zero in the fractional
calculation. If the system contains parameters, the fraction
analysis will be too complicated to carry out. Based on the
stability analysis method of the polynomial discriminant sys-
tem theory, this paper does linear fraction transformation to
the variable z2 in condition (5). The new condition can be
simply tested by the Hurwitz criterion which does’t involve
Jury array.
For discussing the robust stability in the next section,

we call the recursive model of 2D linear discrete systems with
uncertain parameters as follows:

m∑
i=0

n∑
j=0

bijcijy(k−i, l−j)=
m∑
i=0

n∑
j=0

aiju(k−i, l−j) (6)

where cij is uncertain parameter, cij ∈ R.
The transfer function is shown as follows:

H̃ (z1, z2) =
M (z1, z2)
N (z1, z2)

, (7)

whereM (z1, z2) =
∑n

j=0 aijz
i
1z
j
2,N (z1, z2) =

∑n
j=0 bijcijz

i
1z
j
2.

we assume that H̃ (z1, z2) has no the second type nonessential
singularities.
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III. MAIN RESULTS
A. STABILITY ANALYSIS
The aim of this subsection is to get a new condition by lin-
ear fraction transformation based on condition (5). An algo-
rithm for analyzing stability of 2D discrete linear systems is
presented.

Let

F(s, z2) = (1− js)mB(
1+ js
1− js

, z2), (8)

where the degrees of F(s, z2) in s and z2 are m and n, respec-
tively. It’s easy to know that condition (5) is equivalent to

B(−1, z2) 6= 0, ∀z2 : |z2| ≤ 1, (9)

and

F(s, z2) 6= 0, ∀s : s ∈ R, ∀z2 : |z2| ≤ 1. (10)

Thus, the Schur theorem is changed to the conditions (4),
(9) and (10). If a transfer function’s denominator polynomial
of the 2D linear discrete system satisfies the three conditions,
the proposed system is stable. Now we further analyze and
simplify these three conditions (4), (9) and (10).

Making the fractional linear transformations of z1 in
condition (4) and z2 in condition (9)

z1 =
1− x
1+ x

,

z2 =
1− y
1+ y

,

we can obtain, respectively

Y1(x, 0) = (1+ x)mB(
1− x
1+ x

, 0), (11)

and

Y2(−1, y) = (1+ y)mB(−1,
1− y
1+ y

). (12)

By the transformation, the unit disk d1 ≡ (z1, |z1| ≤ 1)
in the z1 plane is mapped into d ′1 ≡ (x,Re(x) ≥ 0) in the
x plane, and the unit disk d2 ≡ (z2, |z2| ≤ 1) in the z2 plane
is mapped into d ′2 ≡ (y,Re(y) ≥ 0) in the y plane. Therefore,
conditions (4) and (9), respectively, are equivalent to

Y1(x, 0) 6= 0, ∀x : Re(x) > 0, (13)

Y2(−1, y) 6= 0, ∀y : Re(y) > 0. (14)

Y1(x, 0), Y2(−1, y) are real coefficient polynomials in x and y,
respectively. It’s obvious that conditions (13) and (14) is the
problems whether Y1(x, 0) and Y2(−1, y) are Hurwitz stable.
This problem can be solved by the Hurwitz criterion in the
following lemma.
Lemma 1 [33]: Let f (τ ) = anτn + an−1τn−1 +

. . . + a0(an > 0) be a real coefficient polynomial,

where ai, i = 0, . . . n are real. The n × n Hurwitz matrix is
constructed from f (τ ), as follow:

Hf =


an−1 an−3 an−5 · · · 0
an an−2 an−4 · · · 0
0 an−1 an−3 · · · 0
0 an an−2 · · · 0
· · · · · · · · · · · · · · ·

