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ABSTRACT This paper presents an adaptive distributed control method based on an iterative learning
scheme for a flexible manipulator to realize trajectory tracking and vibration reducing. The dynamical model
of the flexible manipulator is captured by partial differential equations (PDEs). The control objective is to
design a boundary controller and a distributed controller so that the motion of the flexible manipulator can
track a desired position, and the deflection can be suppressed simultaneously subjecting to system parameters
uncertainties and spatio-temporal distributed disturbances. A Lyapunov based stability analysis is carried out
to achieve stability of the controlled system. Finally, simulation results evaluate the validity of the derived
control scheme.

INDEX TERMS Distributed control, iterative learning control, adaptive control, flexible manipulator,
distributed parameter system.

I. INTRODUCTION
Robotic manipulators can fulfill various mission require-
ments, especially flexible robotic manipulators with the
characters of light weight, fast motion and low energy
consumption, which can be broadly to aerospace and medical
fields [1]–[4]. In the mathematical sense and considering
the spatial structure, the flexible manipulator is a kind of
distributed parameters system and should be described by
PDEs since the states of the system depend on both time
and spatial location, which complicates the control design
[5]–[9], [11]–[15].

For promoting the wide application of flexible robotic
manipulators, the development of various control methods
is of great significance to achieve high-precision trajec-
tory tracking and vibration reducing. Recently, the control
design and stability analysis of flexible mechanical systems
based on PDEs have achieved rapid development, especially
the vibration control of flexible manipulators [16]–[19].
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In [16], a boundary control law is proposed for a flexible
manipulator for angle tracking and vibration suppressing in
the presence of input backlash, and numerical simulations
and physical experiments demonstrate the effectiveness of the
control scheme. In [17], a boundary control is designed for
a flexible robot manipulator to suppress the vibration. And
neural network is used to eliminate the effects of dynamics
uncertainties and input deadzone in the actuators. In [18],
a PDE model and a boundary controller are presented for
a three-dimensional flexible manipulator system. Compared
with the boundary control, which only acts on the end of
the system in [16]–[19], the distributed control can always
achieve more satisfied control effect by applying the control
force to every point of the system. However, the research
results on the distributed control of flexible manipulators are
still insufficient.

In practical applications and industrial environments, robot
manipulators are always used to fulfill various repetitive
tasks yielding plenty of control methods [20]. To achieve
high precision control performance, iterative learning control
(ILC) is widely used in robot domain. A lot of research works
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FIGURE 1. A typical flexible one-link manipulator.

have been documented for iterative learning control methods
used in various repeatable control processes [5], [21]–[29].
These above works about different ILC methods are based
on the ordinary differential equations (ODEs), which are not
applicable for flexible mechanical systems descried by PDEs.
For this reason, some researchers have tried to extend ILC to
PDEs. In [30], an ILC feed-forward and a proportional and
derivative control law are proposed for the unknown periodic
motion on the right end for a class of axially moving material
systems. In [31], [32], a P-type ILC scheme and a D-type ILC
scheme are used to design boundary controller for nonlinear
PDE systems. Boundary iterative learning control (BILC)
schemes are proposed in [33] for flexible structures including
a flexible string, an Euler-Bernoulli beam and a Timoshenko
beam. The BILC schemes can suppress the vibration under
varying disturbances. In [34], a hyperbolic tangent function
is used to design a BILC scheme for an Euler-Bernoulli
beam in the presence of input constraint. The above BILC
schemes cannot achieve trajectory tracking and vibration sup-
pressing of the flexible manipulators simultaneously. In [35],
a BILC scheme is proposed for a flexible manipulator to track
the desired trajectory and suppress the vibration. However,
the distributed disturbances are not considered in this paper,
which will seriously affect the control performance. Though
most of the above researches force on the boundary control
design, sometimes boundary control cannot achieve desirable
control effect compared with distributed control. As far as we
know, the distributed control of flexible mechanical systems
using an iterative learning scheme is currently missing in the
literature of control for PDEs.

