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ABSTRACT Person re-identification in camera sensor networks is a challenging issue due to significant
appearance variations of pedestrian images captured by different camera sensors. The contextual information
of pedestrian images is a vital cue to overcome appearance variations. However, many existing approaches
learn the distance metric in a global way or restrict to corresponding sub-regions, which discards the
contextual information of pedestrians or learns the contextual information inadequately. In this paper,
we propose an effective method to tackle the problem for person re-identification in camera sensor networks.
Firstly, we propose the Contextual Region-based Metric Learning (CRML) to fully learn the contextual
information in a local manner, which simultaneously utilizes three kinds of sub-region pairs to learn a
discriminative transformation matrix. Secondly, we employ the greedy axis rotation algorithm to optimize
the transformation matrix in the framework of mutual information. Thirdly, in the process of local similarity
integration, we further propose the Context-Constrained Match (CCM) to overcome the misalignment
problem by seeking the optimal match in the neighboring sub-regions. Fourthly, we further present the
nCRML to avoid the dimensionality curse and fuse similarity scores in different low-dimensional subspaces.
The experimental results on three challenging datasets (VIPeR, QMUL GRID and CUHK03) demonstrate
the effectiveness of our method.

INDEX TERMS Person re-identification, contextual region-based metric learning, context-constrained
match, camera sensor networks.

I. INTRODUCTION
Person re-identification in camera sensor networks [1]–[3] is
an essential issue in the filed of intelligent surveillance and
its target is to spot the same person under different camera
views as shown in Fig. 1. It has attracted much attention due
to its wide range of applications, such as person retrieval,
group behavior analysis, long-term person tracking, and so on
[4], [5]. However, person re-identification in camera sensor
networks is a very challenging task because the same pedes-
trian observed in different camera views often undergoes
significant variations in illumination, poses, viewpoints and
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occlusions, which usually results in extra-personal difference
even larger than intra-personal difference.

To deal with the above-mentioned challenges, many
different methods have been proposed, and the most com-
mon research directions are feature representation and met-
ric learning. Some researchers focus on designing features
that are discriminative to distinguish extra-personal differ-
ence and robust against intra-personal difference. Texture
and color features are commonly used in feature represen-
tation. There are many useful features, like Local Maximal
Occurrence (LOMO) [6], Gaussian of Gaussian (GOG) [7],
etc, which achieves promising performance for person
re-identification. Furthermore, recently deep learning meth-
ods [8], [9] obtain promising results in feature learning. As for
person re-identification [10]–[13], many researchers utilize
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FIGURE 1. Person re-identification in camera sensor networks.

the output of fully connected layer of deep model to represent
pedestrian images, and then calculate the similarity between
pedestrian features. The similarity calculation is vital to the
performance of person re-identification. So, in this paper,
we mainly focus on designing an effective metric learning
method to calculate the similarity based on the extracted
pedestrian features.

Metric learning could learn a distance metric to adapt
to different data distributions. It has been applied to many
research fields, such as face recognition, ground-based cloud
classification, scalable image retrieval and so on [14], [15].
Inspired by its extensive applications, many researchers pro-
pose metric learning methods for person re-identification in
order to ensure high similarity between images of the same
pedestrian and low similarity between images of different
pedestrians. The metric learning methods can be divided into
global metric learning and local metric learning. The repre-
sentative global metric learning methods include Large Mar-
gin Nearest Neighbor (LMNN) [16], Probabilistic Relative
Distance Comparison (PRDC) [17], Cross-view Quadratic
Discriminant Analysis (XQDA) [6], Kernelized Random
KISS (KRKISS) [18] and so on. The global metric learning
methods learn the similarity between image pairs in a holistic
way, which discards the contextual information of pedes-
trians. The contextual information reflects the spatial struc-
ture of body parts and therefore it is essential to overcome
viewpoint and pose variations. The local metric learning
methods [19]–[21] focus on learning the relationship of body
parts and the contextual information of pedestrian. However,
most local metric learning methods are restricted to the lim-
ited contextual information learned from corresponding sub-
region pairs.

In this paper, we propose a novel metric learning method
named Contextual Region-based Metric Learning (CRML)
to learn the distance metric in a local manner for person
re-identification in camera sensor networks. Specifically,
to overcome the variations in viewpoints and poses, we define
three kinds of sub-region pairs (see in Fig. 2), i.e., intra-
region pairs, weak intra-region pairs and extra-region pairs,
which could model the completed relationship among
sub-regions including misalignment and correspondence.
Afterwards, we simultaneously utilize these three kinds of
sub-region pairs to fully learn the contextual information

FIGURE 2. Three kinds of sub-region pairs. (a) shows the corresponding
sub-region pairs belonging to the same pedestrian under different
camera sensors called intra-region pairs; (b) shows the m neighbouring
non-corresponding sub-region pairs belonging to the same pedestrian
under different camera sensors called weak intra-region pairs; (c) shows
the corresponding and non-corresponding sub-region pairs belonging to
different pedestrians under different camera sensors called extra-region
pairs.

for pedestrian images within the framework of mutual infor-
mation. We maximize the mutual information to obtain a
discriminative transformation matrix and correspondingly
employ the greedy axis rotation algorithm to optimize the
transformation matrix. We further present the nCRML to
avoid the dimensionality curse and fuse similarity scores
in different low-dimensional subspaces using several times
of Random Projection (RP) on sub-region features. In the
process of local similarity integration, we apply the Context-
Constrained Match (CCM) to further overcome the mis-
alignment problem caused by viewpoint and pose variations,
which locates sub-region pairs using the maximum similarity
in the neighborhood.

