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ABSTRACT In this study, we propose a novel method incorporating faster region-based convolutional
neural network and active shape model to automatically recognize, segment, and track the left ventricle in
cardiac ultrasound image sequences, respectively. Ultrasound images typically contain noise and artifacts.
The conventional filters cannot preserve the edges of image contours, and thus blurry images are often
obtained. In this study, we propose an improved adaptive anisotropic diffusion filter to effectively reduce
noise and reinforce image contours. In addition, because of the shape and appearance of the left ventricle
vary considerably between adjacent images, conventional methods cannot automatically identify the position
of the left ventricle or accurately segment them. A novel method that combines the faster region-based
convolutional neural network with the active shape model is proposed to automatically recognize, segment,
and track the left ventricle in cardiac ultrasound image sequences. Compared with four state-of-the-art
approaches, the method proposed in this study can be applied to accurately segment and track the left
ventricle in cardiac ultrasound image sequences. The proposed method produces the most satisfactory results
in terms of visual presentation and segmentation quality based on four criteria.

INDEX TERMS Cardiac ultrasound image, left ventricle recognition, image segmentation and tracking,
faster region-based convolutional neural network (Faster R-CNN).

I. INTRODUCTION
The heart is the power source of the human circulatory sys-
tem and a vital organ in the human body. Heart dis-ease
influences human health and lives, and coronary heart dis-
ease (CHD) is one of the leading causes of death world-
wide. Therefore, understanding the operating mechanism and
characteristics of the heart could facilitate the prevention and
treatment of heart disease. In recent years, medical imag-
ing equipment has undergone rapid development, and car-
diac imaging technology has evolved from electronic beam
computed tomography (CT) and one-dimensional echocar-
diography into multi-slice cardiac CT, cardiac magnetic res-
onance imaging (MRI), and three-dimensional ultrasound
imaging [1]–[3]. These novel imaging methods can be used
to present complex images of the heart’s anatomy. Cardiac
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ultrasound images are extremely useful for assessing cardiac
physiological indicators and diagnosing heart failure, CHD,
and cardiomyopathy. In recent years, clinical research has
focused on assessing cardiac beats, cardiac resynchronization
therapy, and myocardial exercise. Cardiac ultrasound tech-
nology is easy to operate, reliable, and practical, and is a
powerful noninvasive technique for comprehensive cardiac
function assessment, research on ischemic heart disease, and
cardiac resynchronization therapy. Therefore, cardiac ultra-
sound technology could have a wide range of clinical appli-
cations in the future.

Studies on heart functions have typically focused on ana-
lyzing the left ventricle. The left ventricle is responsible for
systemic blood supply. We can obtain all of left ventricular
end-diastolic volume, left ventricular end-systolic volume,
left ventricular ejection fractions, and stoke volume through
understanding changes in the left ventricle. It can facilitate
the development of a quantitative method for preventing and
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treating cardiovascular diseases and reduce cardiovascular
disease-related risk and mortality.

Two clinical image segmentation methods are the
semi-automatic and automatic methods. A semi-automatic
segmentation method is a kind of segmentation that needs the
user to outline the rough region of interest with the mouse
clicks and the algorithm is then applied so that the path
that best fits the edge of the image is shown. The following
two difficulties are involved in the semi-automatic image
segmentation method: (1) because of a large amount of
data, marking the position or contours of the left ventricle
is tedious and time-consuming; and (2) observational vari-
ance occurs among observers [4]. It makes the automatic
segmentation of left ventricular image sequence substan-
tial in the accuracy of positions and contours. Therefore,
the automatic image segmentation method is more appealing
than the semi-automatic method [5], [6]. The automatic
method comprises two steps: automatic determination of the
position of the left ventricle and segmentation and tracking
of the left ventricle [7]. Current position detection methods
(e.g., scale-invariant feature transform (SIFT) [8] and the
histogram of oriented gradients (HOG) [9]) can produce noise
and artifacts in cardiac ultrasound images, and because left
ventricular shape and appearance vary considerably, these
methods cannot accurately identify the position of the left
ventricle. Since 2012, deep learning has received substantial
attention and is useful for examining images. Compared
with spatial pyramid pooling in deep convolutional networks
(SPP-net) [10], the faster region-based convolutional neural
network (faster R-CNN) [11] can overcome temporal limita-
tions because of regional calculation and an ideal detection
rate [12].