In this paper, a state feedback structure and an adaptive
term are proposed to address the problem of parameter uncer-
tainty and spatially distributed disturbances. The Lyapunov
direct method is used to prove the stability of the system.
Contributions of this paper are given as follows: (1) An
adaptive distributed control based on an iterative learning
scheme is designed for a flexible manipulator for trajec-
tory tracking and vibration reducing. Under the proposed
controller, the position tracking error and the tail vibration
can eventually converge to zero; (2) Parameter uncertainties

as well as spatio-temporal distributed disturbances are both
considered in the control design for practical consideration.

The paper is structured as follows. The problem formu-
lation is given in Section II. In Section III, an adaptive
distributed control based on the iterative learning scheme is
designed for a flexible manipulator. Numerical simulations
are carried out in Section IV, and the results demonstrate the
validity. A conclusion is drawn in Section V.

II. PROBLEM STATEMENT
A. PDE DYNAMIC MODEL
As shown in Fig.1, X − Y is the inertial reference coordinate
system, and x − y the body-fixed coordinate system attached
to the flexible link. Let l be the total length of the beam, t be
the time, x be the position, EI be the bending stiffness of the
beam, Ih be the hub inertia, ρ be the mass of the unit length,m
be the point mass tip payload, θ (t) be the angular position of
the shoulder motor, θd be the constant ideal angular position,
f (x, t) be the distributed spatio-temporal disturbance and d(t)
be a vector containing the system parametric uncertainty
and external disturbances. To control the flexible manipu-
lator, F(x, t) is the distributed control input which can be
implemented by some piezoelectric actuators, and u(t) is the
control torque which can be realized by the shoulder motor.
w(x, t) is the elastic deflection, and the position vector p(x, t)
respective to the frame X − Y is described by

p(x, t) =
(
pX (x, t)
pY (x, t)

)
=

(
x cos θ − w(x, t) sin θ
x sin θ + w(x, t) cos θ

)
Assuming the elastic deflection of the flexible manipulator

is small, the total displacement r(x, t) of a point p(x, t) can
be described as a function of both the angular position θ (t)
and elastic deflection w(x, t) [36]:

r(x, t) = xθ (t)+ w(x, t) (1)

The kinetic energy of the flexible manipulator Eki(t) can
be represented as

Eki(t) =
1
2
Ihθ̇ (t)2 +

ρ

2

∫ l

0

(
ṗ2X (x, t)+ ṗ

2
Y (x, t)

)
dx (2)

+
1
2
m
(
ṗ2X (l, t)+ ṗ

2
Y (l, t)

)
(3)
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The potential energy Epo can be obtained from

Epo(t) =
1
2

∫ l

0
EIw2

xx (x, t) dx (4)

The virtual work done on the system is given by

δW (t) = (u(t)+ d(t)) δθ (t) (5)

+

∫ l

0
(F(x, t)+ f (x, t)) δw (x, t) dx (6)

We then use the Hamilton’s principle∫ t2

t1
(δEki(t)− δEpo(t)+ δW (t))dt = 0 (7)

where δ (·) represents the variation of (·), and obtain the
governing equation

Ihθ̈ (t)− EIwxx(0, t) = u(t)+ d(t) (8)

ρ(xθ̈ (t)+ ẅ(x, t))+EIwxxxx(x, t) = F(x, t)+ f (x, t) (9)

and the boundary conditions

mẅ(l, t)+ mlθ̈ (t)− EIwxxx(l, t) = 0 (10)

w(0, t) = wx(0, t) = wxx(l, t) = 0 (11)

Remark 1: For clarity, the following notations are intro-
duced:

(∗)x =
∂(∗)
∂x , (∗)xx =

∂2(∗)
∂x2

, (∗)xxx =
∂3(∗)
∂x3

, (∗)xxxx =
∂4(∗)
∂x4

,

(∗̇) = ∂(∗)
∂t , (∗̈) =

∂2(∗)
∂t2

Remark 2: The variables θ (t), w (x, t), u(t), F(x, t), d(t)
and f (x, t) are denoted as θk (t),wk (x, t), uk (t), Fk (x, t), dk (t)
and fk (x, t) respectively, where k ∈ N is the iteration number.