The rest of the paper is organized as follows. We first
review related work in Section II. In Section III, we show
the proposed CRML and nCRML in detail. In Section IV,
we utilize the proposed CCM to integrate the similarity scores
of sub-regions. Then, we compare our method with the state-
of-the-art methods on three public datasets in Section V.
Finally, we make a conclusion in Section VI.

II. RELATED WORK
Metric learning acts as a key step for person re-identification
in camera sensor networks. An ideal metric learning method
could yield higher similarity score for the image pairs belong-
ing to the same class than that of the image pairs belonging to
different classes. Global metric learning methods formulate
a holistic similarity score between pedestrian images, while
local metric learning methods learn the local similarity score
between image regions. Next, we review global and local
metric learning methods, respectively.

A. GLOBAL METRIC LEARNING
Many global metric learning approaches [16]–[18],
[22]–[25] have been proposed for person re-identification.
Weinberger et al. [16] propose the Large Margin Nearest
Neighbor (LMNN) based on the KNN rule. The goal of
LMNN is to learn aMahalanobis distance metric, which pulls
the pedestrian image with the k-nearest neighbors belonging
to the same identity and meanwhile pushes pedestrian images
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from different identities. Davis et al. [22] minimize the
differential relative entropy between two Gaussian distribu-
tions to learn the Mahalanobis distance function and then
utilize Bregman’s method to optimize the convex model.
Guillaumin et al. [23] learn a metric using the logistic
discriminant, which enables the distances between posi-
tive pairs smaller than that of negative pairs. Similarly,
Zheng et al. [17] propose the Probabilistic Relative Distance
Comparison (PRDC) model which maximizes the probability
of correct image pairs with a smaller distance than incor-
rect pairs. In [24], Koestinger et al. learn a distance metric
with equivalence constraints through a simple and effective
optimization strategy. Liao et al. [6] propose the Cross-view
Quadratic Discriminant Analysis (XQDA) to learn a discrim-
inative subspace and similarity measurement simultaneously.
Wang et al. [25] propose the EquiDistance constrainedMetric
Learning (EquiDML), in which the intra-person distance is
forced to be zero and meanwhile the inter-person distance is
fixed to a constant positive value. Zhao et al. [18] present the
Kernelized Random KISS (KRKISS) which could enhance
the Gaussian distribution of samples by converting original
features into kernelized features. However, the global metric
learning methods learn the metric using the whole pedestrian
images, and therefore they neglect the contextual information
provided by sub-regions.

B. LOCAL METRIC LEARNING
In order to impose the contextual information on sim-
ilarity measurement, the local metric learning methods
[19]–[21], [26] are proposed to learn the distance metric in
a local manner. Zhao et al. [19] apply adjacency constraints
to build dense correspondence between image pairs in a
patch level. Chen et al. [20] learn multiple sub-similarity
measurements for regions based on the polynomial feature
maps in order to take the spatial constraint into consider-
ation. Li et al. [21] learn a discriminative region-to-point
metric with positive regions generated from positive neigh-
bors. Yang et al. [26] exploit the privileged information
to learn a distance metric by building a locally adaptive
decision rule. However, these local metric learning methods
only learn the contextual information restricted to the corre-
sponding sub-region pairs, but always ignore the contextual
information provided by the non-corresponding sub-region
pairs. Our work takes advantage of three kinds of sub-region
pairs to fully learn the contextual information in a local
manner.

III. CONTEXTUAL REGION-BASED METRIC LEARNING
In this section, we first define the distance between sub-
region pairs of pedestrian images. Then, we utilize three kinds
of sub-region pairs to learn the transformation matrix in the
framework of mutual information. Finally, we introduce the
corresponding optimization algorithm to obtain the transfor-
mation matrix and further present the nCRML to avoid the
dimensionality curse.

A. DISTANCE BETWEEN SUB-REGION PAIRS
It could increase the model robustness against viewpoint and
pose variations when incorporating the contextual informa-
tion into the distance metric. In this paper, we present CRML
to fully learn the contextual information in a local manner
and learn the transformation matrix using three kinds of sub-
region pairs. We firstly partition each pedestrian image into
K sub-regions, where each sub-region is a horizontal strip.
We define the distance between a sub-region pair as

dk (xk , zk ) = (xk − zk )TA(xk − zk ), (1)

where xk ∈ Rd×1 and zk ∈ Rd×1 are the feature vectors
of the k-th sub-regions from an image pair. A = MMT is
a positive semi-definite matrix and M ∈ Rd×r (r < d) is the
transformation matrix satisfyingMTM = I .MTM = I could
avoid the trivial and the rank one solution.

