IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received September 4, 2019, accepted September 23, 2019, date of publication October 8, 2019, date of current version October 22, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2946315

Test Patterns for Cloud Applications

SIDRA SIDDIQUI' AND TAMIM AHMED KHAN 2

IDepartment of Computer Sciences, Air University, Islamabad 44000, Pakistan
2Department of Software Engineering, Bahria University, Islamabad 44000, Pakistan

Corresponding author: Tamim Ahmed Khan (tamim @bahria.edu.pk)

ABSTRACT Software systems are becoming graphical user intensive. They involve web technologies
organized in the cloud platform which supports translation of services to a wider community. Such cloud
applications are more vulnerable to misuse. Consequently, system development needs to focus on system
security features in a comprehensive manner. Therefore, techniques that are based on test-driven development
will be a good choice to use for the quality maintenance of such systems. We need checklists and mechanisms
that provide identification and knowledge of best practices to maintain consistency in performing testing
activities. We propose a test patterns-based technique which supports identification of test cases on the bases
of specification and domain analysis of system under test. We provide a set of test patterns that support Test
Driven Development (TDD) as well. We link misuse cases and security requirement to testing and provide
test patterns for testing cloud applications. We consider threats associated with cloud applications and make

use of case studies to evaluate and present results.

INDEX TERMS Test pattern, TDD (test driven development), misuse case, test last development (TLD).

I. INTRODUCTION

Secure software is the one that is developed on foreseen secu-
rity issues and then tested thoroughly at the end. Techniques
such as test driven development (TDD) focus on meeting the
quality needs in small cycles of development while Test Last
development (TLD) enforces the detailed testing after devel-
opment. We either use TDD (Test Driven Development) or
TLD (Test Last Development) approaches, each new update
in the development procedure of software introduces new
issues. These issues need to be focused while still main-
taining the quality of the system. Testers are continuously
engaged in identification of recurring common issues and
directing solutions across several softwares. Pattern based
testing provides models to handle recurrent situations in test-
ing such as, testing access control across different softwares.
Whereas, patterns are packages of reusable knowledge that
can be used to solve problem supporting reusability [1]. More
specifically, patterns are useful to define something that is
recurrent,and to describe repetitive behavior and their asso-
ciated solution [2]. In terms of testing, patterns are strategies
used to conduct testing which can be combined with existing
patterns. They are test templates or test patterns that have con-
text, intention, situation, action and some results in the form

The associate editor coordinating the review of this manuscript and
approving it for publication was Maurizio Tucci.

147060

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

of test case development, or test case execution. Previously
proposed approaches focus on effective implementation, pat-
terns of structure, method and ways of creating systems as
proposed in [1], [3] and [4]. All of these techniques help an
experienced developer in improving their system. However,
identification of loopholes that can cause system attacks
is more important. Furthermore, standardization needs an
approach which is experience independent, easy to use and
provides more problem specific solutions. To model a stan-
dardized solution a predefined issue modeling and solution
template is also required which will help to identify the issue
in system under consideration. Considering all these aspects
we propose an approach which provides detailed description
of pattern structure and how it supports testing. In order to
establish the discretion structure of our technique we have
considered the concept of misuse case [5], [6]. Misuse case
is a concept that is being extracted from use cases and
inherits all descriptive methods of the use case concept [5].
Use cases provide the scenarios of positive use of systems,
while misuse cases provide the opposite perspective. They
give information related to situation of use which should be
avoided [5]-[7]. The identification of use cases and their
associated misuse case helps the developer to identify several
threats at an earlier level of development else they may be
overlooked [8]. A related concept known as security use-case
is also common for identification of security requirements.

VOLUME 7, 2019

https://orcid.org/0000-0002-8209-6100

S. Siddiqui, T. A. Khan: Test Patterns for Cloud Applications

IEEE Access

Misuse case and security use case deliver two different
information that is, misuse case gives threat related infor-
mation and security use case gives information related to
mitigation. However both the information are interconnected
with each other for system security [6]—-[8]. Security require-
ments need identification and formulation of goal, risk and
requirement. These three actions are strongly related to use
cases and misuse cases for threat identification. On the other
hand, the information of threats helps to foresee future issues.
As we proposed in our test pattern technique one can train the
system against future issues by applying threats as test cases.
As misuse case rotates around threats identification and miti-
gation, they can support in testing too. As our proposed tech-
nique connects misuse cases, threats and testing, it provides
support to identifying test case on the bases of misuse case.
Test patterns, on the other hand, can also identify the misuse
case requirements or security requirements for the system
under test (SUT). This two directional application approach,
as proposed, makes it compatible with conventional testing
techniques and test driven development model(TDD). The
details of concepts are given in further section of paper.
In order to precise our research we have considered current
cloud related threats. We have considered threats related to
data, resource and interfaces [9], [10] and connected them to
test patterns. Furthermore, social engineering aspect will be
considered in the later research. This paper is the extension of
our previously published work [11]. In the previous publica-
tion, we have provided the over view of the proposed pattern
and its general template. This paper provides the detailed
distribution of proposed pattern, revised general template of
patter definition, associated test case, general formula to com-
pute expected test case, detail case studies and their findings.
Moreover, this paper provides the details of our finding and
the outcome of our research. We have used the case study
respective to demonstrate the usefulness of our approach

Il. PURPOSE OF RESEARCH

The quality of software is identified based on testing strate-
gies. Testing the software means analysis of the situation
which can cause its failure. To get the knowledge about state
of art about pattern-based technique, we conducted a survey.
Currently, several researchers use pattern from designing,
interface and defects to suggest pattern or strategies for test-
ing. We also found out that the concept of test patterns has not
been practically tested. Moreover, the description of actual
pattern is missing in the literature. Moreover, a bi-direction
solution is also needed.

As cloud software s are combination of data bases, plat-
forms and internet, we believe that cloud pattern is a good
source of identification of testing strategies in cloud software.
Currently, none of the research focuses on cloud pattern
base testing. Cloud patterns are a good source to analyze
system reaction in the presence of vulnerability. Moreover,
the vulnerability simulation on cloud environment acts as
an executed test case for it. Each misuse case (threat) is
hence connected to its associated testing. This will bridge

VOLUME 7, 2019

the gap between situation analysis and testing prediction.
Furthermore, it will also help in evolution of test patterns.
Currently we shall focus on security related issues. Further-
more, we shall simulate each situation and describe how they
can be used as a test case. Based on this information we
will explain how cloud pattern can be used for predicting test
pattern or testing strategies. Moreover, it will provide support
for both TDD and TLD.

The main aim of this study is to identify the relationship
between patterns of recurrent situations and testing strategies
based on them which provide a bidirectional application.
We are planning to identify the security situation which can
help us in identification of condition of testing. We plan to
connect misuse case to our approach. This connection will
support early identification of required testing. Moreover,
it will provide support to identify the associated threats of the
systems. Designing a system while considering its associated
threats will ensure secure development. This two-way con-
nection of our technique will make it applicable for both test
driven development and conventional test last developmental
approach. We found that, security threat is a test case of
security strength of system. On the other hand, it is the
misused security requirement which need to be considered
during development. We have used this to facilitate prediction
and identification of testing pattern based on cloud pattern.
Moreover, we have tried to bridge the gap between testing
and appropriate solution identification. In order to establish
research, we consider following research questions:

1) Are there existing patterns on the bases of which testing
processes are conducted?

2) What type of relationship exists between (1) data secu-
rity, (2) pattern in cloud and (3) test cases?

3) How does the threat documentation handle the misuse
case?

4) How does cloud security act as a testing strategy to
secure itself?

5) What test patterns can be identified from the study?

IIl. LITERATURE REVIEW

Patterns are explained as the packages of reusable knowl-
edge [11]. This knowledge can also be described as
common efforts to solve problems, which support reusabil-
ity [1]. More specifically the pattern in software is used to
define something that is recurrent, whether it is to describe
some repetitive behavior, problem and their associated solu-
tion, trends of occurrence of related items or structural recur-
rence [2]. C. Alexander has described patterns as the com-
bination of environment, problem and solution. In terms of
testing, patterns are defined as strategies which are used to
conduct testing. These strategies of testing are combined with
existing pattern and defined as test templates or test patterns
or pattern base testing. In all these techniques, the test is based
on some pattern which have; context, intention, situation,
action and some results in the form of test case development,
or test case execution. From the literature, it has been found

147061

IEEE Access

S. Siddiqui, T. A. Khan: Test Patterns for Cloud Applications

that such testing based on pattern, or test pattern can be
described into 5 classes; Security, GUI, Design, Defects and
Testing. The following paper is intended to describe them in
detail

A. SECURITY

To model security situation an extension of use case named
as UMLsec has been proposed in [12]. Observability of these
security situations help in identification of expected misuse
cases for the software. A general procedure to elicit security
requirement from the misuse case is proposed in [5]. Simi-
larly, in [13] authors have conducted a comparison between
misuse case and BIBIS technique. They have claimed that
the misuse case is an effective way to identify security
requirements. Early identification of security requirement
helps in identification of expected threats and helps in testing.
To address security issues which arise recurrently, the devel-
opers use patterns. These patterns are packages of knowledge
with reusability which help in dealing security situations [1].
These security or attacker patterns are described as the com-
bination of; <Goal, precondition, action, post condition >.
Goal is expressed as the reason for the attack. Precondition
describes the situation which needs to be present for the attack
to execute. Action is the sequence of event. Whereas, post
condition describes the situation after the attack has been con-
ducted [1], [14]. A classification survey of these pattern based
on attributes, objectives and quality parameters are proposed
in [15]. They have also described that the use of pattern at
designing level is difficult because detailed information of
attacker and vulnerabilities is limited. They have suggested
that, there is a need to bridge this gap for effective selection
of patterns. The security is compromised when the software
faces an attack. Identification of these attacks at an early level
can also bridge the gap of security pattern selection and helps
in testing the software [14].

Similarly, like another pattern base approaches through
exploitation of security or analyzing attacker patterns help
in identification of expected testing. As in [14] authors have
suggested a method of modeling attacker patterns and then
using them for testing. They have supported the security
modeling through UML state machine and identified attacker
patterns from them. They have examined two attacker pattern
XSS and SQL. These patterns are then used for testing. Simi-
larly, in another paper [18] authors have suggested to use the
XSS attack model based on vulnerability attacker patterns.
The patterns are modeled in the form of UML. The basic
focus of the technique is to define the test case. The authors
have suggested that the test input is executed and when it
matches the stored ones, the test is considered as positive.
On the other hand, in the case of negative response on the
test, the retest is conducted.

B. DESIGN

Designing patterns are supporting solutions for recur-
rent designing issues. Identification of appropriate pat-
terns at the class diagram level is the researchers focus.