B. PRELIMINARIES
Some necessary assumptions are given in this part:
Assumption 1 [6], [37]: The vector dk (t) is bounded, and

there is a positive constant d̄ meeting the condition |dk (t)| ≤
d̄ ∀t ∈ [0,T ].
Assumption 2 [34], [38]: The distributed spatio-temporal

disturbance fk (x, t) are assumed to be bounded, and there
exist a constant f̄ ∈ R+ satisfying the condiation
‖fk (x, t)‖2 ≤ f̄ , ∀(x, t) ∈ [0, l]× [0,∞).
Assumption 3 [35]:We assume that the initial conditions

of the system can be reset for each iteration such that the
initial conditions of the system are set to satisfy the following
equalities: θd (0) − θk (0) = 0 and wk (x, 0) = ẇk (x, 0) = 0
for all k ∈ Z+.
Remark 3: In fact, the resetting condition in Assumption 3

can be relaxed to a certain extent if the alignment condition is
satisfied [24], i.e., V (0) = Vk−1(T ). That is we can start the
flexible beam from where it was stopped at the last operation
instead of bringing it to the same initial position at each
operation.

III. ADAPTIVE DISTRIBUTED ILC DESIGN AND ANALYSIS
This section aims to design a boundary control uk (t) and
a distributed control Fk (x, t) for angle tracking and vibra-
tion attenuation simultaneously under the circumstances of
unknown system parameters and distributed disturbances.
To achieve this, an iterative learning scheme is used to design
the control method, and the Lyapunov’s criterion is exploited
to analyze and demonstrate the learning convergence.
Consider the kth iterative operation for system (8)-(11)

with assumptions (1)-(3), the ILC laws are designed as

uk (t) = −k1ek (t)− k2ėk (t)+ k3

∫ l

0
xwk (x, t)dx

− δ̂k (t) sgn (ėk (t)) (12)

Fk (x, t) = −k3wk (x, t)−k4ṙk (x, t)−σ̂k (x, t) sgn (ṙk (x, t))

(13)

where k1, k2, k3, k4 > 0, and the adaptive laws

δ̂k (t) = δ̂k−1 (t)+ γ1ėk (t)sgn (ėk (t)) (14)

σ̂k (x, t) = σ̂k−1 (x, t)+ γ2ṙk (x, t) sgn (ṙk (x, t)) (15)

where γ1, γ2> 0, δ̂−1 (t) = 0, σ̂−1 (x, t) = 0 and ek (t) =
θk (t)− θd . Since θd is a constant, we have ėk (t) = θ̇k (t)−
θ̇d = θ̇k (t).
Theorem 1: Suppose the system (8)-(11) satisfies assump-

tions (1)-(3). Consider the flexible manipulator performing
repetitive tasks with the designed distributed control scheme
(12) - (15), then the following should hold.

1) ek (t), ėk (t) , ṙk (x, t), wk (x, t), uk (t) and Fk (x, t) are all
bounded for all k ∈ Z+.
2) lim

k→∞
ek (t) = lim

k→∞
ėk (t) = 0 and lim

k→∞
wk (x, t) =

lim
k→∞

ẇk (x, t) = 0, ∀(x, t) ∈ [0, l]× [0,T ].