Regarding image segmentation and tracking, the active
shape model (ASM) requires a priori shape knowledge [13].
An a priori model is based on a series of points in an image,
and principal component analysis (PCA) is typically used
to describe the shape of the target to be segmented as a
priori knowledge and express changes in the shape of the
deformed model [14]. Compared with other image segmen-
tation methods, the ASM can effectively segment a blurred
border. Through training in use of the ASM, the burden of
medical staff can be reduced. In addition, with a point dis-
tribution model (PDM) [15], [16], the geometric structure of
the target is considered and parametric adjustment is limited
according to training data. Accordingly, shape changes can
be limited to a reasonable range. The ASM can overcome
the high sensitivity of the active contour model to the initial
contour position. In addition, the active contour model has
the following weaknesses: its segmentation effect and speed
de-pend on the initial contour position, and it can identify
only the edge of a target without considering the geomet-
ric structure of the target. The ASM can overcome these
weaknesses. The ASM has been applied extensively in facial
recognition systems but seldom in cardiac ultrasound images.

In this study, we integrated the faster R-CNN and ASM to
automatically segment and track the left ventricle of cardiac

ultrasound image sequences. We used the faster R-CNN to
extract and recognize the characteristics of left ventricular
images. Subsequently, we used the proposed improved ASM
to automatically segment and track left ventricular images.

II. MATERIALS AND METHODS
Figure 1 presents the procedures of this study. Noise in
images (including training and testing data) was effec-
tively reduced and image contours were reinforced through
image enhancement and smoothing by using the pro-posed
improved adaptive anisotropic diffusion filter. Subsequently,
the faster R-CNN was used to automatically determine the
position of the left ventricle and the proposed improved ASM
was employed to correctly segment and track the left ven-
tricle. Following training, we implemented these procedures
to test the image sequence and achieve the goal of accu-
rate automatic segmentation and tracking. Finally, we used
the Sørensen–Dice coefficient [17], mean absolute deviation
(MAD) [18], and Hausdorff distance (HD) [19] to assess the
results.

FIGURE 1. Flowchart of the proposed method.

In on-line processing, the steps of the proposedmethod that
is performed in cardiac ultrasound test image sequences (N
image frames) are described in detail as follows:

1) Noise of test image frame 1 is reduced by using the pro-
posed improved adaptive anisotropic diffusion filter.

2) Initial position of the left ventricle in image frame
1 is determined automatically by means of the trained
parameters of faster R-CNN.

3) Final contour of the left ventricle in image frame 1 is
obtained by iteratively using the trained parameters of
the proposed improved ASM.

4) For image frame i = 2 to N ,
5) Noise of test image frame i is reduced by the improved

adaptive anisotropic diffusion filter.

VOLUME 7, 2019 140525



W.-Y. Hsu: Automatic Left Ventricle Recognition, Segmentation, and Tracking

6) Initial position of the left ventricle in image frame i
is determined automatically by means of the trained
parameters of faster R-CNN.

7) Initial contour of the left ventricle in image frame i
is obtained from final contour of that in image frame
i-1 and initial position of that in image framei.

8) Final contour of the left ventricle in image frame i is
obtained by iteratively using the trained parameters of
the proposed improved ASM.

