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ABSTRACT This research proposes a new variant of the location-routing problem (LRP) called LRP with
Demand Range (LRPDR) by allowing flexibility in the delivery quantity. The goal of the LRPDR is to
minimize the objective value calculated by the total cost minus the extra revenue. The total cost consists
of the travelling cost of vehicles, the opening cost of the depots, and the activation cost of vehicles. This
study proposes a new hybrid algorithm, SAPSO, that combines simulated annealing (SA) and particle swarm
algorithm (PSO) for solving the LRPDR. Since this problem has not yet been studied in the literature,
a mathematical model is proposed and solved by the Gurobi solver. The results obtained by Gurobi are
then compared with those obtained by the proposed SAPSO algorithm. In addition, the performance of the
proposed SAPSO algorithm is assessed by solving the LRP benchmark instances, and comparing the results
with those of existing state-of-the-art algorithms for LRP. Based on the experimental results, the proposed
SAPSO algorithm improves the performance of the basic SA algorithm and outperforms Gurobi. Moreover,
the benefits of the LRPDR over LRP are presented in terms of total cost reduction.

INDEX TERMS Demand range, hybrid algorithm, location routing problem, particle swarm algorithm,
simulated annealing.

I. INTRODUCTION
In order to sustain in a highly competitive environment,
logistics companies have put numerous efforts to optimize
their strategic, tactical, and operational planning. Determin-
ing the location of facilities and operational vehicle routes
are the most common, yet essential, decisions that all logis-
tics companies encounter. Solving these two problems inter-
dependently allows the companies to gain more benefits,
i.e. operational cost reduction since the opened facilities
are selected by considering the operational routes of vehi-
cles while serving customers. The Location-Routing Problem
(LRP), as the name implies, combines these two planning
tasks simultaneously. During recent years, LRP has gained
interest and been studied to address various applications,
e.g. environmental issues [1], traffic conditions [2], periodic
location-routing problems [3]–[5], two-echelon location-
routing problems [6]–[8], and location-routing problems with
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pickup and delivery [9], [10]. Generally, goods delivered to
customers in a vehicle routing problem are set to a fixed
amount. The idea of allowing flexibility on delivered quantity
was first investigated by Campbell [11] to complement the
Vendor Managed Inventory (VMI) policy, which authorizes
suppliers to manage the inventories of retailers [12]. This
means that the suppliers decide both the quantity and timing
of deliveries. However, due to errors in demand forecasts and
customer’s lack of trust, VMI did not work well; therefore,
adding limited delivery volume flexibility could result in
potential cost savings in terms of the distance travelled by
utilized vehicles. In particular, the total travelled distance
could be reduced because the flexibility assumption allows
vehicles to choose a combination of demand quantities [11].
Recently, Archetti et al. [13] further studied and confirmed
the potential benefits of harnessing the concept of flexibility,
i.e., delivery quantity and service time, in the vehicle routing
problem.

Although LRP research has been developed to address
various issues, the research integrating demand flexibility
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into LRP has not been addressed in previous works. The
study of demand flexibility is currently still limited to oper-
ational scope, i.e. vehicle routing issues, in spite of the
aforementioned potential benefits. Therefore, in order to
further increase the advantages of LRP, demand flexibil-
ity is integrated into LRP to become the Location Routing
Problem with Demand Range (LRPDR). To the best of the
authors’ knowledge, this problem has not yet been studied in
literature.

The LRPDR consists of a number of customers whose
demands need to be fulfilled. A lower-bound and an
upper-bound are defined for the amount of demand delivered
to each customer. There are a number of potential capacitated
supplying facilities with a particular fixed cost if the facility
is selected. No split deliveries are allowed, thus, customers
could receive goods once from only one facility. The vehicles
used to make deliveries are homogenous, i.e., the capacity
of each vehicle is the same. The objective of the LRP is
to minimize the total cost, which consists of the fixed cost
of selected facilities, the fixed cost of utilized vehicles, and
the travel distance cost of vehicles. The LRPDR utilizes a
more general objective, which considers the tradeoff between
the aforementioned total cost and total delivered quantity to
customers. In particular, the additional revenue generated by
customers with extra delivered quantity is added to the objec-
tive function, and this type of customer creates incentives
for the delivery company, in order to receive more delivery
quantity.

The main contributions of the paper are as follows. This
study first introduces the LRPDR, which is a new problem
that addresses a well-known logistics problem, i.e., LRP with
demand flexibility. The LRPDR increases the complexity of
the classical LRP, as the delivered quantity must be deter-
mined.We formulate a mathematical programmingmodel for
the LRPDR. Since this problem has never been addressed
in previous works, this study proposes a hybrid algorithm,
called SAPSO, which combines Simulated Annealing (SA)
and Particle Swarm Optimization (PSO) algorithm to solve
the LRPDR. In addition, numerical experiments were con-
ducted to justify the benefits of hybridizing SA and PSO
by comparing the results obtained from SAPSO with those
obtained by SA.