147062

Several techniques have been proposed to automate the
process. A model-based technique to identify designing
pattern have been proposed in [3]. They have used seman-
tic query-enhanced web rule(SQWRL) language to identify
properties and their relation to search the expected pattern
with the help of extensible markup language(XML) base class
diagram. Testing of the right implementation is important for
overall software. A technique named as AAIJpattern test case
templateﬁAi (PTCT) is used for identification of structural
test case for these patterns. (PTCT) is described as reusable
test cases. Such technique has been discussed in [1]. Authors
have described that, PTCT can be used for identification of
implementation mistakes in designing patterns, which would
lead to ultimate software quality. They have also described
that, structural similarity among the software using a partic-
ular pattern could help in identification of recurrent errors.
The situations which leads to the bug will be the test cases
for ensuring the reliability of implementation.

On the other hand, the problem of anti-pattern arises when
the designed pattern is wrongly implemented in the program.
Anti-patterns are recurrent solutions for recurrent problems
but wrongly implemented [16]. A GUI base unit testing of
anti-patterns was proposed in the paper [17]. They have sug-
gested that anti—pattern-based testing techniques reduce the
testing cost.

C. guI

Graphical interactions of software usually contain some
recurrent interactions, known as Ul patterns. These Ul pattern
share similar implementation and can be used to identify
required testing requirements. UI Test patterns is defined
as a testing strategy which has some specific set of testing.
UI patterns are defined as a combination of goal, behavior,
action, checklist, and pre-condition [18], [19]. The definition
of these attributes, according to the paper, are expressed as
Goal representing mostly test id, Behavior in terms of input
pairs (i.e. valid or invalid), Action as the sequence of action
been performed for testing, Check list as the reason of testing
and Preconditions required to be fulfilled in order to perform
the testing.

On the bases of these Ul test pattern several researchers
have suggested similar techniques for testing software under
test. Such as, in [18] authors have explained that the similarity
among Ul patterns when used to conduct testing, the required
testing requirements were identified by modeling in Paradigm
DSL language. The models were then used to generate test
cases. In another paper [4] authors have suggested the use
of pattern base testing for mobile application. This technique
focuses on identification of pattern in terms of behavior
which it exhibits recurrently in android applications followed
by testing strategies associated with the test pattern. Further-
more, reverse engineering is used. An F'SM model is created,
and depth first search is used. The actual results are then
stored while exploring the behavior and is then compared
with the pattern expected behavior with actual results. How-
ever, no practical application has been considered. On the

VOLUME 7, 2019

S. Siddiqui, T. A. Khan: Test Patterns for Cloud Applications

IEEE Access

other hand, in [19] authors have described the use of PBGT
in android application and conducted a case study.

D. DEFECT

An understanding of the defects is the core requirement
behind testing. Developers current focus is to predict pattern
of defects in the project defect reports. In [20] authors have
discussed this current focus. They have extracted defects from
the black box testing using test reports. On the bases of 10
important defects they have defined 4 kind of frequent pat-
terns in them. These patterns describe the defects, situation,
severity level and relation among defects.

On the other hand, there is another research proposed in
paper [21] which conducted an experiment and used machine
learning and semi supervised learning to predict the defects.
They have examined that how in the absence of historical data
module of the software can be used to predict the defect of
the overall software. They have also claimed that sampling
with semi-supervised learning is better than the conventional
machine learning technique.

E. TEST PATTERNS
Test suit parameterization is a concept used to select reusable
testing strategies for testing. More specifically it is described
as test pattern. A more formal description for test pattern is
proposed in - [22] in which authors have described that like
designing strategies, testing strategies can also be defined in
the form of patterns. They have proposed a template of testing
pattern which is the combination of 9 elements;

<Name, Type, Scenario, Problem, Solution, Implementa-
tion, Solution, Implementation, Effect, Example>

Each pattern is described by name, its category in terms of
type, situation in terms of scenario, problem and its associated
solution. It also gives importance to defects which could
cause challenge during pattern implementation. Moreover,
it also considers the advantage and disadvantage of each
pattern. The pattern definition also describes the examples of
pattern and the relation of one pattern to the another.

F. CLOUD PATTERNS

Cloud computing external attacks are termed as threats or vul-
nerabilities. These external attacks have affected the strength
of cloud computing. A taxonomy of potential threats based on
4 layers; infrastructure layer, platform layer, application layer
and administration have been proposed in [23]. Authors have
described 23 threats related to these categories. These threats
are affecting the security of cloud. In order to handle these
threats several researchers have described patterns. These
patterns describe the occurrence situation of vulnerability,
their context and solution. Such as, in [9] patterns related
to firewall are proposed. Authors have described that fire
wall is the boundary for all data incoming and outgoing of
cloud. They have proposed Cloud Web Application Fire wall
pattern (CWAF) to handle SQL injection and another data
vulnerabilities. In another research proposed in paper [24]
researchers have proposed pattern of security virtual machine

VOLUME 7, 2019

repository and cloud policy management point. In another
research [25] authors have described countermeasure pattern
and thread patterns in cloud. They have described counter-
measure patterns for cloud provider to handle threats. Fur-
thermore, they have described the relationship of pattern and
counter pattern.

The term of misuse case is often used to describe negative
handling of systems. The threats of clouds are considered as
its misuse case. As in [26] authors have described cloud vul-
nerabilities in term of misuse case. They have described that
how an authorized user could create misuses case. They have
explained that an authorized user can also create a malicious
image. When this image is accidently being used by another
user it can create several misuse cases. They have claimed that
understanding of these misuse case can facilitate testing and
right implementation. However, among cloud vulnerabilities
data security is the most common malicious handling of data
in cloud as proposed in [9]. Among these cloud patterns the
security attack pattern related to cross site scripting and SQL
injection as described in [14], [27] have been used for testing
which are described in detail under security.

G. TEST DRIVEN DEVELOPMENT AND TEST LAST
DEVELOPMENT APPROACH

Test driven development is the way to start development
in the backward direction. Writing the testing strategies
first then develop code to full fill the criteria is the basis
of Test Driven Development (TDD). TDD is expressed as
Test First Development Approach(TFD)by authors in [28].
TDD supports the refactoring process of code development.
It also provides automatic support for the regression test-
ing. As codes are modified with each success or failed test,
a cycle of test then develops, and property provides a short
cycle of development [29]. On the other hand, the conven-
tional auditing of software involves testing the software on
completion. A generic term used to refer such method is
Test Last Development(TLD). TDD and Test Last Develop-
ment approach have some variations and similarities. Several
researchers have studied TDD and compared it with tradi-
tional approaches(TLD) to enlighten these aspects. A com-
parison of TDD with traditional developmental procedures
of SDLC which relies on TLD with respect to qualitative and
quantitative characteristics have been proposed in [23]. They
have expressed that TDD have major support of reusability.
Whereas, flexibility, effectiveness, risk reduction is highly
improved under TDD. Moreover, the complexity and rework
cost have been reduced while using the TDD. The productiv-
ity and response to stakeholder need to have a better response
in TDD as suggested in [9]. Moreover, they have stated that,
TDD have long term benefits regarding defect density. On the
other hand, in another paper [28], authors have compared
TDD and TLD on the bases of branch coverage, mutation
score, quality of test case and test code for the purpose
of test quality. They have identified that these dimensions
have shown that there is no relative difference between the
two approaches. Moreover, they have additionally stated that

147063

IEEE Access

S. Siddiqui, T. A. Khan: Test Patterns for Cloud Applications

TDD have shown more biasedness towards positive test cases.
However, the effectiveness of the testing is more influenced
towards negative test cases. Since the TDD is a development
approach so this deviation does not affect the actual motive of
testing. Similarly, in [30] authors have compared TDD with
TLD approach and identified that there is no enhanced differ-
ence, especially for external qualities there is no deviation.

TDD is an emerging field. It depicts that it has variation
in its views about the two approaches. TDD helps building
behavior based test that model system. On the other hand, test
last implement test which is executed in the last. However, it is
evident that both the approaches have benefits. The research
which we have conducted provides benefits to both the TDD
and last approaches. As user-oriented analysis of software
help to identify user perspective base needs it also supports
the understanding of the expected threats. The application of
proposed techniques will support in establishing requirement,
in turn they will help in identifying the use case and associated
misuse case. As misuse case give information on how a sys-
tem can be used wrongly, they also provide supported infor-
mation on expected threats that can affect the system. These
threats in turn are connected to test pattern thereby, identify-
ing test cases and represents a forward approach. On the other
hand, as we already have the test pattern with associated test
case, these test patterns guides the required systems need and
functionality while considering the threat. These functionali-
ties will then be needed to implement software with strength
against the associated test. Hence in this case it supports the
Test First approach. Our approach has an additive advantage
as it is considering the negative test cases which are the core
for the testing procedure efficacy.

H. MISUSE CASE

Using the system with negative intentions or deliberately
accessing the information or service that is out of the domain
of user access is considered as misuse or abuse case of system
usage. The understanding of the user accessions and rights
support the developer to embed the required security measure.
A more formal method to address the security measure is
security requirements [31]. All of these concepts are inter-
related because they support each other in their development.
There are several methods proposed by researchers for defin-
ing use case, misuse case and the methodology of extract-
ing security requirement through their help, as proposed
in [5], [7]. In [32] authors have proposed an approach based
on decomposition of misused case to support functional and
security requirement incorporation. They have discussed the
threat and mitigation relationship to support integration of
requirements. In [6], [33] authors have used the term of abuse
case to describe the threat based on use case (misuse case)
for security requirement elicitation. They have discussed that
presence of such abuse cases support designing, development
and above all testing. Misuse case also supports the analy-
sis of quality of the system. In [34] authors have proposed
misuse case-oriented quality requirement engineering. Their
proposed model uses the concept of misuse case to identify

147064

quality requirements along with the security requirements.
They have explained that the documentation of threat in the
form of misuse case not only supports identification of issues
but also provides support to develop preventive measures.
Misuse cases are executable in the absence of the safety mea-
sures, where one can only describe the mitigation measures if
he or she is aware of risk/threats associated with the system.
Similarly, misuse case provides support for risk management
systems. As in [35] they have described the association of
misuse case for security risk management. They have dis-
cussed the model for information system security risk man-
agement for the explanation of misuse case. The reference
model as described in the paper shows the relationship of risk
management, event, threat, mitigation etc. with each other.
They have discussed that the integration of both concepts
enhances the use. Majority of the associated misuse cases are
similar so they can be used across projects. This similarity
is because they depend on the threat associated with the
system. Since threat for similar system remains the same,
the reusability of misuse case is enhanced. Such e-commerce
and m-commerce websites have threats which are common
in each website application. They usually involves attacks for
instance, flooded system, get privileges, steal critical infor-
mation and propagation of malicious code [5]. As misuse case
provides supports for threat information, they are a useful
source for their testing purpose. One can test the misuse
cases on to the system to check the system strength against
the expected mishandling. To define testing based on misuse
case it is needed to use misuse cases as executable testcases.
A similar approach was proposed by [36]. Connecting misuse
case with information such as attack pattern or attacker iden-
tification deliver results in two directions. As in our approach
the execution of the threat as the test case supports the testing.
On the other hand, as the use of misuse case rotates around the
threat identification and threat mitigation, they can support
testing. Since the test pattern approach as we proposed can
be executed in the presence of threat information, one can
identify the expected testing need for the system if he has
knowledge of the misuse case. This will be beneficial for
the developer and the tester as both can link the testing and
the requirements on the bases of test patterns. This two-way
connection will also provide support to TDD and TLD as
discussed previously.