9) End

A. MATERIALS
The materials used in this study were a series of cardiac
ultrasound images provided by physicians in the cardiol-
ogy department of Mackay Memorial Hospital in Taipei
City. The format was digital imaging and communications in
medicine. In the experiment, 30 series of ultrasound images
were employed, each comprising 1500–5000 images. Each
image was 636 × 434 pixels and contained seven standard
perspectives. This study focused on the left ventricle; there-
fore, we processed only the apical 4-chamber view of each
left ventricular image (Fig. 2).

FIGURE 2. Apical 4-chamber view of a cardiac ultrasound image.

Of the 30 series of images, 10 served as the training set,
5 served as the verification set, and 15 served as the test-
ing set. From the training and verification sets, 300 images
including ventricular images that could be easily or not easily
recognized were randomly selected for training. From the
testing set, 300 images with a constant interval (including
multiple cardiac cycles) were selected for image segmenta-
tion and used for cardiac tracking. Thismethodwas compared
with several state-of-the art approaches.

B. IMAGE ENHANCEMENT AND SMOOTHING USING
IMPROVED ADAPTIVE ANISOTROPIC DIFFUSION FILTER
The original ultrasound images contained noise and artifacts.
Following convention, a filter based on a fuzzy method (e.g.,
Gaussian filter, median filter, mean filter) was employed to
eliminate all noise. However, although filters can be used
to eliminate noise and artifacts, they cannot preserve image
contours. In this study, we proposed an improved adaptive
anisotropic diffusion filter based on an originally anisotropic
diffusion method [20], [21] to effectively reduce noise and

simultaneously enhance image contours. In the improvement,
adjacent areas are enhanced and considered from original
four-neighborhood expanding to eight-neighborhood, and
different weightings, including α and β parameters, are then
applied to four-neighborhood and diagonal-neighborhood
respectively to effectively distinguish the border from the
background. Finally, smoothing (α weighting parameter) and
sharpening (β weighting parameter) mechanisms are incor-
porated to form a novel diffusion model, as shown in Fig. 3.
When the improved adaptive anisotropic diffusion filter was
used to process an image, the image contours became clear.
In addition, noise in the image was effectively reduced.

FIGURE 3. Results of image enhancement and smoothing: (a) original
image; (b) enhanced and smoothed image with improved adaptive
anisotropic diffusion filter.

C. LEFT VENTRICLE RECOGNITION BASED
ON THE FASTER R-CNN
Left ventricle shape and appearance varied considerably in
this study, and the conventional method cannot be used
to automatically identify the position of the left ventricle.
Therefore, the faster R-CNN was used to automatically and
accurately determine the position. The faster R-CNN was
composed of a region proposal network (RPN) and fast
R-CNN testing network. Fig. 4 presents the steps in the
training stage. The RPN network and faster R-CNN testing
network were jointly trained, as shown in Fig. 5.

1) PRETRAINING THE CNN MODEL
The RPN and faster R-CNN are initialized with a net-
work pretrained on Image-net [22]. Typically, the ZFnet
network [23] and visual-geometry-group 16 network [24]
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FIGURE 4. Flowchart of faster R-CNN training for specific object
recognition.

FIGURE 5. Joint training of RPN and faster R-CNN.

are adopted; however, because of concern of the computa-
tions in this study, only the ZFnet network was employed.
Fig. 6 presents the framework of the ZFnet network including
five convolutional layers, where two-headed arrow represents
the number of channels, i.e. the number of convoluting with
different filters, and contrast norm. means contrast normal-
ized. The convolutional layers were connected to the max
pool to reduce the number of parameters and calculation com-
plexity. The feature layer and softmax layer were connected
with each other and positioned behind the convolutional
layers. The fifth convolutional layer in the ZFnet network
contained 256 channels andwas called the featuremap, which
was the deep-layer convolutional feature of an input image.
Deep-layer features were similar in the same types of objects
but varied considerably between different types of objects.
Therefore, objects on the feature map were dividable. Spe-
cific layers were added to the output of the ZFnet network to
obtain the RPN and faster R-CNN. These specific layers can
be used to extract an area containing a target from an input
image and to calculate the related probability.