II. LITERATURE REVIEW
The LRPDR is a new problem that extends capacitated
LRP (CLRP) by allowing demand flexibility. Therefore, this
study first discusses the CLRP and its extensions, then,
discusses the idea of integrating flexibility into the vehicle
routing problem, and finally, presents the current applications
of SA and PSO.

The CLRP has the objective of minimizing total distribu-
tion costs, which consists of opening cost of depots, fixed
cost of utilized vehicles, and vehicles’ travel cost. Therefore,
determining the depots that should be opened, the number of
utilized vehicles, and the route that each vehicle must travel to
serve all customers are necessary decisions in CLRP. Tuzun

and Burke [14] proposed a two-phase Tabu Search (TS)
algorithm for CLRP. The first phase focuses on determining
a set of opened depots, while the second phase is performed
to build a set of routes from the opened depots.

Since Nagy and Salhi [15] conducted literature review
on the location-routing problem, numerous researchers have
started to address the problem with various methods.
Belenguer et al. [16] proposed a branch-and-cut algorithm to
solve the CLRP, where an integer linear program with several
families of constraints was proposed and embedded in a cut-
ting plane scheme to obtain a valid lower bound for the CLRP.
The algorithm initially starts by solving a relaxation of linear
program (LP). At each iteration, the solution produced by
solving the relaxation of LP is checked to determine whether
it violates any valid inequality, and the algorithm terminates
when no violated inequality is found. They utilized three
benchmark datasets. 14 out of 22 instances in the first two
datasets could be solved to optimality, including an instance
that had never been solved to optimality in previous works.
Regarding the third dataset, the results show that all instances
were solved to optimality.

Several metaheuristics are also employed to solve CLRP.
Prins et al. [17] presented a metaheuristic consisting of
two phases. GRASP, which is extended from the Clarke
and Wright algorithm, was executed in the first phase and
post-optimization using path-relinkingwas utilized in the sec-
ond phase. Duhamel et al. [18] proposed a hybridization of
GRASP and evolutionary local search (ELS) to solve CLRP.
Two solution spaces – giant tours without trip delimiters
and true CLRP solutions – were utilized during the search
process. Yu et al. [19] developed a Simulated Annealing
algorithm to tackle CLRP, where three neighborhood moves,
swap move, insertion move, and 2-opt move, were employed.
Hemmelmayr et al. [20] proposed an Adaptive Large Neigh-
borhood Search to solve the two-echelon location routing
problem (2E-LRP), an extension of CLRP by considering
more than one echelon. The proposed ALNSwas also utilized
to solve CLRP benchmark problems, which outperformed the
previous works.

The integration of demand flexibility into the vehicle rout-
ing problem was first addressed by Campbell [11]. Demand
flexibility is defined by the upper and lower-bound values of
the original delivery quantity for each customer, and an inte-
ger program is formulated to model the problem. The impact
of flexibility on the total distance required to serve a set of
customers was analyzed, and the results showed that allowing
demand flexibility resulted in savings, in terms of travelled
distance. Francis et al. [21] dealt with the periodic vehicle
routing problem with service choices (PVRP-SC), which
considers multiple periods of time where customers could
be serviced several times in the considered planning periods.
By allowing the flexibility of service frequency, system effi-
ciency could be improved. Most recently, Archetti et al. [13]
proposed an extension of PVRP-SC, called flexible periodic
vehicle routing problem (FPVRP), by further relaxing con-
straints on the amount of delivered quantity, which resulted in
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higher flexibility. The authors analyzed the benefit of FPVRP
by comparing the results of FPVRP with those of PVRP, and
concluded that FPVRP resulted in savings, in terms of total
travel distance.

SA is a well-known algorithm that has been used to solve
various types of routing and scheduling problems. Recently,
SA has been applied to solve vehicle routing problem with
simultaneous pickup-delivery and time windows [22], open
vehicle routing problem with cross-docking [23], and hybrid
vehicle routing problem [24]. SA has also been developed to
deal with several types of LRP, e.g. CLRP [25], open location
routing problem (OLRP) [26], and two echelon OLRP [7].
PSO is a population-based algorithm, which is inspired by
a flock of living creatures, e.g. birds and fishes. This algo-
rithm was first developed by Eberhart and Kennedy [27].
The popularity of PSO has also been recognized in various
optimization problems, e.g. TSP [28], VRP with stochastic
demand [29], VRPSPD [30], berth allocation problem [31],
cross-docking distribution problem [32], and team orienteer-
ing problem [33]. Considering the successful application of
SA and PSO, this study proposes a hybridization of SA
and PSO to tackle LRPDR, and hopes to obtain competitive
results.