Proof: The proof process can be found in
Appendix 1.
Therefore, the angle tracking and vibration attenuation

can be achieved simultaneously under the proposed adaptive
distributed ILC considering unknown system parameters and
distributed disturbances.
Remark 4: In practice, we usually choose the hyperbolic

tangent function tanh(t) instead of the signal function sgn(t)
to obtain a smooth input without chattering phenomena.
The smooth iterative learning control scheme is designed as
follows

uk (t) = −k1ek (t)− k2ėk (t)+ k3

∫ l

0
xwk (x, t)dx

− δ̂k (t) tanh (ėk (t)) (16)

Fk (x, t) = −k3wk (x, t)−k4ṙk (x, t)−!σ̂k (x, t) tanh (ṙk (x, t))

(17)

and the adaptive laws

δ̂k (t) = δ̂k−1 (t)+ γ1ėk (t)tanh (ėk (t)) (18)

σ̂k (x, t) = σ̂k−1 (x, t)+ γ2ṙk (x, t) tanh (ṙk (x, t)) (19)
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FIGURE 2. Without control input.

It is worth noting that if use the hyperbolic tangent function
in the proposed scheme, we will achieve better control per-
formance, however, the stability of the smooth scheme needs
further investigation and will be part of our future work.

IV. NUMERICAL SIMULATIONS
Numerical simulations are used to test the control effect
with the adaptive distributed iterative learning control laws
(12) - (15). The desired angle θd = 0.5(rad). The disturbance
dk (t) is given as dk (t) = 0.1 ∗ rand ∗ sin(t), rand is a random
function. The unknown distributed spatio-temporal distur-
bance along the flexible manipulator fk (x, t) is described as
fk (x, t) = 0.05 + 0.01 sin(0.1πxt) + 0.03 sin(0.3πxt) +
0.05 sin(0.5πxt). The initial conditions are θ (0) = 0(rad),
w(x, 0) = 0.01x2 and ẇ(x, 0) = 0. The parameters are listed
in Table 1.

TABLE 1. Parameters of a flexible manipulator.

For the sake of analysis, the maximal position tracking
error emax(k) = supt∈[0,T ] |ek (t)|, the maximal end-point
deflection wlmax(k) = supt∈[0,T ] |wk (l, t)| and the maximal

FIGURE 3. Angular position of shoulder motor in the k
(
1 − 5

)
th iteration.

FIGURE 4. Deflection of the flexible manipulator w(x,t) at the
5th iteration.

distributed deflection wmax(x, k) = supt∈[0,T ] |wk (x, t)| are
firstly defined.

In order to prove the control effect, the following three
response scenarios for the system are presented:
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FIGURE 5. The vibration of w(l,t) in the k
(
1 − 5

)
th iteration.

FIGURE 6. Maximal position tracking error emax(k) versus the number of
iterations.

Case 1: Without control input: uk (t) = 0, Fk (x, t) = 0.
Case 2: With the proposed control (12) - (15): k1 = 10,

k2 = 10, k3 = 10, k4 = 10, γ1 = 0.01, γ2= 0.01 and itera-
tion number k = 5.

FIGURE 7. Maximal deflection wl max(k) versus the number of iterations.

FIGURE 8. Maximal deflection wmax(x, k) versus the number of
iterations.

Case 3: With the proposed control (16) - (19): k1 = 10,
k2 = 10, k3 = 10, k4 = 10, γ1 = 0.01, γ2= 0.01 and itera-
tion number k = 5.
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FIGURE 9. Control torque u(t) at the 5th iteration.

FIGURE 10. Distributed control F (x, t) at the 5th iteration.

Simulation results without control are shown in the Fig.2.
We can clearly see that the tracking error and distributed
deflections are large.

The simulation results of cases 2 and 3 are shown in
Figs. 3-10. Fig. 3 shows the angular position of the shoulder
motor. The distributed deflection w(x, t) at the 5th itera-
tion are given in Fig. 4. Fig. 5 shows the end-point deflec-
tion w(l, t) in the k (1− 5)th iteration. And Fig. 6 - 8
shows the maximal errors emax(k), wlmax(k) and wmax(x, k),
respectively.