2) TRAINING RPN
In this study, when the left ventricle image was used to train
the RPN, we adopted the pretrained ZFnet model to initialize

FIGURE 6. Eight layers of the ZFnet network.

FIGURE 7. RPN framework.

the RPN. Subsequently, a multi-task loss function combining
the losses of classification and bounding box regression and a
back-propagation algorithm were used to fine tune the RPN,
for which an arbitrary image size served as an input and
a series of outputs served as regional proposals that likely
contained a target. As shown in Fig. 7, behind the fifth-layer
feature map of the ZFnet network (CONV5), a small con-
volutional layer was added. For each position on the feature
map, the small convolutional layer was used for convolutional
computation. Regarding the anchors in each position, each of
three sizes (128^2, 256^2, and 512^2) was combined with
each of three ratios (1:1, 1:2, and 2:1) to form nine kinds of
anchors, which were employed to predict which position con-
tained a target and provide accurate regional proposals [12].
Following convolution, a 256-dimensional vector for a single
position was obtained. This vector reflected the deep-layer
characteristics of the anchors in that position and was used
to predict the probabilities of which anchors in that position
were targets or background.

3) TRAINING THE FASTER R-CNN TESTING NETWORK
The method for training the faster R-CNN testing network
was based on regional proposals, and the pretrained ZFnet
model was used to initialize the testing network. To extract the
features of the five-layer convolutional network from an input
image, the deep-layer features in CONV5 were extracted.
All features in all 256 channels were concatenated into a
4096-dimensional feature vector called the FC6 feature layer.
Another 4096-dimensional feature layer was added to form
the FC7 feature layer, which was subsequently connected to
the FC6 feature layer. The FC7 feature layer was used to
predict the probability of a candidate region belonging to a
certain category and the position of the border of a target.
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Previously marked information was employed to fine tune the
testing network through a back-propagation algorithm.

4) TWO NETWORKS THAT SHARED CONVOLUTIONAL
FEATURES AND WERE FINE TUNED
The testing network obtained in the previous stage was
employed to initialize the RPN, which shared the same con-
volutional layer indicated by the red double arrows in Fig. 5.
The other part of the RPNwas fine tuned. To correspond with
the testing network, this part was called the FC layer of the
RPN network. The two networks shared a deep convolutional
layer. Finally, the shared convolutional layer was fixed and
the FC layer of the faster R-CNN was fine tuned to form a
joint network. Fig. 8 illustrates these steps.

FIGURE 8. Cross-training of the joint network.

5) TRAINING THE FASTER R-CNN TESTING NETWORK
After training, the two networks used the identical five-
layer convolutional neural network. Therefore, the testing and
recognition processes were completed by performing a series
of convolutional computations to reduce the amount of time
required by the regional proposal steps. Figure 9 presents the
testing and recognition processes. The steps are described as
follows.

1) A convolutional computation series was performed
on an entire image to obtain the feature map (i.e.,
CONV5).

2) The RPN was employed to produce numerous candi-
date regional proposals on the feature map.

3) Nonmaximum suppression (NMS) was performed on
the candidate regional proposals and the first 300 pro-
posals that obtained the highest scores were preserved.

4) The features in the candidate regions on the feature
map were extracted to form a high-dimensional feature

FIGURE 9. Testing and recognition processes.

vector. The testing network was employed to calculate
the score of each category and predict the border posi-
tion of the optimal target.