III. MATHEMATICAL MODEL
The LRPDR is described as follows. There is a set of cus-
tomers, each with a known demand range and a set of poten-
tial depots, each with known coordinates. The objective of
LRPDR is to minimize the sum of the costs associated with
the fixed cost of opening the depots and using the vehicles,
and the travel cost of the vehicles minus the total extra
revenue. Each customer is assigned to one potential depot
and served exactly once by a vehicle, which starts from and
ends its route at the depot to fulfill customers’ demand. The
depots and vehicles are capacitated. Additionally, the load of
the vehicle before returning to the depot should be zero.

In graph theory terms, let G = (N ,A) be a complete
undirected graph, where N is the set of nodes (N = N0 ∪Nc)
and A is the set of arcs. Each arc a = (i, j) ∈ A connects
nodes i and j in set N and has a travel cost cij . N0 is the
set of potential depots. Each k ∈ N0 has a capacity CDk
and an opening cost FDk . Nc is the set of customers. Each
i ∈ Nc has a demand di, a unit extra revenue pi, and a range of
possible delivery quantity defined by βi (0≤ βi ≤1). In other
words, the delivery quantity ranges from (1−βi) to (1+βi).
Each vehicle has a fixed capacity CV and a fixed cost FV.
The total initial load of the vehicles originate from depot k
should not exceed the depot’s capacity CDk .
The goals of LRPDR are to determine: (1) Which potential

depots should be opened. (2)Which routes should be serviced
by vehicles assigned to such depot. (3) Which combination
of delivery quantity for each customer results in the least
objective value. The decision variables are as follows:

xijk = 1 if vehicle k travels directly from node i to node
j,∀i, j ∈ N , i 6= j,∀k ∈ K . 0 otherwise;

yd = 1 if depot d is opened, ∀d ∈ N0, 0 otherwise;
zid = 1 if customer i is assigned to depot d , ∀i ∈ Nc,∀d ∈

N0, 0 otherwise;
Uij = Remaining delivery demand after leaving node i

for node j,∀i, j ∈ N , i 6= j;
qik = Quantity delivered to customer i by vehicle k,∀i ∈

Nc, ∀k ∈ K .

min z =
∑
k∈K

∑
i∈N

∑
j∈N ,i6=j

cijxijk +
∑
d∈N0

FDdyd

+

∑
k∈K

∑
d∈N0

∑
i∈Nc

FVxdik −
∑
i∈Nc

∑
k∈K

piqik (1)

Subject to ∑
k∈K

∑
j∈N ,j6=i

xijk = 1, ∀i ∈ Nc (2)

∑
i∈N ,i6=j

xijk =
∑

j∈N ,i6=j

xjik , ∀i ∈ N , ∀k ∈K (3)

Uij ≤ CV
∑
k∈K

xijk (4)∑
i∈Nc

Uid = 0, ∀d ∈ N0 (5)

∑
d∈N0

zid = 1, ∀i = Nc (6)

∑
k∈K

xidk ≤zid , ∀i ∈ Nc, ∀d ∈ N0 (7)∑
k∈K

xdik ≤zid , ∀i ∈ Nc, ∀d ∈ N0 (8)∑
k∈K

xijk + zid +
∑

m∈N0,m6=d

zjm ≤ 2,

∀i, j ∈ Nc, i 6= j, ∀d ∈ N0 (9)∑
i∈Nc

qik ≤ CV , ∀k ∈ K (10)

∑
k∈K

qik ≥ (1− βi)di, ∀i ∈ Nc (11)∑
i∈N ,i6=j

(1+ βj)djxjik ≥ qjk ,∀j ∈ Nc, ∀k ∈ K

(12)

0 ≤ qik ≤ (1+ βi)di, ∀i ∈ Nc, ∀k ∈ K (13)∑
j∈N ,i6=j

Uji−
∑

j∈N ,i6=j

Uij =
∑
k∈K

qik , ∀i ∈ Nc,

∀k ∈ K (14)∑
i∈Nc

Udi =
∑
k∈K

∑
i∈Nc

zidqik , ∀d ∈ N0 (15)

∑
k∈K

∑
i∈Nc

qikzid ≤ CDdyd , ∀d ∈ N0 (16)

Uij ≤ CV
∑
k∈K

xijk −
∑
k∈K

xijkqik ,

∀i ∈ Nc, ∀j ∈ N , i 6= j (17)

Uij ≥ qjk
∑
k∈K

xijk , ∀i ∈ N , ∀j ∈ Nc, i 6= j

(18)
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FIGURE 1. Solution representation of an LRPDR instance.

FIGURE 2. Illustration of an LRPDR solution.