From Figs. 3-8, it is clear that the system is unstable in
Case 1. With the proposed control in (11)-(14) and (15)-(18),
the control effect can both be satisfactory at the 5th iteration.
Besides, the tracking error can converge at a fast rate and
the distributed deflection wk (x, t) has an obvious decreasing
trend in both Cases 2 and 3.

As we can see from Figs. 9 and 10, the control inputs with
the control scheme (16) - (19) are smoother than with the
control scheme (12) - (15), illustrating the virtue of improved
control in (15)-(18).

Form above analysis, the proposed distributed control
scheme can realize the angle tracking and vibration abate-
ment of the flexible manipulator, and the control effect is
improved incrementally with the increase of the iteration
number. In addition, choosing the function tanh(t) instead
of sgn(t) can confine the undesired chattering have faster
learning convergence. Therefore, the effectiveness of control
in (15) - (18) and (11) - (14) are verified.

V. CONCLUSION
This study proposed a DILC scheme for a flexible manip-
ulator with unknown parameters and spatio-temporal dis-
tributed disturbances. The designed adaptive DILC scheme
combining a PD feedback structure and an adaptive term can
guarantee that the motion of the flexible manipulator can
track a desired reference position, and the elastic vibration
is suppressed simultaneously. Comparing with the existing
control methods, the advantages of this control scheme are
that: (1) it can solve the problems of unknown parameters and
distributed disturbances; and (2) it does not require a priori
knowledge of the physical parameters. Finally, simulation
results are presented to demonstrate the control perfor-
mance. Future topics include exploiting iterative learning
control of flexible manipulators with time-varying output
constraints [39], and using other intelligent optimization
methods, such as adaptive dynamic programming [40]–[43]
and other intelligent learning algorithm [42], [44], [45].

APPENDIX A PROOF OF THEOREM 1
Define a Lyapunov candidate function as

0k (t) = 3k (t)+
1
2

∫ t

0
γ−11 δ̃2k (τ )dτ

+
1
2

∫ t

0

∫ l

0
γ−12 σ̃ 2

k (x, τ ) dxdτ (20)

with δ̃k (t) = δk (t)− δ̂k (t) and σ̃k (x, t) = σk (x, t)− σ̂k (x, t),
where δk (t), σk (x, t) are unknown vectors. δ̂k (t) and σ̂k (x, t)
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are the estimated values of δk (t) and σk (x, t). The unknown
vectors δk (t) and σk (x, t) are defined as δk (t) = d̄ and
σk (x, t) = f̄ .

The term 3k (t) in (20) is chosen as follows

3k (t) = W1,k (t)+W2,k (t) (21)

where

W1,k (t) = frac12
∫ l

0
ρ ṙ2k (x, t)dx+

1
2
EI
∫ l

0
w2
k xx(x, t)dx

(22)

W2,k (t) =
1
2
Ihė2k (t)+

1
2
k1e2k (t)+

1
2
mṙ2k (l, t)

+
1
2
k3

∫ l

0
w2
k (x, t)dx (23)

Then, 3k (t) can be rewritten as

3k (t) = 3k (0)+
∫ t

0

(
Ė1,k (τ )+ Ẇ2,k (τ )

)
dτ (24)

where

Ẇ1,k (t) =
∫ l

0
ρ ṙk (x, t)r̈k (x, t)dx

+EI
∫ l

0
wkxx(x, t)ẇkxx(x, t)dx

=

∫ l

0
(Fk (x, t)+ fk (x, t)) ṙk (x, t)dx

−EIwkxxx(l, t)lθ̇k (t)− EIwkxx(0, t)θ̇k (t)

−EIwkxxx(l, t)ẇk (l, t)