I. DISCUSSION AND COMPARISONS

The limitation of security pattern base technique is that,
it does not consider other security vulnerabilities. Further-
more, it only considers those test cases which give posi-
tive results. Moreover, it does support testing by providing
information of frequent attacks; however, little information
is given about the test strategies and the model which they
are using for automatic testing [14]. On the other hand,
there are many designing patterns such as strategy, factory
etc. which are not considered in the design pattern bases
testing [1]. Moreover, this approach is based on PTCT which
needs full understanding of code and structure of software.

VOLUME 7, 2019

S. Siddiqui, T. A. Khan: Test Patterns for Cloud Applications

IEEE Access

Hence, the technique is more applicable for statistical anal-
ysis but not for dynamic analysis. Contrary to design bases
testing GUI pattern base technique does not need this infor-
mation. However, it also has some limitation. According
to [18] most of the errors are related to searching and the
relationship between GUI elements however, there is little
information on the selection criteria for this output find-
ing. In order to create general point of view independency
is required; however, technique depends on paradigm base
model for its results. The actual strength of technique is
visible when it is experimented in the real world; unfortu-
nately, the given research is limited to the students’ practices.
None of the above techniques have considered the defects
which are the core part of testing. However, in paper [20]
authors have identified defects and predicted testing. Unfor-
tunately, the limitation with this technique is that; it uses the
ODC-BD classification techniques for the classification how-
ever, it does not provide the causality relationship between the
defects. Moreover, it also does not provide any information
that how it can help in predicting the defects. Secondly,
it depends on the historical data that is usually difficult to
find.

The historical data limitation is being covered by technique
proposed in [21] by moulding the current software under test
module to predict defects of overall software. However, this
technique acquires the data from the open source which chal-
lenges its validation for the industrial use. Furthermore, they
have applied a random sampling for defects which require
sampling of each individual with equal probability. This will
further affect the importance of right selection of sample
important for appropriate estimation.

Lastly the technique proposed in - [22], unfortunately does
not describe its practical use. Moreover, to support the idea
strong literature review is needed which is limited in the

paper.

IV. OUR APPROACH

In this section, we present our approach of test pattern and
describe its flow, resultant patterns and the associated test
cases. Furthermore, this section provides details regarding
approach meta-data. We shall also present the details of a gen-
eral formula which we have developed to calculate expected
number of test cases under proposed patterns. The details are
discussed in the following subsections.

A. APPROACH FLOW

We consider cloud vulnerability as proposed in [9], [10] and
suggest a general structure or test patterns. Our approach
follows 4 phases; feature extraction, mapping, testing and
verification. Each phase provides input to the next phase
in the increment. When this method is applied to the TDL
approach, the input is the implemented software and its
specification. The approach on its execution will provide the
enhanced software. On the other hand, when approach is
applied as TDD it will provide enhanced specification and
secure system. The overview process detail is shown in fig. 1.

VOLUME 7, 2019

Domain J Specification ‘ Available
Properties - [_— Mitigation
__TToRe —

\ —
\ — N
Feature /‘/// Test Patterns

/ Extraction / ——

Surength®

1denti® rentity

Features Of Software
Under test

Propﬁ/m ProjecTc
/ /
/ Ny
) Mapping y:

Associnte \—miif‘/ SupLon
Applicable “
Possibilities v

/ V4
/

Feature of pattern

i Verification

\
Execute
|

Total Test Cases to
be Executed
Required
Mitigation

FIGURE 1. Approach flow showing stages and connection.

General Formula

(Calculate

Weakness

‘ Applicable Patterns

\—-/ Testing

Deliver

Security
Requirement

s
‘ Event ‘J-Eﬁde Impact }» on_— Resources

7

case as Case
:
sfrength —
|
Tetpaton | [
Lsuppo
Test Case

FIGURE 2. Test pattern meta model.

The approach can also be executed iteratively as it supports
regression testing. The detail of the approach is explained in
the following section:

1) FEATURE EXTRACTION

This phase takes the domain properties, software specifica-
tion, implemented software specification and pattern infor-
mation. These inputs are analyzed in detail and the feature
of software under test and the pattern being considered are
identified in fig. 1.

2) MAPPING

Identified features are then projected to mapping phase fig. 1.
The mapping phase takes the unique feature of patterns and
the software properties and then identifies applicability of
pattern to the software under consideration. The possibilities
in which a feature/resource can be affected is governed by
the sub categories associated with test pattern fig. 2. The
subcategories are also modeled in different ways and depend
upon the type of features which are provided for pattern
application.

3) TESTING

In this phase, we consider the general formula to calculate
the expected number of test case and the output from the
previous phase. The phase provides the total test cases and
identifies the expected mitigation. The expected mitigation
are the possibilities in which a system can be affected. The
possibilities of attacks are the test case to be executed to

147065

IEEE Access

S. Siddiqui, T. A. Khan: Test Patterns for Cloud Applications

ensure the strength of the system as shown in fig. 2. If the
framework is applied on the TDD approach, then it will stop at
this stage or else proceeds to the next phase as shown in fig. 1.

4) VERIFICATION

When the test case is executed the actual level of system the
strength is identified. Strength level identifies the missing
mitigation and required mitigation. At this stage a system
which fails on each attack, expresses its limitation against
the pattern. In case of already completed software, this phase
supports feature enhancement and supports regression testing
for next iteration

B. META MODEL OF TEST PATTERNS

Test pattern also has association with the concepts associated
with threat cause and mitigation. These concepts provide
support in emergence of the test pattern concept. In order to
show how they are related with each other we have proposed
the meta-model of test pattern. The detail of the model is
explained in the following section:

Situation: Situation is the state of the system in which it is
currently executing. It can be a safe state, or it can be risky.
The situation of use defines the approach by which the system
is addressed. In a safe state the system has or will associate the
security requirements. On the other hand, the risky situation
of use identifies the negative use of the system.

Security requirement: To demonstrate the required secu-
rity parameter security requirements are associated with safe
state. In security requirements, there are 5 basic steps; crit-
ical asset identification, security goals, threat identification
of goal, risk and finally the requirements [5]. The security
requirements as described in the security goals models the
security use case. Security use case models the mitigation for
the threat as shown in fig. 2.

Security use case: It is preventive measure of misuse
case. Threats are prevented through security use cases which
defines the preventions against misuse.

Risk: Risk is defined in terms of events and the impacts.
Event which is executed have a positive or negative impact
over the system resource. The resource is the system proper-
ties which it uses or provides.

Events: Events are the action of attacking the system.
These actions when associated with threats are expressed as
misuse case. On the other hand, misuse cases are used to
describe the threats.

Impact: Each event when executed has some positive
or negative impact. The event impact is on resources. The
resources are the system properties used or provided.

Resources: The resources are the properties system deliv-
ers or the resources which it uses.

Threat: Threats are the attacks which affect the system.
Each event when executed has associated threats which sup-
port the accomplishment of the risk. These threats are indi-
cated through the misuse cases. These threats are further
sub divided into sub and super threats. The division is pre-
viously explained in detail in the section of test pattern.

147066

Resources which have susceptible properties are vulnerable
to these threats. Only those resources which are vulnera-
ble have negative impact on them during malicious event
execution.

Test pattern:Test pattern gets the input from the threats.
Test pattern supports the threat identification. The threat
identification in turn supports the misuse case definition and
explanation. The bi direction information illustrates the 7DD
and TLD.

C. OVERVIEW OF PATTERNS
We study 37 threats [9], [10] for development of test patterns.
In these patterns, we have taken only those which are easy
to achieve in the lab and are related to data, resource and
interface. The patterns which we have not considered are
malicious insider, privacy breach, natural disaster, side chan-
nel attack, reliability of data calculation carried out, misuse of
infrastructure, hardware theft, migration of virtual machine,
breach of contractual rights, sanction due to political issues,
unknown risk profile and other social engineering attacks.
The attacks which we consider are those threats which pos-
sess describable properties, which express their occurrences
or non-occurrences and have manageable cost of testing and
visible outputs list given in Table. 3. These threats are further
subdivided into main and sub categories of threats. Sub cate-
gory threats are low level attacks which cause threats of asso-
ciated patterns and they are also termed as low-level risks.
These attacks include Denial of Service (DOS) attacks, unen-
crypted interfaces, session hijacking, resource contention,
data interruption, target modification, access limit and trust
level on shared VM environment, hypervisor compromises,
insecure interfaces, shared technology issue, and discon-
tinuity of external resources, incomplete transactions etc.
These threats cover a broad spectrum and are associated with
host, platform, application, infrastructure and administration.
Threats remain the same; however, they have some variation
in parameter of effect at different levels. Examples include
(DOS) attacks at network level which will have a similar
effect at application level and session hijacking at application
have impact at the data level and it also depends on data level
issues for its successful completion. Moreover, the subcat-
egories may appear as sub categories in multiple patterns.
The multiple association is due to their multi-dimensional
usage across attack execution. We present our categories, sub-
categories, positive and negative situations of use in Table. 3.

Template for each pattern must contain the following
attributes:

Name: It is used to identify test pattern.

Defect Type: It indicates types of defects; after effects of
attacks are described as defects types.

Test Pattern Type: It includes type of testing and the
relationship of test with the development level.

Goal: What testers intend to achieve from this type of
testing.

Sub category: Sub category threats are the low level
attacks which cause the threats of the associated patterns.

VOLUME 7, 2019

S. Siddiqui, T. A. Khan: Test Patterns for Cloud Applications

IEEE Access

TABLE 1. Test case 1.

Test case Example

Input 1 Run Select * data

Output: Data Output: Data

Input 2 Run Malicious Select Query
Output: System response Generate no alert
Output: Data System Critical Data
Expected OutPut | Data

Actual Output Data

Success scenario | Expected = Actual

These attacks are the basic reason which lead to the pattern
threat.

Situation: Actual issue to be tested (i.e. situation of use).

Target: Issues that are expected to be revealed, through
targeting system part and system responses.

Action: Sequence of action needed in order to perform
the test. These actions are the base for each subcategory
in the form of ACTION 1 and ACTION 2. Otherwise if
the actions for subcategory interact with each other in the
joint fashion they are considered as one set of consolidated
ACTION attribute.

Success criteria: Arrive at required attack.

Under each pattern we execute test case. Those test cases
are governed by some input, output, actual output, success
criteria. The result of success criteria will define the success
of the test case. The general template consists of following
elements:

Inputs: Number of inputs vary depending on the required
field.

Expected Output: How the system should respond or
Expect messages.

Actual Output: Required mitigation, required responds or
Expected message.

Success Criteria Actual output = Expected Output

The number of test case for each pattern depends on num-
ber of possibilities in which its associated subcategories can
be formulated. The detail about the testing under pattern is
given in other section. To test our pattern, we run the test
case. In the test case as shown in the Table. 1, we first
access the system, select the required target field and then
we choose the required data query. We first choose the valid
select query to get data status and check the system response.
Then we again select the required query. This time we have
selected data non-valid query, executed the query, compare
our expectation.