∑
i∈N0

∑
j∈Nc

xijk ≤ 1, ∀k ∈ K (19)

xijk ∈ {0, 1}, ∀i, j ∈ N , ∀k ∈ K (20)

yd ∈ {0, 1}, ∀d ∈ N0 (21)

zid ∈ {0, 1}, ∀i ∈ Nc, (22)

Uij ≥ 0, ∀i, j ∈ N (23)

qik ≥ 0, ∀i ∈ Nc, ∀k ∈ K (24)

Objective (1) minimizes the total cost minus the extra rev-
enue. The total cost consists of vehicle traveling cost, depot
opening cost, and vehicle fixed cost. Constraint (2) ensures
that each customer is visited at most once. Constraint (3)
ensures that the number of entering arcs is equal to the
number of leaving arcs for each node. Constraint (4) states
that the remaining demand does not exceed the capacity of
the vehicle at any time. Constraint (5) guarantees that there
is no remaining delivery quantity in the vehicle after the
vehicle has serviced its last customer. Constraint (6) denotes
that each customer is assigned to one depot. Constraints (7)
to (9) prohibit infeasible routes. Constraint (10) restricts that
the load of a vehicle does not exceed the vehicle’s capacity.
Constraints (11) to (13) ensure that the delivery quantity for
each customer is within its demand range. Constraint (14)
is the flow constraint for delivery quantity. Constraint (15)
ensures that the total delivery quantity to customers assigned
to a specific depot is satisfied by the vehicles dispatched
from the depot. Constraint (16) guarantees that the total
delivered quantity of the vehicles dispatched from a depot
does not exceed the capacity of the depot. Constraints (17)
and (18) are the bounds of the variable Uij. Constraint (19)
restricts that each vehicle is assigned to at most one depot.

Constraints (20) to (22) define all binary decision variables.
Constraints (23) and (24) define all non-negative continuous
decision variables.

IV. SAPSO HEURISTIC FOR LRPDR
A. SOLUTION REPRESENTATION
The solution representation of LRPDR is divided into two
parts. The first part is a permutation of n customers {1, 2,
3,. . . , n},m potential depots {n+1, n+2, n+3,. . . , n+m}, and
Ndummy zeros that are used to terminate routes. The formula of
calculating Ndummy is

⌈∑
i (1+ βi)di/CV

⌉
, where (1+ βi)di

is themaximum of the delivery quantity of customer i, andCV
denotes vehicle capacity. The second part shows the potential
combinations of each customer’s delivery quantity.

In the solution representation, the first number in a route
must be a depot. Customers are added one by one into the
current route of the current depot, provided that the capacity
constraint of the route is not violated. The purpose of using
zero in the solution representation is to terminate a route and
start a new route, even though the accumulated demand has
not exceeded vehicle capacity. Consequently, it results in a
larger search space and increases the possibility to find a
better solution.

To demonstrate the solution representation, an example of
LRPDR solution is shown in Fig. 1 and Fig. 2, which provides
a sample solution representation and a visual illustration of
the distribution network corresponding to the sample solu-
tion representation. In this example, there are 10 customers
and 2 potential depots, as shown in Table 1 and Table 2.
Table 1 displays the coordinates (X , Y ), demand (di), and
the unit extra revenue (pi) for each customer. Table 2 lists
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TABLE 1. Customer information of an LRPDR instance.

TABLE 2. Depot information of an LRPDR instance.

the (X, Y) coordinates, opening cost, and capacity of the two
potential depots. The vehicle capacity is 6,000. βi is 0.2 for
each customer.

V. INITIAL SOLUTION
The greedy algorithm is applied to construct an initial solu-
tion. The following is the procedure for generating an initial
solution in the proposed SAPSO.
Step 1: for each unassigned depot d in N0, calculate the

number of customers whose closest depot is depot d . Choose
the depot with the largest number of customers. If two ormore
depots have the same number of customers, then select the
depot with the largest capacity among these depots.
Step 2: arrange unassigned customers to the chosen depot

in step 1 by an increasing order of distance between the
customer and the depot until the capacity of the depot
runs out. Next, eliminate the selected depot from further
considerations.
Step 3: construct a TSP tour from selected customers to

the chosen depot. This tour should start from and end at the
chosen depot.
Step 4: divide the TSP tour into several routes based on the

vehicle capacity constraint to ensure the feasibility of each
route.
Step 5: if there is any unassigned customer, go to step 1;

otherwise, the procedure ends.

A. NEIGHBORHOOD STRUCTURES
Insertion, swap, and reverse are three neighborhood moves
commonly used in SA heuristic. Therefore, the proposed
SAPSO uses these three neighborhood moves to find a bet-
ter potential solution in the neighboring area of the current
solution. Each move is equally likely to be selected. The
positions of each move are randomly picked in the solution,
and the selected positions could be a depot, a customer, or a
zero. Therefore, feasibility check is performed for the newly
generated solution.