D. LEFT VENTRICLE SEGMENTATION AND TRACKING
BASED ON ACTIVE SHAPE MODEL
After the left ventricle position had been automatically identi-
fied, we used the ASM to correctly segment and track the left
ventricle. The ASM requires a priori shape knowledge [13].
Compared with other image segmentation methods, the ASM
can effectively segment a blurred border. With pretraining,
the burden of medical staff can be reduced. In addition,
the PDM [15], [16] considers the geometric structure of a tar-
get and limits parametric adjustment based on training data.
Accordingly, shape change can be limited to a reasonable
range. The ASM overcomes the high sensitivity of active
contour model to the initial position of a contour and other
disadvantages of active contour model [25], namely that its
segmentation effect and speed depend on the initial contour
position and it identifies only the edge of a target without
considering the target’s geometric structure.

The ASM method has been applied extensively in facial
recognition systems and also in cardiac ultrasound images.
In this study, we proposed an improved ASM method to
segment the left ventricle and verified the segmentation effect
of this method.

1) ESTABLISHING A SHAPE MODEL
A shape model was employed to train a series of images
as well as an average shape, transformation matrix, and
model constraints. Three stepswere required: drawing feature
points, alignment, and PCA.

First, for each of cardiac ultrasound images in the training
set, feature points were drawn to obtain the shape of the left
ventricle image (Fig. 10). Each feature point in each image
was coded with a unique sequence number. The feature points
on each image in the training set formed a shape represented
by a 2n × 1 vector, expressed as follows:

x = (x1, ..., xn, y1, ..., yn)T (1)

where x1, . . . , xn denote the x coordinates of a series of fea-
ture points, y1, . . . , yn denote the y coordinates of the series,
and n denotes the number of sampled points on the contour.

FIGURE 10. Feature points of the left ventricle.
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To determine the statistical characteristics of the coordi-
nates of model points in the training set and to render the
corresponding points among various samples comparable,
the influences of sample size and position must be eliminated
by the alignment. In other words, for each point, the distribu-
tion vector has rotational invariance. A shape can be aligned
with another shape, i.e. the vectors of two shapes (xi and xj),
through rotation, zooming in or out, or displacement to min-
imize the difference between two shapes [26], [27]. Finally,
the minimum distance between the vectors of the two shapes
can be obtained. Following alignment, the feature points
become concentrated.

Following shape alignment, PCA can be performed on the
sample set [14] to obtain the main direction of the sample
set in the space. After a shape model has been established,
a shape can be expressed as follows:

x ≈ x̄ + Pb (2)

where P denotes the t-dimensional feature vector matrix
obtained through PCA and b denotes the parameter for shape
change representing the projection of an arbitrary heart in
the feature space. To constrain the shape of left ventricle,
the range of b is calculated as follows:∣∣bj∣∣ ≤ 3

√
λj (3)

where λi denotes the variance of shape of left ventricle.

2) ESTABLISHING A PROFILE MODEL
To obtain the profile of each feature point, the grayscale dis-
tribution around a specific point on each image in the training
set was examined. In addition, along the normal direction of
a feature point, pixel-level grayscale values were sampled.
Second, a profile model was established, where gij denotes
the jth feature point of the ith sample and gijk denotes the kth
grayscale value sampled. Therefore, the (2k+ 1) grayscale
values for gij can be expressed as follows:

gij =
(
gij1,gij2,...gij(2k),gij(2k+1)

)T (4)

3) SEARCHING THE FEATURE POINTS
After the shape and profile models had been established,
the parameters obtained from the models were used to search
targets positioned among the images. Through the conven-
tional ASMmethod, the minimumMahalanobis distance was
used to obtain the optimal matching points. However, this
method is unstable and can only be used to search a target
within a small range [16]. To overcome these problems,
we proposed an improved ASM method, which is inspired
and then improved from [16]. The matching function for
the similarity between two feature points is proposed and
expressed as follows:

f (g) =
∑k−1

i=0
gi +

∑2k

i=k
(1− gi) (5)

The optimal matching points were obtained by itera-
tively calculating and adjusting shape parameters. However,

we obtained only optimal matching points as opposed to opti-
mal matching shapes. In other words, we cannot guarantee
that the ventricular shape obtained was the final ventricular
shape. Therefore, the model must be constrained. We pro-
jected the searched shape onto a model space and constrained
the range of the b value in the model to ensure that each
feature point was the optimal feature point locally and overall.