=

∫ l

0
(Fk (x, t)+ fk (x, t)) ṙk (x, t)dx

−EIwkxxx(l, t)ṙk (l, t)− EIwkxx(0, t)θ̇k (t)

and

Ẇ2,k (t)

= Ihėk (t)ëk (t)+ mṙk (l, t)r̈k (l, t)

+ k1ek (t)ėk (t)+k3

∫ l

0
wk (x, t)ẇk (x, t)dx

= Ihėk (t)ëk (t)+ mṙk (l, t)r̈k (l, t)+k1ek (t)ėk (t)

+ k3

∫ l

0
wk (x, t)ṙk (x, t)dx−k3

∫ l

0
xθ̇k (t)wk (x, t)dx

Since

Ẇ1,k (t)+Ẇ2,k (t)

=

∫ l

0
(Fk (x, t)+ fk (x, t)) ṙk (x, t)dx

−EIwkxxx(l, t)ṙk (l, t)− EIwkxx(0, t)θ̇k (t)

+ Ihėk (t)ëk (t)+ mṙk (l, t)r̈k (l, t)+ k1ek (t)ėk (t)

+ k3

∫ l

0
wk (x, t)ṙk (x, t)dx − k3

∫ l

0
xθ̇k (t)wk (x, t)dx

= ėk (t)
(
uk (t)+ kpek (t)+ dk (t)−k3

∫ l

0
xwk (x, t)dx

)

+

∫ l

0
(Fk (x, t)+ fk (x, t)) ṙk (x, t)dx

+ k3

∫ l

0
wk (x, t)ẇk (x, t)dx

We can get

3k (t)

= 3k (0)+
∫ t

0
ėk (τ )

(
uk (τ )+ kpek (τ )

)
dτ

−

∫ t

0
ėk (τ )

(
k3

∫ l

0
xwk (x, τ )dx + dk (τ )

)
dτ

+

∫ t

0

∫ l

0
(Fk (x, t)+ fk (x, t)+ k3wk (x, t)) ṙk (x, t)dxdτ

(25)

Considering Assumptions 1 and 2, we obtain

ėk (t)dk (t) ≤ |ėk (t)| d̄ = d̄ ėk (t)sgn (ėk (t)) (26)

and

fk (x, t)ṙk (x, t)≤ f̄ |ṙk (x, t)|= f̄ ṙk (x, t)sgn (ṙk (x, t)) (27)

Using the inequalities (26) and (27), (25) can be written as

3k (t)

≤ 3k (0)+
∫ t

0
ėk (τ ) (uk (τ )+ k1ek (τ ))dτ

+

∫ t

0
ėk (τ )

(
−k3

∫ l

0
xwk (x, τ )dx + d̄sgn(ėk (τ ))

)
dτ

+

∫ t

0

∫ l

0
(F(x, τ )+ k3wk (x, τ )) ṙk (x, τ )dxdτ

+

∫ t

0

∫ l

0

(
f̄ sgn (ṙk (x, τ ))

)
ṙk (x, τ )dxdτ (28)

Substituting (12) and (13) into (28) yields

3k (t)

≤ 3k (0)−
∫ t

0
ėk (τ ) (k2ėk (τ ))dτ

−

∫ t

0
ėk (τ )

(
δ̂k (τ )sgn (ėk (τ ))− d̄sgn(ėk (τ ))

)
dτ

−

∫ t

0

∫ l

0

(
k4ṙk (x, τ )+ f̄ sgn (ṙk (x, τ ))

)
ṙk (x, τ )dxdτ

−

∫ t

0

∫ l

0

(
σ̂k (x, τ ) sgn (ṙk (x, τ ))

)
ṙk (x, τ )dxdτ (29)

Considering (20) with k = 0, we get

00 (t) = 30 (t)+
1
2

∫ t

0
γ−11 δ̃20 (τ )dτ

+
1
2

∫ t

0

∫ l

0
γ−12 σ̃ 2

0 (x, τ ) dxdτ (30)
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Since the vectors δk (t) and σk (x, t) are defined as δk (t) = d̄
and σk (x, t) = f̄ . The derivative of (30) is