Regarding the swap move, first, we randomly choose two
positions in the solution. Second, we exchange these two
positions to obtain a new solution. For the reverse move,
first, we randomly choose two solution positions; second,
we reverse the substring between these two positions to obtain
a new solution. Regarding the insertion move, first, we ran-
domly choose two positions of a solution, and then insert
the first chosen position after the second chosen position to
obtain a new solution. After performing one of these three
moves, feasibility check is conducted. The move is repeated
until a new feasible solution is produced.

B. THE SAPSO HEURISTIC
This research develops a hybrid metaheuristic that combines
SA and PSO to solve LRPDR. Fig. 3 presents the procedure of
the proposed SAPSO. Ten parameters are required to execute
SAPSO. Iiter represents the number of inner iterations for
the SA procedure, Nnon−improving represents the number of
temperature reductions allowed without improving the cur-
rent best solution. T0 and Tf represent the initial temperature
and the final temperature in the SA procedure, respectively.
α is a constant used to update the current temperature, while
K is a constant used to calculate the acceptance probability
of a worse solution in the SA procedure. Nparticle, ψiter ,
Nreinitializing, and Vlimit are used in the ShakeDemandPSO(.)
procedure to represent the number of particles, number of
iterations, number of iterations before the reinitializing pro-
cedure, and the speed limitation of a particle, respectively.
The value of current temperature T is first set to T0. Then,
the greedy algorithm is applied to generate an initial solution
X as the current solution. Next, the current best solution Xbest
and the current best objective value Fbest are set to be X and
its objective value, respectively.

In the improvement phase, a new solution Y is generated
from the current solution X by one of the three aforemen-
tioned neighborhood moves. After that, let 1 be the dif-
ference between the new solution and the current solution,
i.e. 1 = obj(Y ) − obj(X ). If 1 < 0, then the current
solution X is replaced with the new solution Y . Otherwise,
a random number r ∼ U(0,1) is generated. If r is smaller
than the probability calculated by exp(−1/KT ), then X is
replaced with Y . If the new solution Y replaces the current
solution X , then the ShakeDemandPSO(.) procedure based
on the PSO algorithm has a chance to be utilized to search
for a potential delivery quantity combination in a larger space.
The purpose of this procedure is to further improve the new
solution Y before it replaces the current solution X . The
best solution Xbest and its objective function value Fbest are
updated whenever a new best solution is found. After a given
number of iterations, a local search is performed on Xbest , and
the current temperature decreases by the formula T = αT ,
where 0 < α < 1.

The purpose of the proposed local search is to improve
the current best solution, which is conducted with swap
and insertion moves. Each of them is conducted 100 times.
We use a random number to decide their sequence. Whenever
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FIGURE 3. Pseudocode of the proposed SAPSO algorithm.

one of the terminating conditions occurs, the algorithm is
terminated. There are two terminating conditions: (1) when
the current T is below or equal to the final temperature Tf ,
and (2) when the best solution Xbest has not improved for
Nnon−improving consecutive temperature reductions.

The PSO algorithm is hybridized with SA as the ShakeDe-
mandPSO(.) procedure, which is explained in Fig. 4. The SA
algorithm can only adjust the sequence of visited customers;
therefore, other mechanism is needed to set the amount of
delivery quantity. The solution representation of the PSO
algorithm naturally consists of continuous variables; there-
fore, demand quantity could be directly utilized in the solu-
tion representation without any intermediate process, which
may increase the computational time.

This procedure generated the initial solution by creating
the positions of all particles Xij, where each particle i rep-
resents one combination of delivery quantity for customer j.
Therefore, this uniformly creates particles at random within
the allowable demand range [(1 − βi)dj, (1 + βi)dj] of cus-
tomer j. Similarly, this procedure creates initial particle veloc-
ities vij according to Vlimit, which is uniformly distributed
within the range [vmin, vmax] . Next, we evaluate the objective
values of all particles. xPbest and Pbest are initially set to the

FIGURE 4. Pseudocode of the ShakeDemandPSO(.) procedure.

initial solution and its objective value, respectively. In sub-
sequent iterations, xPbest is the location of the best objective
function found by particle i. Gbest is the best objective value
of all particles, and xGbest is the location of Gbest .

After initialization, the iterations begin. We then update
the velocity and position of each particle by the following
equations:

vij(t + 1) = k ×
[
vij(t)+ r1C1(xPbest − xij(t))
+r2C2(xGbest − xij(t))

]
(25)

k =
2

|2−ϕ−
√
ϕ2−4ϕ|

where ϕ = C1 + C2, ϕ>4

(26)

xij(t + 1) = xij(t)+ vij(t + 1) (27)

vij(t) is the velocity of particle i in dimension j at time t;
xij(t) is the position of particle i in dimension j at time t;
xPbest is the personal best position of particle i in dimension
j found so far at time t; xGbest is the global best position of
particle i in dimension j found so far at time t . C1 and C2 are
positive constants; r1 and r2 are random numbers in (−1,1).
Equation (25) and (26) update the velocity and the position
of the particles, respectively.