0 0 0 · · · a0

 ,

we denote the order principal minor of Hf by 4k (f ),
k = 1, 2 . . . , n, respectively. The necessary and sufficient
condition for the roots’ real part of f (τ ) to be negative is
4k (f ) > 0, k = 1, 2 . . . , n.
Similar to condition (4) and (9) processing method,

condition (10) is changed as follows.
Making the fractional linear transformation of z2 in condi-

tion (10)

z2 =
1− z
1+ z

,

we obtain

Y3(s, z) = (1+ z)nF(s,
1− z
1+ z

). (15)

By the transformation, the unit disk d3 ≡ (z2, |z2| ≤ 1) in
the z2 plane is mapped into d ′3 ≡ (z,Re(z) ≥ 0) in the z plane.
Condition (10) is changed into

Y3(s, z) 6= 0, ∀s : s ∈ R, ∀z : Re(z) ≥ 0. (16)

Y3(s, z) can be represented as a complex coefficient polyno-
mial in z. We represent condition (16) as follows,

Y3(s, z)=
n∑
i=0

ai(s)zi 6= 0, ∀s : s∈R, ∀z : Re(z)≥0, (17)

condition (17) is equivalent to whether Y3(s, z) is Hurwitz
stable. We recall the following lemma.
Lemma 2 [33]: Let f (τ ) be a complex coefficient polyno-

mial and satisfy f (jτ ) = bnτn+bn−1τn−1+. . .+b0+j(anτn+
an−1τn−1 + . . . + a0), an 6= 0, where ai and bi, i = 0, . . . n
are real. The 2n×2nHurwitz matrix is constructed from f (τ ),
as follow:

Hf =



an an−1 an−2 · · · 0
bn bn−1 bn−2 · · · 0
0 an an−1 · · · 0
0 bn bn−1 · · · 0
· · · · · · · · · · · · · · ·

0 0 0 · · · a0
0 0 0 · · · b0


,

we denote the 2kth order principal minor determinant of Hf
by 42k (f ), k = 1, 2 . . . , n, respectively. If 42k (f ) 6= 0,
the necessary and sufficient condition for the roots’ real part
of f (τ ) to be negative is 42k (f ) > 0, k = 1, 2 . . . , n.
To sum up, we change the testing condition of Schur the-

orem to a new one through the technique of fractional linear
transformations. Then we have the following theorem.
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Theorem 1: If H (z1, z2) has no the second type nonessen-
tial singularities, then the system is BIBO stable if and only
if the following conditions are satisfied,

a. Y1(x, 0) 6= 0,∀x : Re(x) > 0
b. Y2(−1, y) 6= 0,∀y : Re(y) > 0
c. Y3(s, z) 6= 0,∀s : s ∈ R,∀z : Re(z) ≥ 0

Proof: These three conditions a,b,c of Theorem 1 are
conditions (13), (14) and (17), respectively. According to the
above discussions, Schur theorem is changed into conditions
(4) and (5) in [24]. Making the change of variables according
to equation (8), the condition (5) is equivalent to condition (9)
and condition (10). Conditions (4) and (9), respectively, are
equivalent to (13) and (14). Making the change of variables
according to equation (15), we know that condition (10) is
equivalent to the condition (17). So Schur stability criterion
of the 2D system is equivalent to these three conditions of
Theorem 1.We can obtain a conclusion that Theorem 1 is sat-
isfied which means the system is Schur stable, and the system
is BIBO stable if H (z1, z2) has no nonessential singularities
of the second type.

Based on the above results, we show an algorithm for
testing stability of 2D linear discrete system as follows:

Algorithm 1 2DStabilityTest
Input: A transfer functionH (z1, z2) = A(z1, z2)/B(z1, z2).