0̇0 (t)

= 3̇0 (t)+
1
2
γ−11 δ̃20 (t)+

1
2

∫ l

0
γ−12 σ̃ 2

0 (x, t) dx

≤ ė0(t)
(
−k2ė0(t)+ δ̃0 (t) sgn (ė0(t))

)
+

∫ l

0
(−k4ṙ0(x, t)+ σ̃0 (x, t) sgn (ṙ0(x, t))) ṙ0(x, t)dx

+
1
2
γ−11 δ̃20 (t)+

1
2

∫ l

0
γ−12 σ̃ 2

0 (x, t) dx (31)

With δ̂−1 (t) = 0, σ̂−1 (x, t) = 0, δ̂0 (t) =

δ̂−1 (t) + γ1ė0 (t) sgn (ė0 (t)) and σ̂ 0 (x, t) = σ̂−1 (x, t) +
γ2ṙ0 (x, t) sgn (ṙ0 (x, t)), we have

0̇0 (t) ≤ −k2ė20(t)+
(
δ̂0(t)+

1
2
δ̃0(t)

)
γ−11 δ̃0(t)

+

∫ l

0

(
σ̂0 (x, t)+

1
2
σ̃0 (x, t)

)
γ−12 σ̃0 (x, t) dx

− k4

∫ l

0
ṙ20 (x, t)dx (32)

Using δ̂0 (t) = δk (t) − δ̃0 (t) and σ̂0 (x, t) = σk (x, t) −
σ̃0 (x, t), Eq. (32) leads to

0̇0 (t) ≤ −k2ė20(t)−
1
2
δ̃0(t)γ

−1
1 δ̃0(t)+ δ0(t)γ

−1
1 δ̃0(t)

− k4

∫ l

0
ṙ20 (x, t)dx −

1
2

∫ l

0
σ̃0 (x, t) γ

−1
2 σ̃0 (x, t) dx

+

∫ l

0
σ0 (x, t) γ

−1
2 σ̃0 (x, t) dx (33)

Using Young’s inequality, we have

δ0(t)γ
−1
1 δ̃0(t) ≤ λ1

(
γ−11 δ̃0(t)

)2
+

1
4λ1

δ0
2(t) (34)

and

σ0 (x, t) γ
−1
2 σ̃0 (x, t)≤λ2

(
γ−12 σ̃0 (x, t)

)2
+

1
4λ2

σ0
2 (x, t)

(35)

for any λ1, λ2 > 0.
Substituting (34) and (35) into (33), we have

0̇0 (t) ≤ −k2ė20(t)−
1
2
δ̃0(t)γ

−1
1 δ̃0(t)+ λ1

(
γ−11 δ̃0(t)

)2
− k4

∫ l

0
ṙ20 (x, t)dx −

1
2

∫ l

0
σ̃0 (x, t) γ

−1
2 σ̃0 (x, t) dx

+

∫ l

0
λ2

(
γ−12 σ̃0 (x, t)

)2
dx +

1
4λ1

δ0
2(t)

+

∫ l

0

1
4λ2

σ0
2 (x, t) dx

Hence, we have

0̇0 (t) ≤ −k2ė20(t)− ρ1δ̃
2
0(t)+

1
4λ1

δ
2

max − k4

∫ l

0
ṙ20 (x, t)dx

− ρ2

∫ l

0
σ̃ 2
0 (x, t) dx +

1
4λ2

lσ
2

max (36)

with δmax = Supt∈[0,T ]δ0(t), σmax = Supσ0(x, t), ∀(x, t) ∈
[0, l] × [0,T ], ρ1 = 1

2γ
−1
1 − λ1γ

−2
1 , ρ2 = 1

2γ
−1
2 − λ2γ

−2
2

and λ1 < 1
2γ1, λ2 <

1
2γ2.