1) VOLUME LIMITATION

In the volume limitation attacks the system resource limi-
tation is targeted.When resources and the user relationship
when get unequal, system faces issues. Strength of system is
identified by the limit of the numbers of users it can support
over minimum resource availability. A user request which
acquires all the resources of the system leads to unavailability
of its services. In the case of volume limitation attacks DOS
plays an important role to achieve such system failure hence

VOLUME 7, 2019

TABLE 2. Access limit and trust level on shared VM environment.

Name Access limit and trust level on shared VM envi-
ronment

Defect types User management, Access rights control, Access
control

Test pattern Non-functional level after the cloud application

is fully functional.

Test access limit for users. Test System manage-
ment for user rights. Test the control mechanism.
Resource usage limit functionality, system re-
sponse to unauthorized user for critical data,
Authorized user can access unauthorized data
and can modify it, Malicious user can manipulate
critical shared data.

Check the user rights division on shared critical
data. Check the user access to critical and shared
data. Check the authorization level for critical
data modification.

GOAL

Sub category

Situation

Target

Actions

« Access user profile: As different users and
check response.

o Access critical data: as different users and
compare the two access authorization lev-
els.

« Modify critical data: as different users
and compare the two modification levels
rights.

Success criteria

we consider it as key lower level attack. As it populates band-
width with request from one or more suspicious users. As a
result, other legal user is unable to get the system resources.
Such attack can affect the system if it lacks system ability to
provide alert on reaching resource limitation. Moreover, Lack
of control over number of request limit from one user could
lead to attack.

2) TARGET MODIFICATION (INTERCEPTING AND,
MODIFYING MESSAGE

In the following test pattern or target manipulation required
service are temper leading to malicious services. Malicious
user induces the unwanted services, alerts or other web-
sites. In the worst case it induces the malicious codes which
adversely affect the client users. XSS (cross site scripting)
scripts provides a source to achieve such attacks. Malicious
hypertext markup language strings support XSS (cross site
scripting) and other similar vulnerabilities. All these attacks
are inter connected to achieve the issue of target modifica-
tion (intercepting and, modifying message) therefore they are
considered as subcategory of this pattern. The outcome of
the defect is visible in the form of defect types. The problem
which leads to such defect is the proper user query analysis
before executing it.

In this test pattern required services are tempered leading
to malicious services. Unwanted services, alerts or other web-
sites are induced. In the worst case the malicious codes which
are being induced can adversely affects the client/user. XSS
scripts provides a source to achieve such attacks. Malicious
html strings support XSS and other similar vulnerabilities.

147067

IEEE Access

S. Siddiqui, T. A. Khan: Test Patterns for Cloud Applications

All these attacks are inter connected to achieve the issue of
target modification (intercepting and, modifying message)
therefore they are considered as subcategory of this pattern.
The outcome of the defect is visible in the form of defect
types. Such defects are possible because of improper user
query analysis before its execution. The pattern is shown in
the Table. 9.

3) SESSION HIJACKING

In the following test pattern of session hijacking, brute force
profile login, access after session expiry, cookie data access
are the low level attacks which lead to the required attack.
Hence, they are subcategory. The outcome of the defect is
visible in the form of defect types. Lack of system alert in
the presence of cookies are the basic cause for such problem.
If such alerts are there the user can deny the auto saving
of passwords and other sensitive data. System refreshing
mechanism after expiry of session could control this issue.
Pattern is shown in Table. 10.

4) ACCESS LIMIT AND TRUST LEVEL ON SHARED

VM ENVIRONMENT

In the following test pattern of access limit, resource usage
limit functionality, system response to unauthorized user for
critical data, are the low-level attack hence they are subcat-
egory. The outcome of the defect is visible in the form of
defect types. The system is being affected by the following
threat because of lack of user level access rights implemen-
tation. This does not maintain any support for the limit of
data been accessed by the users. Moreover, system needs a
mechanism to define different classes of user. The pattern is
shown in Table. 2.

5) HYPERVISOR COMPROMISES

The management of user and their profile are the
key factors for managing authorization in SOA system.
Increasing demands of the data integrity control enforces
proper server and client rights and access control manage-
ment. An improper and weak system can cause the propaga-
tion of data corruption over the network. A strong hypervisor
is needed to avoid such issues. Lack of intrusion deduction
and prevention are the source to compromise the hypervisor
and could support attacks by virus or adverse data corruption.
Rootkit similar other software provides support for such
attacks. Therefore, lack of intrusion deduction, prevention
and rootkit infection are the subcategory. Defect type in the
pattern indicates the actual issue that can cause the attack on
the system such as, improper intrusion detection as shown
in Table. 5.

6) DISCONTINUITY OF EXTERNAL RESOURCES

The system response on the discontinuity of the supporting
system is important for the system security in terms of its
integrity of data and properties. The following threat can be
achieved if connection is lost before saving information, data
server connection lost during storage, incomplete transaction,

147068

hence these are the low-level attacks which combine to reach
the attack therefore they are considered as subcategory. The
lack of monitoring of amount of data been written or manipu-
lated leads to threat associated defect types which come into
existence due to above mentioned pattern success as shown
in Tablel 4.

7) INSECURE INTERFACES

Insecure interface is created because of different loop holes
in the interface. These loop holes are considered as low-level
threats for the interface security. Hence, they contribute to
overall insecure interfaces. Visible passwords, lack of data
flushing after each use, lack of control over API’s use and data
access limit, lack of logging mechanism for each usage are
those low-level threats that lead to insecure interface hence
they are considered in subcategory. Defect types illustrates
the lack of proper implementation of interface security mea-
sures. Pattern is shown in Table. 12.

D. TESTING UNDER TEST PATTERN

Proposed approach covers the security aspect of the system.
Subsequently, all testing conducted under the approach are
non-function testing. Each pattern provides variety of test
cases to administer the associated pattern. All the proposed
general test cases are governed by categories, sub-categories
and associated actions as proposed in each pattern. The test
case is designed considering the possibilities in which a sub
categories could be modeled as a test case. The number of
test case of a SUT is identified by availing pattern and their
associated availing possibilities. The details of possibilities
are as under:

Data security pattern:

o Access basic information.

« Generating request for change of data.

« Not Notification on change of data or request of data.
o Lack of feedbacks.

Session Hijacking:
o Lack of data flushing after logout.

¢ Weak mechanism of refresh.
« Brute force access.

Insecure Interface:

« Visible passwords or other critical data that needs to be
kept hidden.

o Lack of refresh mechanism.

o Lack of state refreshing.

Access Limit and trust level:

« Change user authentication level when not needed.
« Illegal rights manipulation to modify data.

« Illegal handling of data by unauthorized users.

« Modify data with wrong intention.

Volume Limitation:

« Misleading user request.
o Over usage of illegal access to system to reduce user
access limit.

VOLUME 7, 2019

S. Siddiqui, T. A. Khan: Test Patterns for Cloud Applications

IEEE Access

TABLE 3. Pattern mapping overview.

Category Sub-Cat Positive/Negative use

Data security | SQL injection,

testing, Data | updating without Legal access of required data to avail system service.
interruption back up Access data for illegal use by exploiting system services.

Modify data to reflect new update.

Volume limi- | DOS attacks,
tation Connection Multiple users accessing system.
flooding, Using unavoidable service by multiple users at the same time.
Resource usage Generating multiple request to affect system integrity
max limits. Authorized user (un)able to access the system.
Target XSS Attack,
modification | Redirection, Participate in multi user activity
(intercepting invalidated Redirecting system to affect integrity of system, trust of users, posting
and input with Html infected reply to infect associated users.
modifying encoding disable.
message)
Session Brute force pro-
hijacking file login, Access Authentication mechanism.
after session ex- Keeping session information, transaction tracking, keeping track of
piry, Cookie data states during long interaction.
access Stealing user information to hijack user account, to manipulate user
resources and to generate illegal act on behavior of user.
Access limit | Resource
and trust level | usage limit Different user rights and access levels, sharing file, data and informa-
on shared VM | functionality, tion on common resources and shared files, Multiple files and coor-
environment system response dinated users and their access rights.Data access levels with different
to unauthorized access controls.
user for critical User role enforcement management.
data Authorized user with unauthorized data access for modifying, mali-
cious user can manipulate shared data.
Discontinuity | Connection lost
of external | before saving Back up storage and long transactions.
resources information, Center data point.
Data server A legal user is trying to store information but suddenly internet
connection lost connection is lost.
during storage, A user has used the system success fully however, the data center fails
Incomplete to store the data.
transaction.
Hypervisor Lack of intrusion
compromises | detection and Running plug-in on servers or server driven installation of software
prevention, needing antivirus independent environment.
Rootkit, Multiple format files uploading and sever file corruption or virus attack
Data integrity infect the other guest user.
verification

An admin access with a malware component, breaching the security
and run malicious code on root system
Intrusion to manipulate all files on server and client system.

VOLUME 7, 2019

147069

IEEE Access

S. Siddiqui, T. A. Khan: Test Patterns for Cloud Applications

TABLE 3. (Continued.) Pattern mapping overview.

Category Sub-Cat Positive/Negative use

Insecure Visible

Interfaces passwords, « Login interface to access profiles.
Lack of data « Keeping track of information for specific time duration to improve
flushing after user experience.
each use, Lack o Third party interaction for payments or SOA architectures.
of control over « Unencrypted password can lead to access with unauthorized intention,
API's use and Non-Flushing of data fields lead to unwanted access to system. Over
data access limit, provision of system control through the API’s to the user, compro-
lack of logging mises the system security by allowing access to critical data.
mechanism for o Lack of logging mechanism, unwanted third party access
each usage.

Discontinuity | Connection lost

of external | before saving « Back up storage and long transactions.

resources information, « Center data point.
Data server e A legal user is trying to store information but suddenly internet
connection lost connection is lost.
during storage, o A user has used the system successfully however, the data center fail
Incompl.ete to store the data.
transaction.

TABLE 4. Discontinuity of external resource.

Name Discontinuity of external resource

Name Discontinuity of external resources.

Defect types Media connection loss, Network connection lost while data updating, Data management server
connection lost while updating information.

Test pattern Non-functional level after the cloud application is fully functional.

GOAL Check system response on connection lose age.

Check system response on incomplete data transaction.

Sub category

Connection lost before saving information, Data server connection lost during storage, Incomplete
transaction.

Situation A legal user is trying to store an information but suddenly internet connection is lost, A user have
used the system successfully however, the data center fail to store the data.

Target Test system transaction logging and roll up procedures. Test system response to user on incomplete
request. Test system response over data center failure.

Action

« Initiate the saving process and in the meanwhile shut down the system during saving.

« Restart the system and resigning the user. Check if the system stores the data or not.

o Check if the system on restart inform user about the incomplete data storage if occurred.
« Use the system, make changes in it and then save it and log out.

« Fail the data center between logging out and saving.

o Check weather system informs about the user to the problem through message or email.
¢ Check whether it automatically saves the data or not.

Success crite-
ria

System lost the data updating from the user side, System does not inform the user about the problem
and user assume the success of its process.

Hypervizor Compromises:

« Power supply discontinuation.
o No back up mechanism.