Output: True if the considered 2D system is stable. False
otherwise.
Step1. Calculate Y1(x, 0), and check condition Y1(x, 0) 6=
0,∀x : Re(x) > 0 by Lemma 1, if not satisfied, output
False.
Step2. Calculate Y2(−1, y), and check condition
Y2(−1, y) 6= 0,∀y : Re(y) > 0 by Lemma 2, if not
satisfied, output False.
Step3. Calculate Y3(js, z), and mark it as

Y3(z) = qnzn + qn−1zn−1 + . . .+ q0 + j(pnzn

+ pn−1zn−1 + . . .+ p0),

where pi, qi are real coefficient polynomials in s. Check
whether Y3(s, z) 6= 0,∀s : s ∈ R,∀z : Re(z) ≥ 0 is satisfied
by Lemma 2, if not satisfied, output False.
Step4. Output True.

In this subsection, we show the process of getting the
efficient algorithm for analyzing stability of 2D linear dis-
crete system. In next subsection, we apply the above process
to solve the robust stability problem of 2D linear discrete
system.

B. ROBUST STABILITY
Consider the robust stability of uncertain 2D linear discrete
system (6). We recall the process of stability analysis to deal
with the robust stability problem.

Denote

F̃(s, z2) = (1− js)mN (
1+ js
1− js

, z2),

L1(x, 0) = (1+ x)mN (
1− x
1+ x

, 0),

L2(−1, y) = (1+ y)mN (−1,
1− y
1+ y

),

L3(s, z) = (1+ z)nF̃(s,
1− z
1+ z

)

Theorem 2: If H̃ (z1, z2) has no the second type nonessen-
tial singularities, then the 2D linear discrete system with
perturbations is BIBO stable if and only if these conditions
are satisfied

a. L1(x, 0) 6= 0,∀x : Re(x) > 0
b. L2(−1, y) 6= 0,∀y : Re(y) > 0
c. L3(s, z) 6= 0,∀s : s ∈ R,∀z : Re(z) ≥ 0
We give an algorithm for stability analysis of 2D linear

discrete systems with uncertain parameters.

Algorithm 2 2DRobustStabilityTest

Input: The denominator N (z1, z2) of H̃ (z1, z2).
Output: A disturbance parameters region of uncertain 2D
system.
Step1. Calculate L1(x, 0), and solve L1(x, 0) 6= 0,∀x :
Re(x) > 0 based on lemma 1 for getting the value range of
cij. If not satisfied,output False.
Step2. Calculate the polynomial L2(−1, y), and solve
L2(−1, y) 6= 0,∀y : Re(y) > 0 based on lemma 2 for
getting the value range of cij.
Step3. Calculate L3(s, z), and mark it as
L3(z) = qnzn+qn−1zn−1+ . . .+q0+ j(pnzn+pn−1zn−1+
. . .+ p0)
where qi and pi, i = 0, . . . n are real coefficient polynomi-
als in s and cij. Solve L3(s, z) 6= 0,∀s : s ∈ R,∀z : Re(z) ≥
0 based on Lemma 2 to obtain the value range of cij.
Step4. According to the obtained solutions in Step1,2,3 of
cij, get the stable parameter region of uncertain 2D system.

This subsection shows the process of getting the stable
parameter region of uncertain 2D system. In the next section,
we compare the proposed results with the exiting method
based on iterative algorithms in [29], [30]. The following
examples illustrate the efficiency for testing the stability and
solving the robust stability problem as comparing the exiting
methods.

IV. EXAMPLES
Example 1: Consider a 2D digital filter with the following
denominator polynomial:

B(z1, z2) =
1
4
z42 + (

1
2
+

1
4
z1)z2 +

1
4
z21 +

1
2
z1 + 1 (18)

Now we follow the algorithm 2DStabilityTest to analyze
the stability of this system.

147978 VOLUME 7, 2019



X. Li et al.: Explicit Method for Stability Analysis of 2D Systems Described by Transfer Function

Step 1. Calculate the polynomial Y1(x, 0),

Y1 = (x + 1)2B(
1− x
1+ x

, 0) =
3
4
x2 +

3
2
x +

7
4
.