The initial position of the searched target substantially
influenced the ASM. If the searched position deviates from
the searched target, the search processes are limited to a min-
imal local range, and this leads to search failure. Currently,
for most ASM search algorithms, the initial search position is
determined manually rather then automatically. In this study,
we proposed that the faster R-CNN can be used to automati-
cally recognize the position of the left ventricle. Accordingly,
all images can be accurately and automatically segmented.
The whole ASM based segmentation after obtaining the ROI
from the Faster RCNN model is shown in Fig. 11.

FIGURE 11. Whole ASM based segmentation after obtaining the ROI from
the Faster RCNN model.

III. RESULTS AND DISCUSSION
The results of left ventricular recognition and segmentation
will be demonstrated in the following. In addition, we also
show the performance analysis of proposed method with four
assessment indicators and the computation time that it needs.
Finally, we compare the proposed method with four state-of-
the-art approaches to verify our performance.

A. RESULTS OF LEFT VENTRICULAR RECOGNITION
First, we presented the results of left ventricular recognition
(Fig. 12), where the red bounding box denotes the identi-
fied ventricle, and the number shown by goal represents the
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FIGURE 12. Left ventricular recognition under various circumstances.

probability of the ventricle identified. As shown in Fig. 12(a),
when the heat valve is open, the left ventricle and left atrium
are connected to each other, thereby reducing the difference
between grayscale values. Accordingly, if the conventional
method is used, inaccurate recognition occurs. If our method
is used, the left ventricle and its initial position can be accu-
rately identified and segmented. Figure 12(b) shows an image
of a closed heart valve, Fig. 12(c) shows an image of a broken
left ventricle, and Fig. 12(d) shows an image where the

FIGURE 13. Left ventricular segmentation under various circumstances.

left ventricle changes substantially. According to the results,
regardless of how the ventricle changes, the proposed method
can be employed to accurately recognize the left ventricle and
identify its initial position.

B. RESULTS OF LEFT VENTRICULAR SEGMENTATION
Figure 13 presents the results of left ventricular segmentation.
According to the results, for various patients and various
cardiac phases, the proposed method can be used to accu-
rately segment the contours of the left ventricle.
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C. PERFORMANCE ANALYSIS
In this study, we used four assessment indicators to assess the
effectiveness of the proposed method: Sørensen–Dice coeffi-
cient (‘‘Dice’’ hereafter) [17], MAD [18], HD [19], Jaccard
coefficient [32]. Dice is a function of similarity between two
sets and is used to calculate the similarity between two sample
sets, expressed as follows:

Dice (A,B) =
2 |A ∩ B|
|A| + |B|

(6)

where A denotes the contour segmented by the researchers
and B denotes the contour provided by a doctor. The value of
Dice is between 0 and 1 (1 = the two contours completely
overlap; 0 = the two contours do not overlap at all). A high
Dice value denotes high similarity between the two sets. The
MAD represents the mean of the average deviation value for
Set A and the average deviation value for Set B, expressed as
follows:

MAD =
1
2

{
1
NA

∑
a∈A

d (a,B)+
1
NB

∑
b∈B

d (b,A)
}

(7)

A lower MAD value indicates higher similarity between
the two contours. The HD is a point-feature-matchingmethod
that does not establish one-to-one correspondence between
points and is used only to calculate the similarity (maximum
distance) between two sets. Therefore, this method can be
used to effectively process feature points. The HD between
A and B is expressed as follows:

HD = max
{
max
a∈A

d (a,B) ,max
b∈B

d (b,A)
}

(8)

A lower HD value indicates higher similarity between the
two sets [19]. The calculations of the MAD and HD are not
influenced by the number of values in the two sets. Therefore,
the MAD and HD are efficient and accurate assessment indi-
cators. Table 1 presents the segmentation effectiveness of the
aforementioned three indicators (Dice, MAD, and HD) used
to segment the cardiac ultrasound images of the 15 patients
in the testing set. The results showed that all three indicators
were effective and no substantial differences were observed
among the patients. Therefore, the proposed method was
highly accurate and stable.