« Virus or corrupted data prorogation.

. - No notification mechanism.
Discontinuity of external resource: *

o Lack of retry mechanism.
o Lack of feedback mechanism on loss of data.

On the bases of this information we have proposed a
formula which support calculated the total number of test

147070 VOLUME 7, 2019

S. Siddiqui, T. A. Khan: Test Patterns for Cloud Applications

IEEE Access

TABLE 5. Hypervisor compromises.

Name Hypervisor Compromises.
Defect types Intrusion detection management, Cloud Vir-
tual environment management.

Test pattern Non-functional level after the cloud applica-
tion is fully functional.

GOAL To test the cloud virtual environment man-
agement. To test the control of propagation
of attack. To test the cloud effect of server
attack on others.

Sub category Lack of Intrusion detection and prevention,
Rootkit, Data integrity verification is absent.

Situation Server file contain malware code(Shellcode)
file hence infect other systems.

Target Check host system security response toward
rootkit attack. Check host system response to
ward intrusion.

Action

« Access the system. Log in as different
groups of user profile.

o Access data: Shared and unshared re-
sources as different users.

« Place malware files: At server and
client system.

e Check system intrusion detection
software response on.

Success criteria | Virus or malware is propagated on all sys-

tems.

cases to be executed. The details are given in the following
section.

1) GENERAL FORMULA FOR EXPECTED TEST CASE

In order to compute the associated test case for each pattern
we propose the following formula. We propose that for each
pattern test case there are two variables which determine
its test case to be executed. The two variables are; availing
sub category and associated possibility. Possibility means
number of ways it can be achieved or demonstrated. Two test
cases one from the negative class and one from the positive
class are associated with each possibility. The summation of
all associated possibility test cases is equal to total of the
test cases in a sub category. Whereas, summation of all sub
category for a pattern is the total number of test cases under
that pattern. Sum of all the pattern test case describes the total
test case executed on a system.

SC =Y AP = 1"AP x 2(AP) 1)
TSC =) _SC = 1"SC(SC))
P =" AP = 1"TSCAP) 3)

V. EVALUATION

A. OVERVIEW OF IMPLEMENTATION

In order to demonstrate the applicability of our proposed
technique, we conduct case studies of real time projects.
We analyze system requirement specifications and extract
features of each project after analysis. The features define
requirements, management, abilities and core properties.
These properties include attributes such as, authentication,

VOLUME 7, 2019

managing multi users, multiple file, feedback system, back up
storage and reboot mechanisms. We also perform test pattern
analysis along with the feature analysis. Over all approach
is shown in fig.1. The specific test cases are governed by
associated possibility and general template for test pattern test
case. We have applied our approach to two types of systems
fully developed and underdeveloped.

1) EXPECTED MINIMAL TEST CASE

TABLE 6. General test case.

Pattern Subcategory Possibilities Expected
total number Test cases

Data security and in- | 3 5 10

terruption

Volume limitation 3 1 2

Target modification 2 1 2

Session hijacking 3 5 10

Access limit and trust | 3 4 8

on shared VM envi-

ronment

Hypervisor 3 3 6

compromise

Insecure interface 4 5 10

Discontinuity of ex- | 3 3

ternal resource

Total SC=23 AP =27 TC=54

2) DOMAIN OF PROJECTS SELECTED

We have divided website usages into four categories. Cat-
egories are; social network, data storage, business manage-
ment, information management and information dissemina-
tion. We have selected one project from each category repre-
sented in Table. 7.

TABLE 7. Domain and cases.

Domain System

Information management Moodle

Social network Facebook

Business Management Pocketdesk

Data storage Dropbox

Information dissemination | www.cochraneventilation.com

Moodle, Facebook, Dropbox, www.cochraneventilation.
com are fully functional systems. Where as, Pocket desk
under developmental phase.

B. CASE STUDY 1
1) DOMAIN

Information management and the website we have considered
is Moodle.

2) OVERVIEW

Moodle provides its user the information management.
It manages multiple user and organize roles. Privileges are
allocated on the bases of roles. Current version of Moo-
dle which is been considered is a course management sys-
tem. System has three types of users; teachers, students and
the administrators. Teacher can avail the feature to create
a course, upload documents, modify document, enroll stu-
dent, generate email to all student. Teacher can manage

147071

IEEE Access

S. Siddiqui, T. A. Khan: Test Patterns for Cloud Applications

multiple subjects. On the other hand, students can generate
a request to enroll in a subject. Students can download the
file. Each user manages its own account.

3) PROPERTIES / FEATURE/SERVICES PROVIDED

o Login

« Role management

o Access limit management

« Information dissemination Dashboard

o Uploading /downloading

« Email propagation

Feature: Login System provides individual login for each
user. Teacher and administrator have privileges over the fea-
tures. Teacher can manage multiple subjects under its profile.
Student can access resources from the shared content through
their profile login.

Feature: Role management System offers three major
roles; teacher, student and administrator. Each role has differ-
ent level of privileges. Privileges determine the access rights
of the roles. Administrator is responsible to manipulate the
role of teacher or student against any user.

Feature: Information dissemination Dashboard Admin
have the access to all the data of the system related to his
employee profiles. Admin can change any data from the dash-
board or reset the user or passwords without any additional
authentication.

Features: Resource management, Uploading /download-
ing System provides a resource management for its priv-
ileged users. Teacher can upload, download files. These
file on later bases used by other resource such as
students.

4) ASSOCIATED THREATS

« Abusive use of Role: Role can be reset by admin.

« Abusive use of Resource: Can upload malicious file or
can access critical data especially in case of teacher role
can access all students ids.

o Unencrypted password: As usual admin provided pass-
word are designed on the bases of organization id’s
and if remain unchanged by user can be easily
accessed.

« Insecure Interface: Open access to user profile without
additional authentication.

o Data security issue: Password or user name reset does
not generate any notification to the user. Multiple time
access to the user profile does not generate any noti-
fication. No notification of system been login through
different system.

« Brute force access: As passwords and Username are easy
to predict.

« DOS Attack: As server gets hang up on multiple users
during exams as many student or teachers are access
resources.

o Unawareness of critical data manipulation: In term
of admin all information is accessible and in

147072

terms of teacher all student information including pic-
ture or phone number is access able.

« Malicious content propagation: no filter on data been
uploaded. Malicious file from teacher or student can
affect multiple systems.

« Backdoor installation or uploading possible: As no file
filter is there one can upload a hidden malware.

« Malicious content uploading. As no file filter is there one
can upload a hidden malware in simple word or jpg file.

« Malicious content propagation: As files can be upload
or access if delivered as share data

« Unawareness of change: No notification or email system
for data modification or network connection lost feed-
back is there.

5) ASSOCIATED PATTERN
« Insecure interface
« Data security issue or data interruption
o Access limit and trust level on shared VM environment
« Volume limitation
« Discontinuity of external resource
« Hypervisor compromising
o Session hijacking

6) ANALYSIS
We have applied 18 test cases and conclude as following:

« Data security issue and Target Modification issue: Vul-
nerability does exist as feedback mechanism is missing
so updating is not notified. Anyone with knowledge of
user id and previous password can change the profile.
No notification mechanism; user is unaware of changes
in his profile. Vulnerability exists. User passwords are
not managed properly hence and easily be predict and
users profiles can be accessed.

o Insecure Interface:Security of password encryption is
maintained.However, user profile give full data on
login lack of two-factor authentication vulnerability is
there.

o Session hijacking:Session are properly refresh after
2 min of inactive interaction.

o Hypervisor compromising: Weak share machine and
data scanning.

o Access limit and trust level on shared VM environment:
vulnerability is there. Admin user can edit profile with-
out the information of user. Users have less control over
their own data as compare to admin. Lack of notification
can results in to loss of important contacts in the list.
Vulnerability is present. Lack of communication of data
updating can cause data inconsistency across different
users. Vulnerability is there role management should be
model with detail authentication procedure. Rights of
different users should be mange to maintain security of
critical data.

e Volume limitation: Vulnerability is there system is
unable to handle too many quires.

VOLUME 7, 2019

S. Siddiqui, T. A. Khan: Test Patterns for Cloud Applications

IEEE Access

TABLE 8. Volume limitation.

Volume limitation

Non-functional level after the cloud application
is fully functional.

Test the system failure limit on bandwidth vol-
ume. Resource management. To check the limi-
tation of amount of user that can be functional at
one time.

DOS Attacks, Connection flooding, Resource us-
age max limit.

Large number access to SOA system can lead to
over flow of the user limit, leads to problem that
authorized users are unable to access their data.
Long processing time also effectse SOA system
response. Redirecting to wrong webpage can lead
to several issues.

Subject the system to either ping attack to prevent
DOS attacks in the future or to maximum volume
to test its failure limit. Test by applying means to
change system response. .

Defect types
Test pattern type

GOAL

Sub category

Situation

Target

Action

Access the url.

Ping the website: To get IP Address

Get the response: In this case IP Address.

Choose the request type.

Chooses the number of request.

Ping the website againwith: Use IP Ad-

dress and concatenating space, -t (i.e. com-

mand for ping the system until stops), -

1 (i.e. command for sending buffer size),

space, number of packet data.

o Get the response: measure performance
and efficiency/ response time/through put
after the attack.

e Compare expected and actual
response:pre attack response and after
attack system response

Success criteria Response time is too delayed . Get a pop up

message that website not available.

C. CASE STUDY 2
1) DOMAIN

Social network and the website under consideration is
“Facebook’.

2) OVERVIEW

This online website is the network of users. It provides
user connectivity and manages their social network. It pro-
vides facility of personal profiles for each independent user.
It offers social group and pages facility to support forums of
multiple discussion.

3) PROPERTIES / FEATURES/SERVICES IT PROVIDES
o Login.
o Manage multiple users.
o Manipulating responsibilities.
¢ Shared forums.
« Initiate multi user discussion.
o Upload/ Download file.
« Upload /Download file on shared forums.
« Provide server storage.
« Edit personal profile data.

VOLUME 7, 2019

Feature: Login

Website provides independent login facility for each user.
Users under one profile can manage one personal profile
and multiple shard groups, forums and pages. The user can
manage multiple contacts under login. If user is the owner of
the page, group or forum he manages the user access limits.
Moreover, user can administer the authentication of other user
for its owner ship. A website interface is provided for login
facility to avail the feature. Each individual profile supports
updating of profile associated information.

Feature: upload / download file, upload /download file
on shared forums

Website supports the file sharing facility to its users. These
files are shared on the individual base and local group bases or
publicly. These file specifically the picture and video support
the profile information unit.

Feature: Manage multiple users, manipulating responsi-
bilities, shared forums, and Initiate multi user discussion.

Website manages multiple users with independent profiles.
In shared forums the holder of the forum can manage the
roles of the user. Holder have the right to apply restriction
to the client of its forum. The holder manages the content
sharing properties. His/her friend list editing is in his or her
hand. Moreover, each user of the profile manages information
regarding its profile. Every user has the right to manipulate its
profile information and can restricts its dissemination.

Feature: Edit personal profile data

User manages his or her profile. User have the right of
its information dissemination selection from the provided
property level of security in user hand.