According to Lemma 1, construct the Hurwitz matrix HY1 of
Y1(x, 0) as follow,

HY1 =


3
2

0

3
4

7
4

 ,
we can get the principal minor determinant 4k (Y1) > 0,
k = 1, 2. From Lemma 1, we know that the polynomial Y1
is Hurwitz stable, hence the condition Y1(x, 0) 6= 0,∀x :
Re(x) > 0 is satisfied.

Step2. Calculate the polynomial Y2(−1, y),

Y2(−1, y) = (1+ y)4B(−1,
1− y
1+ y

)

=
3
4
y4 +

3
2
y3 + 6 y2 +

5
2
y+

5
4
.

According to Lemma 1, construct the Hurwitz matrix of
Y2(−1, y) as follow,

HY2 =



3
2

5
2

0 0

3
4

6
5
4

0

0
3
2

5
2

0

0
3
4

6
5
4


,

we can get the principal minor determinant 4k (Y2) > 0, k =
1, 2, 3, 4. From Lemma 1, we know the polynomial Y2 is
Hurwitz stable, hence the condition Y2(−1, y) 6= 0,∀y :
Re(y) > 0 is satisfied.
Step3. Calculate the polynomial Y3(s, z)

Y3(s, z) = (1− js)2(1+ z)4F(
1+ js
1− js

,
1− z
1+ z

)

= −
5
4
s2 +

11
4
−

5
2
s2z−

3
4
s2z4 −

3
2
s2z3 − 6s2z2

+
15
2
z+

5
4
z4 +

9
2
z3 + 12z2

+ j(−sz4 − 2sz3 − 12sz2 − 6sz− 3s) (19)

According to (19), we can get Y3(jz). Therefore, we can
draw HY3 as shown at the bottom of this page.

According toHY3 , we obtain the 2kth order principal minor
determinant as follows:

42(Y3) = 9s4 − 26s2 + 45

44(Y3) = 513s8 − 3372s6 + 10726s4 − 16428s2 + 16065

46(Y3) = 2565s12 − 18936s10 + 78189s8 − 212824s6

+ 459887S4 − 548208s2 + 498015

48(Y3) = 3375s16 − 23328s14 + 116748s12 − 415696s10

+ 1193986s8 − 2275648s6 + 4223644s4

− 4243536s2 + 4281255,

we can get42k (Y3) > 0, k = 1, 2, 3, 4 usingMaple program.
From Lemma 2, the polynomial Y3 is Hurwitz stable. The
condition Y3(s, z) 6= 0,∀s : s ∈ R,∀z : Re(z) ≥ 0 is satisfied.
To sum up, it can be concluded that the filter is stable by
Theorem 1.
Remark 3: To verify the stability of system (18) in the

above example, the main steps verifying condition (5) based
on the method of polynomial discriminant system theory in
[29], [30] are as follows:

F ′(s, z2) = (1− js)mzn2B(
1+ js
1− js

,
1
z2
)

= −
1
4
s2 −

1
2
js+

1
4
−

1
4
s2z32 − jsz

3
2 +

3
4
z32

−
3
4
s2z42 −

3
2
sz42

According to the literature [29], [30], the polynomial array
is as follow:

where a′0,0(s) = ak (s), k = 0, . . . , 4, and

a′1,k (s) =

∣∣∣∣ a′0,4 a′0,k
ā′0,0 ā′0,4−k

∣∣∣∣ , k = 0, . . . , 3

a′2,k (s) =

∣∣∣∣ a′1,0 a′1,3−k
ā′1,n−1 ā′1,k

∣∣∣∣ , k = 0, 1, 2

a′i,k (s) =
1

a′i−2,0

∣∣∣∣ a′i−1,0 a′i−1,5−k−i
ā′i−1,5−i ā′i−1,k

∣∣∣∣ ,
i = 3, 4, k = 0, . . . , 4− i

From the above calculation, we have

a′0,0(s) = −
1
4
s2 −

1
2
js+

1
4

a′1,0(s) =
1
2
s4 −

1
2
s2 + 3

HY3 =



−4s 6s2 − 18 48s −10s2 + 30 −12s 0 0 0
−3s2 + 5 −8s 24s2 − 48 24s −5s2 + 11 0 0 0