Then, we can conclude that

0̇0 (t) ≤
1
4λ1

δ
2

max +
1
4λ2

lσ
2

max (37)

which implies that 00(t) is uniformly continuous and thus
bounded over [0,T ].
From the definition of 0k (t), for the j − 1th iteration we

can get

0k−1 (t) = 3k−1 (t)+
1
2

∫ t

0
γ−11 δ̃2k−1 (τ )dτ

+
1
2

∫ t

0

∫ l

0
γ−12 σ̃ 2

k−1 (x, τ ) dxdτ (38)

The difference of 0k (t) is given by

10k

= 0k − 0k−1

= 3k −3k−1 +
1
2

∫ t

0
γ−11

(
δ̃2k (τ )− δ̃

2
k−1 (τ )

)
dτ

+
1
2

∫ t

0

∫ l

0
γ−12

(
σ̃ 2
k (x, τ )− σ̃

2
k−1 (x, τ )

)
dxdτ

= 3k −3k−1 −
1
2

∫ t

0
γ−11

(
δ̄2k (τ )+ 2δ̃k (τ ) δ̄k (τ )

)
dτ

−
1
2

∫ t

0

∫ l

0
γ−12

(
σ̄ 2
k (x, τ )+ 2σ̃k (x, τ ) σ̄k (x, τ )

)
dxdτ

(39)

where δ̄k (t) = δ̂k (t) − δ̂k−1(t) and σ̄k (x, t) = σ̂k (x, t) −
σ̂k−1(x, t).
Substituting (14), (15) and (29) into (39), we obtain

10k (t) ≤ −3k−1(t)−
1
2

∫ t

0
(γ−11 δ̄2k (τ )+ 2k2ė2k (τ ))dτ

−
1
2

∫ t

0

∫ l

0
γ−12 σ̄ 2

k (x, τ )+2k4ṙ
2
k (x, τ )dxdτ ≤0

(40)

Therefore, 0k (t) is a non-increasing sequence, that is
0k (t) ≤ 0k−1(t). Hence, 0k (t) is bounded for ∀t ∈ [0,T ].

So W1,k (t), W2,k (t),
∫ t
0 γ
−1
1 δ̃2k (τ )dτ and

∫ t
0

∫ l
0 γ
−1
2 σ̃ 2

k
(x, τ ) dxdτ are bounded. Hence, ek (t), ėk (t), rk (x, t),
ṙk (x, t), uk (t), Fk (x, t) are all bounded for all k ∈ Z+ and
(x, t) ∈ [0, l]× [0,T ].
Then, we can write 0k (t) as follows

0k (t) = 00(t)+
k∑
j=1

10j(t) (41)
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and using (40) we have

0k (t) ≤ 00(t)−
k∑
j=1

3j−1(t) (42)

≤ 00(t)−
1
2

k∑
j=1

(
W1,j−1(t)+W2,j−1(t)

)
(43)

which implies that

k∑
j=1

(
W1,j−1(t)+W2,j−1(t)

)
≤ 2 (00(t)− 0k (t)) ≤ 200(t)

(44)

Hence, lim
k→∞

W1,k (t) = lim
k→∞

W2,k (t) = 0, ∀t ∈ [0,T ],

since 0k (t) is bounded for all k ∈ Z+ and t ∈ [0,T ].
Considering Eqs. (22) and (23), we obtain lim

k→∞
ek (t) =

lim
k→∞

ėk (t) = 0, lim
k→∞

wk (x, t) = lim
k→∞

ẇk (x, t) = 0 for all

k ∈ Z+ and (x, t) ∈ [0, l]× [0,T ].
From the above analysis it can be seen that the proposed

control laws can guarantee that angular position tracking
error and the amplitude of elastic vibration converge arbitrar-
ily close to zero with the increase of the iteration number.
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