4) ASSOCIATED THREATS
o Unauthorized access.
« Profile hijacking.
« Brute force access.
« Insecure interface.
o Unencrypted password.
« Unawareness of critical data manipulation.
o Access limitation and trust level on shared VM environ-
ment.
« Malicious content propagation.
o Unaware of changes.
« Manipulation of critical data by unauthorized access.

5) ANALYSIS

Feature and the identify threats are mapped to the Table. 3 to
identify the applicable test pattern. The identified pattern is
shown in the following section. On the base of the available
feature we have mapped the test pattern and executed the
test case. We have used SqlMap a penetrating testing tool
to support our testing for data security issue or interruption
pattern. We have run 18 test cases and found that it incor-
porated defense against most basic problems, as Passwords
were encrypted, session are managed, user on share data are
managed properly and notification is properly in place. How-
ever, there are few issues such as, a malicious link through

147073

IEEE Access

S. Siddiqui, T. A. Khan: Test Patterns for Cloud Applications

notification can infect users. Virus can easily propagate on
share communities. User has to reload in case of uploading
of file issues.

D. CASE STUDY 3
1) DOMAIN
Data storage and the website under consideration is Dropbox.

2) OVERVIEW

The online web site provides the data storage facility to its
users. User can manage their file of different types in cloud
storage. Users can share files by providing privileges to other
users. Website also provide and offline storage drive facility
to its users.

3) PROPERTIES / FEATURES/SERVICES PROVIDE

o Login

o Manage multiple users with access rights.

o Resource management for shared resources.

o Upload / Download file.

« Provides Server storage.

« Edit user profile data.

« Notification system

« Offline backup storage.

Feature: Login

Website provides independent login facility for each user.
User can store file of different types in one storage area.
Stored files can have private access or shared. Access to a
particular file is allotted on the bases of user access rights
defined by owner. The access has different level of manip-
ulation rights. User can use the allocated space for group
discussion and work depending upon the access it allowed
to other users.

Feature: Resource management Website provides resource
management to each user. User can store multiple files of
different types in multiple organizations. User can download
or upload any file. The resource can be edited by the allowed
users. The owner can manage the level of manipulation on to
the document.

Feature: Manage multiple users, managing multiple
access level rights Website manages multiple users. Web-
site offers multiple types of access level for different users.
User can define the access level to its private folder. User
can customize the level of manipulation on its shared data.
Website offers the facility to share data between user of the
website and even non user. Owner of the content decides the
access level and sharing level of the resource. The user which
can edit the file have the right to manipulate the member
access except the owner of the resource. In case of team
work admin have the right to sign in to the team member
account.

Feature: Upload/ download file, Provide server storage,
upload /download file in shared resource

Website offence the facility to upload / download data from
the server. However, during upload disconnection leads to

147074

loss of fie previous uploading information. One has to initiate
the uploading transaction from the beginning. However, web-
site offers a good data feedback for the information of failed
and uploaded file.

Feature: Shared resource.

Resource owned by a user can be shared among different
users. The owner of the resource is the ultimate administrator
of the resource. The set the properties of access to the share
folder. Owner can also hand over the owner ship to other
users.

Feature: Offline backup storage

Website offence support of offline back up storage. User
can download the drive and can upload the file in it. Website
automatically configure the changes from the offline stor-
age. Similarly, backup storage automatously configures the
changes made online.

Feature: Feedback

Website comprises of good feedback mechanism. Website
delivers feedback to the user on access to any critical data that
user has managed.

Feature: Login

Website provides independent login facility for each user.
User can store file of different types in one storage area.
Stored file can have private access or shared. Access to a
particular file is allotted on the bases of user access rights
defined by owner. The access has different level of manip-
ulation rights. User can use the allocated space for group
discussion and work depends upon the access it allowed to
other users.

Feature: Resource management

Website provides resource management to each user. User
can store multiple files of different types in multiple organi-
zations. User can download or upload any file. The resource
can be edited by the allowed users. The owner can manage
the level of manipulation onto the document.

Feature: Manage multiple users,and managing multiple
access level rights

Website manages multiple users. Website offers multiple
types of access level for different users. User can define the
access levels to its private folder. User can customize the level
of manipulation on its shared data. Website offers the facility
to share data between user of the website and even non user.
Owner of the content decides the access level and sharing
level of the resource. The user which can edit the file have
the right to manipulate the member access except the owner
of the resource. In case of team work admin have the right to
sign in to the team member account.

Feature: Upload/download file, Provide Server storage,
upload /download file in shared resource

Website offence the facility to upload / download data from
the server. However, during upload disconnection leads to
loss of the previous uploading information. One has to ini-
tiate the uploading transaction from the beginning. However,
website offers a good data feedback for the information of
failed and uploaded file.

VOLUME 7, 2019

S. Siddiqui, T. A. Khan: Test Patterns for Cloud Applications

IEEE Access

Feature: Shared resource.

Resource owned by a user can be shared among different
users. The owner of the resource is the ultimate administrator
of the resource. The set the properties of access to the share
folder. Owner can also hand over the owner ship to other
users.

Feature: Offline backup storage

Website offence support of offline back up storage. User
can download the drive and can upload the file in it. Website
automatically configure the changes from the offline stor-
age. Similarly, backup storage automatically configures the
changes made online.

Feature: Feedback

Website comprises of good feedback mechanism. Website
delivers feedback to the user on access to any critical data that
user has managed.

4) ASSOCIATED EXPECTED THREATS

o Unawareness of share data manipulation: No notifica-
tion or email system for data modification by author

« Brute force access.

« DOS Attack

« Malicious content propagation: As anyone can upload or
access share data

« Unaware of changes on shared data: If no notification is
generated

5) ASSOCIATED PATTERN

o Target modification (Intercepting and, modifying mes-
sage):Folder modification by author to any access able
share data without notification other audience

« Volume limitation

o Access limitation and trust level on shared VM environ-
ment.

o Target modification: As many users can have access to
share data.

o hypervisor compromising: Files on share folders can
affect the users.

« Session hijacking

« Discontinuity of external resource: If offline mode is
not update along with online data inconsistency can
arise,

6) ANALYSIS

On the basis of features identified, we mapped patterns and
executed the associated test case. The detail of case study is
shown in the table. We have used Sqlmap a penetrating testing
tool to support our testing. We have used SqlMap a penetrat-
ing testing tool to support our testing for data security issue or
interruption pattern. We have in total executed 19 test cases.
We have found that Dropbox have in placed all necessary
requirement to make the system secure. However, test cases
related to file share, prorogation of malicious file, notification
and offline and online data consistency have shown some
gray area.

VOLUME 7, 2019

TABLE 9. Target modification.

Name Target modification (intercepting and Modifying
message)
Defect types Data Mishandling for malicious manipulation

and misdirection.

Non-functional level after the cloud application
is fully functional.

To check the system response on a data secu-
rity attack. To check system response on in-
put validation. To check system response on
HTML encoding. To check the system response
on scripts input. To check the system response
on an attempt to modify results in order to get
access to data.

XSS Attack, Redirection, invalidated input with
Html encoding disable.

Malicious user can manipulate the website and
can induce unwanted alerts. Service redirection
can lead to reduction of trust. Information could
be extracted by scripting a cookie that well de-
liver the user information to the malicious user.
Subject the system to HTML with tags. Subject
the system with HTML tag without validation of
input. Subject the system with java scripts.

Test pattern

GOAL

Sub category

Situation

Target

Action
e Access the system.

¢ Choose the Field.

o Submit data with malicious format:
Data with HTML tags /java scripts.
Check system response.

Disable: Input validation.

Repeat steps from 3 to 4.

Disable: Html encoding.

Repeat steps from 3 to 4.

Compare expected and actual response.

Success criteria | Pop up message. Website redirection. Receive

information in cookies.

o Target modification (Intercepting and, modifying mes-
sage): Owner can change the data without notification
to other sub users chances of data inconsistency.

o Access limitation and trust level on shared VM envi-
ronment: Multiple role with privacy in place for all no
not vulnerable. Sub users need to access permission on
accessing own file not vulnerable.

o hypervisor compromising: Files on share folders can
support transfer virus to others.

« Session hijacking: Refresh session after specific dura-
tion not vulnerable.

« Discontinuity of external resource: If offline mode and
online need constant refreshing of system.

E. CASE STUDY 4
1) DOMAIN

Domain is business management and the application consid-
ered is ““‘Pocket desk”.

2) OVERVIEW

Organization employ task management system. System man-
ages employ task assignment on the bases of skill set and past
records. Moreover, it supports employ task tracking through
location intelligence and millstone completion records.

147075

IEEE Access

S. Siddiqui, T. A. Khan: Test Patterns for Cloud Applications

System also provides support for leave management.
Employees can share data with each other and can perform
live chat for issue resolutions. System is been backup by data
base which is update online.

3) PROPERTIES/FEATURES/SERVICES PROVIDED
o Login
« Role management
« Information dissemination Dashboard
o Uploading /downloading
o Live Information exchange
« Notification system
o Location tracking

Features: Information forms.

Delivers information regarding services is provided by
the organization and associated event schedules. The overall
website is designed to deliver information which is non query
based.

Features: Login:

System provides login facilities for users. During Login
user can select two type of user access Admin or Employee.
User can log in with any email address of his choice.

Features: Role management:

User with Admin role can access to employee location,
and personal profile information like name, phone number,
picture etc. On the other hand, the employee does not have the
access to other employee data. However, if the admin selects
an employee as team lead then he or she have the access to
the data of his/her subordinates.

Features: Information dissemination Dashboard:

Admin have the access to all the data of the system
related to his employee profiles, current tasks and leave
of other employees. Admin can change any data from the
dashboard.

Features: Uploading /downloading:

Admin can assign task and can upload file for the task.
Moreover, he can update the user profile for the task assign-
ment. On the other hand, employ can upload the leave form.

Features: Live Information exchange:

Employees can exchange view through live chat, they can
also share files with each other.

Features: Notification system:

Whenever a new task is assigned notification is generated
in the notification center for each employ.

Features: Location tracking:

Location of each employ can be tracks by the admin.

4) ASSOCIATED EXPECTED THREATS

« Abusive use of Role: As user can set his or her role on
login

o Abusive use of Resource: As user can access data of
other employ

o Abusive use of Privilege: As user can set his or her role
on login

o Unencrypted password.: As password is shown

147076

TABLE 10. Session hijacking.

Name Session hijacking

Defect types Invalid access to authorized user profile by taking session
id, accessing critical data by using cookies between server
client response, unauthorized user masking as an authorize
user.

Non-functional level after the cloud application is fully
functional.

To check the cookie security, system response on Time
out, system response on unauthorized access to user pro-
file, system response on brute force URL logging after
session expiry, limit of data been expose to our application
user and system response strength to sniffing of user data
cookies.

Brute force profile login, Access after session expiry,
Cookie data access.

Sniffing information of user through cookie. Session alive
even after the user log out could lead to unauthorized
access important data. Brute force prediction of profile
address. Without user knowledge saving user credential
could lead to data leakage in future.