0 −4s 6s2 − 18 48s −10s2 + 30 −12s 0 0
0 −3s2 + 5 −8s 24s2 − 48 24s −5s2 + 11 0 0
0 0 −4s 6s2 − 18 48s −10s2 + 30 −12s 0
0 0 −3s2 + 5 −8s 24s2 − 48 24s −5s2 + 11 0
0 0 0 −4s 6s2 − 18 48s −10s2 + 30 −12s
0 0 0 −3s2 + 5 −8s 24s2 − 48 24s −5s2 + 11


.
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a′2,0(s) =
63
256

s8 −
35
64
s6 +

401
128

s4 −
199
64

s2 +
2295
256

a′3,0(s) =
1

3+ 1
2 s

4 − 1
2 s

2
(
14913
8192

s12 −
41113
8192

s10 +
495
8192

s16

−
2229
8192

s14 +
143131
8192

s8 −
242559
8192

s6 +
536091
8192

s4

−
458739
8192

s2 +
328941
4098

)

a′4,0(s)=
1

2295
256 +

63
256 s

8 − 401
128 s

4 − 199
64 s

2

1

(3+ 1
2 s

4 − 1
2 s

2)2

× (
88429322025
16777216

+
288252658621

67108864
s12

−
15018704471
2097152

s10 +
64418967191
67108864

s16

−
71992866621
33554432

s14 +
718628304351
67108864

s8

−
420879585159
33554432

s6 +
879661401381
67108864

s4

−
61217797587575

16777216
s2 +

585445205
67108864

s24

−
1179020801
33554432

s22 +
19976247
67108864

s28

−
14798043
8388608

s26 +
8262577431
67108864

s20

−
6121779915
16777216

s18 +
212625

67108864
s32

−
1183707
33554432

s30).

According to the results, the second line a′1,k (s)(k =
0, . . . , 3) of Table1 is obtained by the first line a′0,k (s)(k =
0, . . . , 4), which is polynomial matrix computation in s. Sim-
ilarly, the final line a′4,0(s) is obtained via recurrence. In this
process, we need to compute 10 polynomial matrices, which
involves complex polynomial matrix calculation. As for the
higher-order system, the calculation is more cumbersome.
When k ≥ 3, the process involves fractional calculation.
The test condition a′n,0(s)(s ∈ R) is established for any real
number s. While all the numerical values of parameter s need
to make sure that the denominator isn’t zero. As for higher-
order system, a large number of higher-order polynomial
iterative operations need to be carried out. If the system
with uncertain parameters, the computation is more complex.
Based on the above discussions, it’s obvious that the method
in this paper is tractable and has less computation compared
with the methods based on Jury Array.

TABLE 1. F ′(s, z2)Jury array.

The robust stability problem of 2D system with uncer-
tain parameters is shown in the proposed Algorithm 2 of
this paper, and a complete parameter region of disturbance
parameters is given to ensure the considered system with
perturbations stability. In order to make this procedure clear,
we illustrate the solving process of disturbance parameters by
the following example.
Example 2: Consider an uncertain 2D digital filter with the

following denominator polynomial:

N (z1, z2) =
1
2
c2z1z2 − c1z2 −

1
4
c2z1 + z1z2 −

1
2
z1 + 1.

Now we follow the algorithm 2DRobustStabilityTest
to analyze the stability of the system with uncertain
parameters c1, c2.