The procedure used to update Pbest and Gbest is explained
as follows. If the new solution is better than the previous one,
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FIGURE 5. Sensitivity analyses of algorithmic parameters.

then the value of Pbest and Gbest will be updated; otherwise,
proceed to the next iteration to find a new solution until the
maximum number of iterations is reached. Furthermore, for
each particle i, if the number of times that Pbest equals Gbest
is equal to Nreinitialization, then particle i will be reinitialized.
This condition is used to avoid getting stuck in a local optima
before the algorithm terminates.

VI. COMPUTATIONAL STUDY
This section presents a numerical experiment to demonstrate
the performance of the proposed SAPSO. The algorithm is
implemented in C++ using Microsoft Visual Studio 2015,
and the experiments are conducted on a computer with an
Intel (R) Core (TM) i7-4790 3.6 GHz processor and 16 GB

TABLE 3. Parameter values tested in experiments.

of RAM under Windows 10 Professional operating system.
First, this research tests the proposed SAPSO algorithm on
three sets of LRP benchmark instances, in order to assess
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TABLE 4. Comparison of proposed SAPSO and the best known solution (bks) on Barreto [34] dataset.

its performance. Second, LRPDR benchmark datasets are
generated from the LRP benchmark instances. We generate
the upper bounds for each LRPDR instance by Gurobi, and
utilize the SA algorithm to solve each instance, in order to
assess the performance of the SAPSO algorithm in solving
LRPDR.

A. TEST INSTANCES
Three benchmark instances of LRP are utilized to assess
the performance of SAPSO. The first dataset contains
20 instances, which are adopted from Barreto [34]. The num-
ber of depots ranges from 2 to 14, while the number of cus-
tomers varies between 8 and 318. The second dataset created
by Prins et al. [35] consists of 30 instances. The number of
depots is either 5 or 10, and the number of customers is chosen
from the set {20, 50, 100, 200}. Finally, the third dataset of
Tuzun and Burke [14] consists of 36 instances. The number of
depots is either 10 or 20, and the number of customers is either
100, 150, or 200. Consequently, 85 instances are utilized to
assess the performance of our algorithm in solving CLRP.

For assessing the performance of the algorithm in solving
LRPDR, the dataset provided by Barreto [34] is adopted. The
properties of the dataset, i.e. the coordinates of customers
and depots, the capacity of vehicles and depots, the opening
cost of depots, the fixed cost of the vehicles, and the origi-
nal demands of customers, are all adopted. A new parame-
ter, βi, is used for the LRPDR dataset to define the demand

range of customers. More specifically, in order to define
the maximum and minimum amounts of delivery quantity,
we multiply the original demand di by (1+ βi) and (1− βi),
respectively, for each customer i. In practice, the range of
demand could be obtained by using the historical records of
delivered quantity to the customers, or based on the agree-
ment between suppliers and customers. Next, the extra rev-
enue is generated, as follows. Half of the customers have
the value of pi equal to 0, which means adding an extra
amount of delivery quantity brings no extra revenue. The
pi values of the other half of the customers are uniformly
generated in (0.0, 0.01). The test instances are available at
http://web.ntust.edu.tw/~vincent/lrp/.

B. PARAMETER SETTINGS
As it may affect performance, parameter tuning is an essen-
tial step in assessing the performance of algorithms. Thus,
this study performs a preliminary experiment to set the best
parameter settings. The tested parameter values are listed
in Table 3. Each parameter combination is run five times,
and the minimum average value of the objective is utilized to
select the best combination. Two experiments are conducted;
the first experiment was to determine the best parameter
value combination in solving the LRP benchmark instances;
while the second was performed to select the best parameter
value combination for solving the LRPDR. Based on the
first experiment, using Iiter = 3000L, Nnon−improving = 150,
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TABLE 5. Comparison of proposed SAPSO and the best known solution (bks) on Prins et al. [35] dataset.

T0 = 40, Tf = 0.1, K = 1/1.6, and α = 0.98 leads to the
best results among all possible combinations. For the second
experiment, the selected parameter values are as follows:
Iiter = 30L, Nnon−improving = 50, T0 = 5, Tf = 0.01, K =
1/1.6, and α = 0.99 for small LRPDR instances; and Iiter =
110L, Nnon−improving = 150, T0 = 25, Tf = 0.01, K = 1/1.6,
and α = 0.98 for original-size LRPDR instances. Therefore,
these combinations are utilized in subsequent studies.

Sensitivity analysis is then performed to provide more
insights on the effects of the parameter settings. In the analy-
sis, we change one parameter at a time from the best parame-
ter combination to solve small LRPDR instances to determine
the effect. The blue curve and orange curve represent CPU
time and objective value, respectively. The initial tempera-
ture is increased in increments of 10 starting from 5 to 35.