Target Check restriction on cookies and on client side scripts to
access information. Checking response of cookies flags

Test pattern

GOAL

Sub category

Situation

Action

« Login the profile: Giving credential / URL of the
profile been copied from last login.

o Check system response: Login or Access not
granted.

« If access is granted by either of the options from
step 2: Follow next steps or repeat from 1 to 3.

« Submit a data retrieval query and check system
response: It uses the cookie to keep track of results
of a user.

« Submit a suggestion for product request.

o Check the cookie field.

« Check Http table:Table is not check and http is not
appended in the cookie header.

o Check to access the cookie information.

« Logout the system.

Success cri- | Access profile after logout using the URLs. Access user
teria information from cookie even after session expiry.

« Insecure Interface: Open access to critical data. Missing
priority of type of data that can be seen

« Data security issue: Data is accessible easily no notifi-
cation or email system for data modification feedback is
there

o Unawareness of critical data manipulation: No notifica-
tion or email system for data modification feedback is
there

« Backdoor installation or uploading possible: As no file
filter is there one can upload a hidden malware in simple
word or jpg file.

« Malicious content uploading.: As no file filter is there
one can upload a hidden malware in simple word or jpg
file.

« Malicious content propagation: As anyone can upload or
access share data

« Un awareness of change: No notification or email sys-
tem for data modification or network connection lost
feedback is there.

5) ASSOCIATED PATTERNS
o Insecure Interface: As the Dashboard for profile and
information available

VOLUME 7, 2019

S. Siddiqui, T. A. Khan: Test Patterns for Cloud Applications

IEEE Access

TABLE 11. Test case example.

TABLE 12. Insecure interface.

Name Insecure Interfaces
Data Detail Interface security in terms of data encryption at interface level.
Set login user as admin Defect Input interface data flushing is important for security. Loose
Input types interface control and management of data flushing could lead
Input Access Employer profile i to accidental and malicious attempts.
Expected Output Only name, skill and work performance avail- Test pat- | Non-functional level after the cloud application is fully func-
able tern tional.
Actual output Whole profile can been access and can be edit GOAL To check the management, monitoring and controlling
Success criteria Actual output=Expected level/mechanism of interfaces and API’s. Understand their se-
Pass / fail Criteria Failed (Vulnerability exists: access roles can curity trust level. To Check the data flushing and error logging
be modified to access critical data) mechanism. Check the third party usage of service.
Argument Vulnerability exist access roles can be modify Sub cat- | Visible passwords, lack of data flushing after each use, lack of
to access critical data egory control over API’s use and data access limit, lack of logging
mechanism for each usage.
Situation | Unencrypted password steal by user can lead to authorized ac-
cess with unauthorized intention, Non-Flushing of data fields
L . . lead to unwanted access. Over provision of system control
 Data security 1ssue or Data Interruption: As Data base through the API’s to the user, com%romises the S}}/Istem security
update, modification is available through interface. by allowing access to critical data. Lack of logging mecha-
o Target modification (Intercepting and, modifying mes- T nism, Unwanted third party access. R —
X o arget Test system data encryption, flushing mechanism. Test access
sage): As Mlﬂtlple user have access to critical type, limit and involvement of third party. Test logging mech-
non-shared and shared data. = anism.
e Access limit and trust level: As different users with ction «+ Check data encryption mechanism: Checking that
different roles and needs are present the system. Ccrilti%l‘(l ChatraCteaS ai:’; ViSiblZ Whéle ‘ﬁping (;: not. .
. .. . eck system flushing and refresh mechanism: Lo
® Dlscontlnmty of external resource: As Network, GPRS out the sgllstem and clicl% the signing without credentialsg.
and server hard disk connection are important for system o Check interface or API level of authorization and ac-
: cess control to user: (1) Check the Information provided
executlgn. . to the use of the system through the API. b
o Hypervisor compromising: As Server manages the « Check system log keeping mechanism: Check the sys-
data exchange between different users and types of tem log file after every usage. , ,
.. o Check the policy agreement and access rignts of third
apphcatlon. party used by the system.
« Session hijacking: Multiple users
Success Lack of encrypted, system allows logging by just clicking
Example test case from the case study is shown in criteria signing with no data in fields after first logout. Third part have
access to critical data, agreement shows a full authority over
Table. 11. el s
data hence limiting data integrity and user trust level.
6) ANALYSIS 2) OVERVIEW

We have run in total 16 test case across different test patterns
and it was found that system have defects related to:

« Insecure interfaces: As password are visible.

e Access limit and trust level on shared VM environ-
ment: Vulnerability exist access roles can be modified
to access critical data. Rights of new user needs to be
managed to avoid unlawful updating.

« Data security issue or Data interruption: Vulnerability
exist any one can modify without information.

« Session hijacking: Vulnerabilities of lack of session
refreshing.

o Hypervisor compromising: Vulnerability is there no file
update or access notification, or version control exist.
Vulnerability exist no file filter exist

« Discontinuity of external resources: Vulnerability exist
employ have no information of connection lost. Vulner-
ability exist employ have no information of connection
lost.

F. CASE STUDY 5

1) DOMAIN

Information dissemination and the website we have consid-
ered is “www.cochraneventilation.com”.

VOLUME 7, 2019

Website is used for information dissemination purposes.
Website provide information regarding services offered by
the firm. Website gives information regarding event and help
which it provides. Website only deliver information.

3) PROPERTIES/FEATURES/SERVICES PROVIDED
o Information forms.
¢ Links to other resources.

Features: Information forms.

Delivers information regarding services provided by the
organization and associated event schedules. The overall
website is designed to deliver information which is non query
based. Features: Links to other resources

4) ASSOCIATED THREATS
« Data security: As website maintains information
« Data tampering: As data changes can affect others
o Volume limitation: As many users can reach website one
time

5) ASSOCIATED PATTERNS
o Data Security issue testing or data Interruption
o Volume limitation

147077

IEEE Access

S. Siddiqui, T. A. Khan: Test Patterns for Cloud Applications

VI. DISCUSSION: TECHNIQUE ASSOCIATIONS

As it can be seen from the case studies that test patterns pro-
vide two directional outcome in-terms of pre establishment
of software requirement and test case for validation. Such as,
Pocket Desk and Moodle. In Pocket Desk it has supported
the developers to understand the level of system security
they have in place in their requirements and services during
development. This have supported them to improve their
system and incorporate missing facilities, hence resulting in
improvement of system services than its previous versions.
Applying our approach on Moodle, facilitated the organiza-
tion to identify issues in their existing system. This shows
its applicability for software improvement and development
techniques such as TDD. Furthermore, as it facilitates the
recognition of misuse cases it supports the reduction of likely
hood of exploitation of system by guiding the user to incor-
porate the required security requirements. In addition, it cor-
respondingly offers help by examining risk and recommitting
suggestions to avoid it. In the following section we explain in
detail the relation between our proposed technique and TDD,
misuse case and risk.

A. TEST DRIVEN DEVELOPMENT

Model base development adheres the system according to
established models for the domains. Test pattern provides
the general templates for the testing. The test pattern general
template and the specific templates governs the development
of the system in the model driven development manner.
System when designed considering the pre specified threat,
they are designed with care. The development is then gov-
erned by measures which prevent the identified threats. The
identified threats are defined in term of the misuse case.
However, the mitigation of these misuse cases is achieved
through the security use case governed by security require-
ments. As defined in our approach threats are associated with
test patterns. These pattern and test case model the threat.
Threat information supports to define the functionality of
the system which is strong enough to sustain the attack.
This supports provision of use cases and misuse cases. This
backward development of the system from test pattern are
define as Test First Developmental approach (TFD) or Test
Driven Development (TDD). Test pattern is a TDD approach
as it provides information through testing data. TDD supports
the refactoring of the code. Each iteration of testing in TDD
increases the maturity of the code been developed. The itera-
tive nature of TDD supports the regression testing. TDD helps
construction of test built on the behaviors to model the sys-
tem. Analyzing the system and applying the testing to check
the system adherence to requirements is expressed as Test
Last Development (TLD) approach. Test pattern along with
TDD supports TLD. To ensure the system strength test pattern
provides the assessment criteria. Test pattern and established
system properties are matched to identify the applicable test
pattern. Execution of associated test case assess the level of
system security requirement implementation. A negative or
positive response to the negative intention test case depicts

147078

Requirement | |

Test pattem ‘

FIGURE 3. Test pattern cycle relating TDD.

Implementation Testcases

FIGURE 4. Test pattern cycle relating TLD.

the presence or absence of pattern. The success of pattern
implementation delivers the information regarding the weak-
ness present in current functionalities. The connection of the
misuse case the test pattern provides support to identify the
applicable test at early level of development. Test pattern is
the bidirectional approach. It provides benefit of both TDD
and TLD. The overall cycle of test pattern relation with TDD
and TLD is shown in fig. 3 and fig. 4. The connection of
the misuse case and the test patterns support this additional
benefit. With the information of misuse case one can identify
the required testing. On the other hand, with the information
of test patterns and associated test case one can identify
the expected misuse cases. A meta model fig. 2 shows that
how different element regarding test pattern, threats, event,
impact, situation, etc., are associated with each other the
detail of the model is expressed in the next section.

B. TECHNIQUE AND ASSOCIATED RISK MANAGEMENT

1) RISK AND IMPAIRMENT

When system is properly tested over its vulnerabilities,
the chance of being attacked are reduced. On the other hand,
if the system evolution is not being performed chances of
system attack increases. In the presence of possibilities that
can lead to system failure we express them as risks of system.
Risk of system are usually defined along with the event of
mapping of that risk and the impact it generates [35], [37].
Event that effects the system usually uses or exploits the
resources. The resources are the properties which software
system uses or provides. Every effect of the system prop-
agates through property exploitation. An event when exe-
cuted have associated threats. Threats are the attack which
are launched on to the resources. These attacks can only
be launched if the resource are vulnerable. Non vulnerable
properties cannot be manipulated by attacks or un secure
event. Threats are further sub divided into sub and super
attack to achieve the final goal of impairment as shown in
the diagram fig. 2. Super attacks are supported by low level
sub attacks. These attacks exist for each system according to

VOLUME 7, 2019

S. Siddiqui, T. A. Khan: Test Patterns for Cloud Applications

IEEE Access

their properties. Similar domain system has similar attacks.
The attacks are modeled in the test patterns which when exe-
cuted identifies the system strengths. Misuse case as threats
are executed as test cases against the stated test patterns.

2) RISK IDENTIFICATION

Utilization of system properties to make negative progress
are communicated as misuse case. Misuse cases exploit the
system properties with negative intensions. Misuse cases are
articulated to deliver the information regarding the threats.
Misuse case are also articulated as threats to express sys-
tem vulnerabilities as in [26], [38]. Threats and impact joint
together to achieve risks as shown in fig. 2. Test patterns
are used to distinguish the related danger which a system
can encounter. These patterns help in distinguishing proof of
the hazard which can influence the properties of the system.
Mapping of the test patterns and their related experiments
support to convey necessities which are concentrated on the
reduction of hazard properties. This technique supports the
test first philosophy with the assistance of risk identification,
threats and misuse case alliance to propose appropriate test
case to generate secure system requirements.