Step 1. Calculate the polynomial L1(x, 0),

L1(x, 0)=
1
2
+
3
2
x+

1
4
c2x−

1
4
c2 6=0, ∀x : Re(x)>0. (20)

Using Lemma 1 to solve (20), we can get

c2 − 2
c2 + 6

< 0. (21)

Step 2. Calculate the polynomial L2(−1, y),

L2(−1, y) =
3
4
c2y−

1
4
c2 + c1y− c1 +

1
2
+

5
2
y 6= 0,

∀y : Re(y) > 0. (22)

Using Lemma 1 to solve (22), we can get

4c1 + c2 − 2
4c1 + 3c2 + 10

< 0. (23)

Step 3. Calculate the polynomial L3(s, z),

L3(s, z) = −4c1z+ 3c2z+ 4c1 − c2 + 2z− 6+ j(4c1sz

+ 3c2sz− 4c1s− c2s+ 10sz+ 2s 6= 0,

∀s : s ∈ R, ∀z : Re(z) ≥ 0. (24)

According to (24), we can get L3(jz) as follows:

L3(s, jz) = −4c1sz− 3c2sz− 10sz+ 4c1 − c2 − 6

+ j(−4c1s− 4c1z− c2s+ 2s+ 2z).

From the above, using Lemma 2 based on L3(jz) to solve (24),
we can get{

−(4c1 − c2 − 6)(4c1 − 3c2 − 2) > 0,
−(4c1 + 3c2 + 10)(4c1 + c2 − 2) > 0

(25)

Step 4. From (21)(23) and (25), we have the solutions as
follows 

4c1 − c2 − 6 < 0,
4c1 − 3c2 − 2 > 0
4c1 + 3c2 + 10 > 0
4c1 + c2 − 2 < 0

(26)

By solving conditions of Thoerem 2 for getting uncertain
parameters, we get the the stable parameter region (26). It is
shown in Figure 1.
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FIGURE 1. The solved region of uncertain parameters.

Remark 4: For better showing the correctness of the results
in this example, we give some simulations of the trajectories
of the system outputs with different uncertain parameters.
Figure 2 shows the output of the proposed system with the
uncertain parameters of the solved results shown in Figure 1.
And Figure 3 shows the output of the proposed system with
the uncertain parameters beyond the solved region shown
in Figure 1. It’s obvious that the output in Figure 2 is stable
and the output in Figure 3 is divergent and not stable. The
simulations illustrate that a complete region of disturbance
parameters is solved to ensure the considered system with
perturbations stability.

FIGURE 2. Output response of the proposed system with c1 = 0, c2 = −2
in the solved region.

Remark 5: For better showing the efficiency of the
proposed method, we give a comparison of computation
between the method of this paper and the existing methods
in [29], [30] shown in Table 2, wherem and n (m > n) are the

FIGURE 3. Output response of the proposed system with c1 = 0, c2 = −4
beyond the solved region.

TABLE 2. The comparison of computation.

variables’orders of the denominator polynomial,respectively.
The data of Table 2 indicates that the amount of computa-
tion of the proposed method is significantly reduced. In the
calculation process, the proposed method doesn’t involve any
fractional calculation and iterative operation. After transfor-
mation, the calculation of the proposed Hurwitz criterion
is explicit. Hence, compared with the traditional algebraic
methods, our method has less computation.

V. CONCLUSION
This paper, a 2D recursive model as an example, has pro-
posed two efficient and explicit algorithms for the stability
and robust stability. The algorithms are based on Hurwitz’s
theorem. The proposed algorithms are concise and effective
to analyze the stability and robust stability of the 2D linear
discrete system, and they can solve the cumbersome problems
of the iterative computation and the fractional calculation
in the other algebraic stability tests. Note that a complete
region of disturbance parameters can be obtained to ensure
the stability of 2D system with perturbations. We change
the testing stability condition based on Schur theorem to a
new one based on Hurwitz theorem through the technique of
fractional linear transformations. Then, the new problem can
be solved by the discriminant systems of polynomial.
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