The initial temperature may influence the probability of
accepting aworse solution. The higher the initial temperature,
the higher the probability.

The final temperature is decreased from 0.1 to 0.001.
Generally, the lower the final temperature, the lower the cost,
and the higher the computational time; however, according
to the results, the computational time is different. This may
be because the algorithm is terminated by one of the stopping
criteria, i.e.Nnon−improving, thus, the solution stops earlier than
usual.

This study increased the number of iterations in increments
of 10L starting from 20L to 50L. While more iterations
improves solution quality, it requires additional computa-
tional time. This study increased the value of Nnon−improving
in increments of 50 starting from 50 to 200. As higher
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TABLE 6. Comparison of proposed SAPSO and the best known solution (bks) on Tuzun and Burke [14] dataset.

Nnon−improving results in higher computational time, when the
termination condition is relaxed, a better solution appears.

Regarding the value of K , the tested values are 1/9, 1/3,
1/1.6, and 1. Increasing Boltzmann’s constant K raises the
computational time, as it affects the probability of accept-
ing a worse solution. This study increased the value of α
in increments of 0.01 starting from 0.96 to 0.99, and the
increasing trend in both solution quality and computational
time is shown. The smaller the alpha, the less iterations are

executed, and the faster the convergence velocity, and this
explanation is deduced from Fig. 5.

C. COMPUTATIONAL RESULTS
This section shows the effectiveness of the proposed SAPSO
heuristic by solving the LRPDR datasets, and then, compar-
ing the results with those obtained by Gurobi and SA heuris-
tic. Gurobi solutions are obtained within a predetermined
five-hour limit. In addition, we use SAPSO to solve CLRP,
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TABLE 7. Comparison of different methods for the three benchmark sets.

and compare our results with the best-known CLRP solutions
obtained by GRASP x ELS [18], SALRP [19], ALNS-500K
and ALNS-5000K [20], 2-Phase HGTS [36], MACO [37],
GRASPxILP [38], GVTNS [39], and HybridGA + [40].

1) RESULTS FOR THE CLRP BENCHMARK DATASET
The comparison results between the CLRP solutions obtained
by the proposed SAPSO and the best-known LRP solu-
tions are shown in Tables 4, 5, and 6. The first three
columns describe the name of the instances and the numbers
of customers and depots, respectively. The following three
columns present the best-known CLRP solution (BKS) val-
ues, the computational time (CPU) of obtaining the best solu-
tions, and the best objective value (bestObj) of ten runs. The
last column demonstrates the percentage gap between BKS
and the best objective value. The smaller the gap, the bet-
ter the performance of the proposed SAPSO. The proposed
SAPSO is tested ten times for each instance.

Table 4 summarizes the comparison results of solving the
Barreto [34] dataset. The average CPU time is 170.95s.When
comparing the best solution obtained by SAPSO with BKS,
the average of the gaps to the best-known results is 0.44%.
BKSs to 12 of 19 instances are obtained by SAPSO. Regard-
ing the Prins et al. [35] dataset, Table 5 presents the compari-
son results, where the average computing time is 219.6s. The
average of best Gap (%) is 0.80%, and the best Gap (%) is
lower than 1% for 23 (out of 30) instances. Table 6 shows
that the average computational time is 546.38s when solving
the Tuzun and Burke [14] dataset, and the average gap of
the best results is 0.44%. Moreover, 30 of the 36 solutions
solved by the proposed SAPSO are close to BKS, and the gaps
are all less than 1%. Overall, the proposed SAPSO, with the
parameters described in the last section, is tested on 85 LRP

benchmark instances. The results show that the best Gap (%)
is lower than 1% for 82% of instances, and the obtained
solution is the best-known solution for 44% of the instances.

Table 7 summarizes the comparison between the proposed
SAPSO and the aforementioned state-of-the-art algorithms.
CPU refers to the average computational time in seconds,
and AvgBestGap (%) refers to the average percentage gap
between the best obtained result and the best-known result.
Note that, in order to compare with some of the methods,
there are two values provided for both CPU and AvgBestGap
(%) for the Barreto [34] dataset. The additional value only
considers 13 out of 19 instances in comparison.

Based on Table 7, when compared with the other six
methods that only solved 13 of 19 instances in the Bar-
reto [34] dataset, the performance of the proposed SAPSO
is one of the best two methods. For the Tuzun and Burke [14]
dataset, SAPSO outperforms all the other heuristics, except
for ALNS-5000K and GRASP+ ILP. Although computa-
tional time varies with machine capabilities, the computa-
tional time of the proposed SAPSO is much faster than
the other two methods. The average results of the three
benchmark datasets are indicated in the last two columns,
where avgCPU and avgGap are the average of the three
values of CPU and AvgBestGap, respectively. All things con-
sidered, the proposed SAPSO seems suitable to solve the
location-routing problem.