D. COMPUTATION TIME
In this experiment, the device is with the CPU of AMD
Phenom II X6 1055T Processor 2.8GHz, 8G RAM, and
VGA card of NVIDIA GeForce GTX 960 (CUDA v6.5).
Programming languages used are Matlab (version R2016b)
and Microsoft Visual Studio (version 2013). The amount of
execute time required for the proposed method is described as
follows: The time to perform anisotropic diffusion for image
enhancement and smoothing is 0.01 sec. When proposals are
set to 300, the speed for recognizing a cardiac ultrasound
image of the left ventricle is approximately 0.02 sec. on aver-
age. The speed for segmenting the left ventricle is 2–3 sec..
Overall, the amount of time required to process an ultrasound

TABLE 1. Segmentation effectiveness.

image is 2–3 sec. on average. Notably, left ventricular seg-
mentation requires multiple iterations, and thus requires more
time.

E. COMPARISONS WITH FOUR STATE-OF-THE-ART
APPROACHES
Table 2 shows the results of a comparison between the
proposed method, including single-fold (listed in Table 1)
and three-fold cross-validation, and four state-of-the-art
approaches. In the approach proposed byBosch et al. [28], the
processing speed and HD were excellent but a large training
set was required to train a model. In addition, temporal phases
were employed to judge the position of the left ventricle;
therefore, this method relied on a priori knowledge and was
unstable. The approach proposed by Qin et al. [29] was
excellent. The level-set segmentation method was unsuper-
vised and did not require a training set. However, sparse
matrix transformation was required to identify the right ven-
tricle. Accordingly, a large training set and a large amount
of processing time were required. Because a level set was
used, the parameters needed to be readjusted for a dra-
matic cardiac change, which would lead to the results being
unstable. In the approach proposed by Carneiro and Nasci-
mento [30], the minimum training set containing 20 images
was used to establish a model; however, this approach did
not yield accurate segmentation results. A model based on
a training set containing 496 images was eventually estab-
lished. The approach proposed by Hansson et al. [31] was an
unsupervised segmentation method, and thus training was not
required, which resulted in considerable segmentation errors.
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TABLE 2. Comparison results of proposed method and four state-of-the-art approaches.

Overall, the method proposed in the present study can be
used to rapidly and accurately process cardiac ultrasound
images. Because of concern of the computations, the pretreat-
ment processes were simple and the temporal costs were low.
In addition, the proposed method was stable without a priori
knowledge. Even if an image series contained imperfections,
the proposed method could be used to accurately recognize
and segment an image.

IV. CONCLUSION
In this study, we proposed a method that integrated the faster
region-based convolutional neural network and active shape
model to automatically recognize, segment and track left
ventricle in cardiac ultrasound image sequences, respectively.
Proposed improved adaptive anisotropic diffusion filters can
effectively reduce noise and reinforce image contours. The
proposed method can accurately and automatically segment
and track the left ventricle in cardiac ultrasound image
sequences. Compared with four state-of-the-art approaches,
the application of the proposed method to segment and track
a cardiac ultrasound image of the left ventricle produced
more accurate results. It can effectively aid and facilitate
the doctors to diagnose hearts beat irregularly. By using the
proposed method to quantify the cardiac ultrasound images,
we can also help the doctors to observe signs of heart disease
in patients and perform professional medical evaluation.

In future work, we intend to apply the proposed method
to analyze various medical (e.g., MRI images of the endo-
cardium and epicardium in the left ventricle, images of lung
and kidney tumors). We hope that this research can facilitate
disease diagnoses based on medical images.
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