3) RISK AVOIDANCE

Situation of safe state is associated with security require-
ments. Security requirements contain the security use case.
Use case defines the threats and these threats are handled
through these security use cases. Security properties as define
by security requirements are needed to establish for secure
systems. The model supports risk avoidance by identify-
ing the associated risk at early level of development. The
model of approach supports the TDD as it is giving the
test base model as test pattern to identify the associated
threat factor of the system properties. Early identification
helps in designing the measures for the avoidance of the
risk situations. Pre establishment of security requirements
for the vulnerable property strengthens the system vulnerable
properties.

VII. CONCLUSION

We study previously identified cloud application threats and
provided a mapping of categories, sub-categories, positive
and negative situations of use. This helps us in identifying
test patterns which can be applied to individual situations to
achieve quality in a smooth and repeatable manner.

We provide a generic template which is helpful in finding
out test cases required for testing a system under test. We map
feature associated threats and identify patterns for each case
study. We then use pattern information to identify test cases.
We then make use of comparison table to illustrate association
between these elements. Patterns provide a two-way connec-
tion with misuse cases and threats. It supports identification
of misuse case in the presence of test cases and test cases in
the presence of misuse case. This two-way property results its
support for test driven development and test last development.
We evaluate our approach through case studies. Our proposed

VOLUME 7, 2019

patterns facilitate identification of threats and expected test
cases in a systematic manner.

REFERENCES

[1] N. Soundarajan, J. O. Hallstrom, G. Shu, and A. Delibas, “Patterns: From
system design to software testing,” Innov. Syst. Softw. Eng., vol. 4, no. 1,
pp. 71-85, 2008.

[2] N. Yoshioka, H. Washizaki, and K. Maruyama, “A survey on security
patterns,” Prog. Inform., vol. 5, no. 5, pp. 35-47, 2008.

[3] M. Thongrak and W. Vatanawood, “‘Detection of design pattern in class

diagram using ontology,” in Proc. Int. Comput. Sci. Eng. Conf. (ICSEC),

Jul./Aug. 2014, pp. 97-102.

1. C. Morgado, A. C. R. Paiva, and J. P. Faria, “Automated pattern-based

testing of mobile applications,” in Proc. 9th Int. Conf. Qual. Inf. Commun.

Technol. (QUATIC), Sep. 2014, pp. 294-299.

G. Sindre and A. L. Opdahl, “Eliciting security requirements with misuse

cases,” Requirements Eng., vol. 10, no. 1, pp. 34-44, 2005.

P. Hope, G. McGraw, and A. I. Antén, “Misuse and abuse cases: Get-

ting past the positive,” IEEE Security Privacy, vol. 2, no. 3, pp. 90-92,

May/Jun. 2004.

[7]1 G. Sindre and A. L. Opdahl, ““Templates for misuse case description,” in

Proc. 7th Int. Workshop Requirements Eng., Found. Softw. Qual. (REFSQ),

Interlaken, Switzerland, 2001, pp. 1-13.

G. Firesmith, “Security use cases,” J. Object Technol., vol. 2, no. 3,

pp. 53-64, 2003.

[9] S. M. Hashemi and M. R. M. Ardakani, “Taxonomy of the security
aspects of cloud computing systems—A survey,” Networks, vol. 4, no. 1,
pp. 21-28, 2012.

[10] M. M. Alani, “Securing the cloud: Threats, attacks and mitigation tech-
niques,” J. Adv. Comput. Sci. Technol., vol. 3, no. 2, pp. 202-213, 2014.

[11] S. Siddiqui and T. A. Khan, “On test patterns for cloud applications,” in
Proc. Int. Conf. Frontiers Inf. Technol. (FIT), Islamabad, Pakistan, 2016,
pp. 57-62. doi: 10.1109/FIT.2016.019.

[12] J. Jiirjens, “UMLsec: Extending UML for secure systems development,”
in Proc. Int. Conf. Unified Modeling Lang. Springer, 2002, pp. 412—425.

[13] N. Ikram, S. Siddiqui, and N. F. Khan, ‘““Security requirement elicitation
techniques: The comparison of misuse cases and issue based information
systems,” in Proc. IEEE 4th Int. Workshop Empirical Requirements Eng.
(EmpiRE), Aug. 2014, pp. 36-43.

[14] J. Bozic and F. Wotawa, “Security testing based on attack patterns,” in
Proc. IEEE 7th Int. Conf. Softw. Test., Verification Validation Workshops
(ICSTW), Mar./Apr. 2014, pp. 4-11.

[15] A. K. Alvi and M. Zulkernine, “A comparative study of software security
pattern classifications,” in Proc. 7th Int. Conf. Availability, Rel. Secur.
(ARES), Aug. 2012, pp. 582-589.

[16] A. L. Correa, C. M. Werner, and G. Zaverucha, “Object oriented design
expertise reuse: An approach based on heuristics, design patterns and anti-
patterns,” in Proc. Int. Conf. Softw. Reuse. Berlin, Germany: Springer,
2000, pp. 336-352.

[17] H.Kaur and P.J. Kaur, “A GUI based unit testing technique for antipattern
identification,” in Proc. 5th Int. Conf.-Confluence Next Gener. Inf. Technol.
Summit (Confluence), Sep. 2014, pp. 779-782.

[18] R. M. L. M. Moreira, A. C. R. Paiva, and A. Memon, “A pattern-based
approach for GUI modeling and testing,” in Proc. IEEE 24th Int. Symp.
Softw. Rel. Eng. (ISSRE), Nov. 2013, pp. 288-297.

[19] P. Costa, A. C. R. Paiva, and M. Nabuco, “Pattern based GUI testing for
mobile applications,” in Proc. 9th Int. Conf. Qual. Inf. Commun. Technol.
(QUATIC), Sep. 2014, pp. 66-74.

[20] N.Li, Z.Li, and L. Zhang, “Mining frequent patterns from software defect
repositories for black-box testing,” in Proc. 2nd Int. Workshop Intell. Syst.
Appl. (1SA), May 2010, pp. 1-4.

[21] M. Li, H. Zhang, R. Wu, and Z.-H. Zhou, “Sample-based software defect
prediction with active and semi-supervised learning,” Automated Softw.
Eng., vol. 19, no. 2, pp. 201-230, 2012.

[22] W. Yi-Chen and W. Yi-Kun, “The research on software test pattern,”
in Proc. Int. Conf. Future Comput. Sci. Appl. (ICFCSA), Jun. 2011,
pp.- 109-113.

[23] S. Kumar and S. Bansal, “Comparative study of test driven development
with traditional techniques,” Int. J. Soft Comput. Eng., vol. 3, no. 1,
pp. 2231-2307, 2013.

[24] E. B. Fernandez, N. Yoshioka, and H. Washizaki, ‘“Patterns for cloud
firewalls,” in Proc. AsianPLoP, Tokyo, Japan, 2014, pp. 1-11.

[4

=

[5

[6

—

[8

—

147079

http://dx.doi.org/10.1109/FIT.2016.019

IEEE Access

S. Siddiqui, T. A. Khan: Test Patterns for Cloud Applications

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

T. Okubo, Y. Wataguchi, and N. Kanaya, “Threat and countermeasure pat-
terns for cloud computing,” in Proc. IEEE 4th Int. Workshop Requirements
Patterns (RePa), Aug. 2014, pp. 43-46.

E. B. Fernandez, R. Monge, and K. Hashizume, “Two patterns for cloud
computing: Secure virtual machine image repository and cloud policy man-
agement point,” in Proc. 20th Conf. Pattern Lang. Programs, Oct. 2013,
p. 15.

J. Bozic and F. Wotawa, “XSS pattern for attack modeling in testing,” in
Proc. 8th Int. Workshop Autom. Softw. Test, May 2013, pp. 71-74.

A. Cauevic, S. Punnekkat, and D. Sundmark, “Quality of testing in test
driven development,” in Proc. 8th Int. Conf. Qual. Inf. Commun. Technol.
(QUATIC), Sep. 2012, pp. 266-271.

K. Bajaj, H. Patel, and J. Patel, ““Evolutionary software development using
test driven approach,” in Proc. Int. Conf. Workshop Comput. Commun.
(IEMCON), Oct. 2015, pp. 1-6.

D. Fucci and B. Turhan, “A replicated experiment on the effectiveness of
test-first development,” in Proc. ACM/IEEE Int. Symp. Empirical Softw.
Eng. Meas., Oct. 2013, pp. 103-112.

A. Souag, R. Mazo, C. Salinesi, and I. Comyn-Wattiau, “Using the
AMAN-DA method to generate security requirements: A case study in
the maritime domain,” Requirements Eng., vol. 23, no. 4, pp. 557-580,
2018.

J. Pauli and D. Xu, “Integrating functional and security requirements with
use case decomposition,” in Proc. 11th IEEE Int. Conf. Eng. Complex
Comput. Syst. (ICECCS), Aug. 2006, p. 10.

J. McDermott and C. Fox, “Using abuse case models for security require-
ments analysis,” in Proc. 15th Annu. Comput. Secur. Appl. Conf. (ACSAC),
Dec. 1999, pp. 55-64.

A. Herrmann and B. Paech, “MOQARE: Misuse-oriented quality require-
ments engineering,” Requirements Eng., vol. 13, no. 1, pp. 73-86,
2008.

R. Matulevicius, N. Mayer, and P. Heymans, “Alignment of misuse cases
with security risk management,” in Proc. 3rd Int. Conf. Availability, Rel.
Secur. (ARES), Mar. 2008, pp. 1397-1404.

J. Whittle, D. Wijesekera, and M. Hartong, ““Executable misuse cases for
modeling security concerns,” in Proc. ACM/IEEE 30th Int. Conf. Softw.
Eng., May 2008, pp. 121-130.

147080

[37] N. Mayer, P. Heymans, and R. Matulevicius, “Design of a modelling
language for information system security risk management,” in Proc.
RCIS, 2007, pp. 121-132.

[38] K. Hashizume, N. Yoshioka, and E. B. Fernandez, “Misuse patterns for
cloud computing,” in Proc. 2nd Asian Conf. Pattern Lang. Programs,2011,
Art. no. 12.

SIDRA SIDDIQUI received the B.S.(CS) degree
from FAST-NUCES and the M.S.(SE) degree
from Bahria University. She is currently a Lec-
turer with Air University, Islamabad, Pakistan.
Her research interest includes secure software
developing through reverse engineering and
testing.

TAMIM AHMED KHAN received the B.E. degree
(Hons.) in software engineering from the Univer-
sity of Sheffield, U.K., in 1995, the M.B.A. degree
in finance and accounting from Presston Univer-
sity, Islamabad, Pakistan, in 1997, the M..S. degree
in computer engineering from CASE, Texila Uni-
versity, Pakistan, in 2006, and the Ph.D. degree
in software engineering from Leicester University,
U.K.,, in 2012. He is currently serving as a Profes-
sor with the Department of Software Engineering,
Bahria University, Islamabad. His research interests include service-oriented
architectures, E-learning, and software quality assurance.

VOLUME 7, 2019