2) RESULTS FOR THE LRPDR DATASET
Tables 8 and 9 report the computational results, best objective
value (bestObj), average objective value (avgObj), and aver-
age computational time in seconds (avgCPU) of small and
original size LRPDR instances, respectively. The proposed
algorithms are run 30 times for each instance.
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TABLE 8. Computational results for the small LRPDR instances.

TABLE 9. Computational results for the original sized LRPDR instances.

In order to assess the performance of the proposed SAPSO
heuristic in solving LRPDR, the relative percentage deviation
(RPD) value for each benchmark instance is computed as
RDP = (Obja lg−OBJBKS )/OBJBKS×100%, whereObja lg is
the objective function value (OBJalg) of the solution obtained
using a given algorithm or Gurobi, and OBJBKS is the best
OBJ among the solutions obtained using SAPSO, SA, and
Gurobi. The best and average of the solutions to each test
problem, based on 30 runs, obtained using SAPSO, SA and
Gurobi, were used to compute the RPD values, which are
denoted asMin.RPD and MeanRPD.
Table 8 presents the computational results of solving

the small LRPDR instances adapted from the Barreto [34]
dataset. It can be seen that six of eight instances are optimally
solved by Gurobi within five hours. Gurobi was able to find
feasible solutions to the other two instances in five hours.
The proposed SAPSO obtained all of the optimal solutions
provided by Gurobi within 1.6 seconds, and solutions to the
other two instances with the same or better objective value
than Gurobi in 2.5 seconds. Furthermore, the average Min.
RPD and average Mean RPD of SAPSO are 0.00% and
1.15%, respectively, while the average RPD of Gurobi is
0.07%. On the other hand, SA can only obtain three optimal

solutions. Table 8 also presents that the averageMin. RPD and
averageMean RPD of SA are 0.25% and 1.15%, respectively.
Furthermore, SAPSO’s computational time is less than SA.

The computational results for the original sized LRPDR
instances adapted from the Barreto [34] dataset are presented
in Table 9. Gurobi found a feasible solution to each of the
eight instances in five hours, including one optimal solution.
The proposed SAPSO not only found the optimal solution
obtained by Gurobi, but also found better solutions to the
other instances than those found by Gurobi, except for the
coordGaspelle6 instance. Furthermore, the averageMin. RPD
and average Mean RPD of SAPSO are 0.45% and 3.98%,
respectively, while the average RPD of Gurobi is 3.32%. On
the other hand, SA obtained only three optimal solutions.
Table 9 also presents that the averageMin. RPD and average
Mean RPD of SA are 1.84% and 4.61%, respectively. Fur-
thermore, SAPSO’s computational time is less than SA.

To determine whether the proposed SAPSO heuristic out-
performed SA and Gurobi, Wilcoxon signed rank tests in
terms of Min. RPD and MeanRPD were conducted. The
analytical results, as shown in Table 10, reveal that, at the
confidence level of α = 0.05, the proposed SAPSO heuristic
significantly outperformed SA and Gurobi in terms of Min.
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TABLE 10. Results of Wilcoxon signed rank tests on min. RPD and mean RPD.

RPD. These statistical results indicate that SAPOS signifi-
cantly improved the performance of SA in solving LRPDR.

VII. CONCLUSION AND FUTURE RESEARCH
The location-routing problemwith demand range is presented
in this study. The problem extends LRP by considering a
range of potential demands. This study developed a math-
ematical model for this new LRP variant, and proposed a
hybrid metaheuristic, SAPSO, which hybridizes simulated
annealing and particle swarm optimization algorithms to
solve LRPDR.

In order to ensure the proposed approach is effective in
solving LRP-related problems, we test it on three LRP bench-
mark datasets. The numerical study results show that the
percentage gap between BKS and the best objective value
obtained by the proposed SAPSO are all less than 1% for
the three LRP benchmark datasets. For most of the instances,
SAPSO’s outperforms SA and Gurobi, thus, further experi-
ments for solving LRPDR were conducted using SAPSO.

This study applied the proposed SAPSO with specific
parameter setting to solve the new dataset of LRPDR, and the
results show that the proposed SAPSO outperforms Gurobi
both in solution quality and computational time, except
for one instance. On the other hand, all things considered,
the proposed SAPSO is better than SA. According to the
comparison between LRP and LRPDR, this research found
that adding the flexibility of delivery quantity could reduce
the total cost.

For future studies, other practical considerations, such
as multi-period, time windows, inter-depot routes, and split
delivery, could be integrated into LRPDR to make it closer to
reality. In addition, exact methods and different metaheuris-
tics could be developed for SAPSO to effectively solve the
problem.
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