From Eq. (1), we can see that the key issue is how to
obtain an effective transformation matrix. We introduce how
to learn the transformation matrix M by maximizing mutual
information in Section III-B, and correspondingly propose an
optimization algorithm in Section III-C.

B. CONTEXTUAL REGION-BASED METRIC LEARNING
In order to learn the contextual information between sub-
region pairs, we define three kinds of sub-region pairs,
i.e., intra-region pairs, weak intra-region pairs and extra-
region pairs, and the differences between the same kind of
sub-region pairs. Note that the intra-region pairs are the
corresponding sub-regions from the same pedestrian under
different visual sensors as shown in Fig. 2 (a), and we define
the difference between an intra-region pair as

1I = MT(xIk − z
I
k ), (2)

where xIk ∈ Rd×1 and zIk ∈ Rd×1 represent the feature
vectors of an intra-region pair. We regard the differences
between intra-region pairs as the positive sub-region samples
1I ∈ Rr×1 and assign the labels lI = 1. The weak intra-
region pairs denote the neighbouring non-corresponding
sub-region pairs belonging to the same pedestrian under dif-
ferent camera sensors as shown in Fig. 2 (b). We utilize the
parameter m to control the number of the weak intra-region
pairs so that they could provide the contextual information for
pedestrian images. The weak intra-region pairs can provide
weakly supervised information and spatial structure informa-
tion, which is beneficial to person re-identification in camera
sensor networks. We express the difference between a weak
intra-region pair as

1W = MT(xWk − z
W
k ), (3)

where xWk ∈ Rd×1 and zWk ∈ Rd×1 indicate the feature
vectors of a weak intra-region pair. The differences between
weak intra-region pairs are treated as weak positive sub-
region samples 1W ∈ Rr×1 and their labels lW are assigned
to 2. Finally, we define the extra-region pairs as the corre-
sponding and non-corresponding sub-region pairs belonging
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to the different identities under different camera sensors as
shown in Fig. 2 (c) and the difference between an extra-region
pair is defined as

1E = MT(xEk − z
E
k ), (4)

where xEk ∈ Rd×1 and zEk ∈ Rd×1 represent the feature
vectors of an extra-region pair. We regard the differences
between extra-region pairs as negative sub-region samples
1E ∈ Rr×1 and assign the labels lE = −1.

From the above formulations, we can see that directly
optimizing the transformation matrixM in Eq. (1) is difficult
because three kinds of sub-region pairs should be consid-
ered simultaneously. Hence, we optimize the transformation
matrix M in a roundabout way. We expect to maximize the
discriminative ability between different kinds of sub-region
pairs by optimizing the transformation matrix M . Under the
mutual information framework, the problem is defined as

max
M

I (vk ; lv)+ εI (ek ; le), (5)

where vk ∈ {1I ,1E} is a set that contains positive and neg-
ative sub-region samples, and lv ∈ {lI , lE }, i.e., lv ∈ {1,−1}.
ek ∈ {1W ,1E} is also a set includingweak positive and neg-
ative sub-region samples, and le ∈ {lW , lE }, i.e., le ∈ {2,−1}.
I is the mutual information which measures the degree of
dependence between two random variables. The larger the
value of the mutual information is, the greater the dependence
is between the features of sub-region samples and their labels.
Moreover, ε is the coefficient to balance the two kinds of
mutual information of Eq. (5).

Take the first item of Eq. (5) as an example. According to
the chain rules of entropy, I (vk ; lv) can be written in terms of
the differential entropy

I (vk ; lv) = H (vk )− H (vk |lv)

= H (vk )− P(lv = 1)H (1I )

−P(lv = −1)H (1E), (6)

In Eq. (6), we approximate differential entropyH (vk ) using
the positive and negative sub-region samples. Assuming that
the sub-region samples follow the Gaussian distribution,
we reformulate H (vk ) as

H (vk ) =
1
2
ln(2πe)rdet6lv , (7)

where det represents the determinant of a matrix, and 6lv is
the covariance matrix of all positive and negative sub-region
samples, which can be estimated from all1I and1E . Hence,
we approximate the objective Eq. (6) using

I (vk ; lv) = lndet6lv − µ1lndet6lI − ρlndet6lE , (8)

where 6lI and 6lE are the covariance matrices of positive
and negative sub-region samples, respectively, and µ1 and
ρ are the corresponding prior probabilities for positive and
negative sub-region samples. In the same way, the second
item of Eq. (5) is written as

I (ek ; le) = lndet6le − µ2lndet6lW − ρlndet6lE , (9)

where 6le is the covariance matrix of all weak positive and
negative sub-region samples, 6lW is the covariance matrix of
weak positive sub-region samples, and µ2 is the prior prob-
ability for weak positive sub-region samples. Note that there
is a rank deficiency problem in any of covariance matrices
in practice. Hence, we first determine the minimum rank η
among all covariance matrices, and use the product of the
top η large eigenvalues of each matrix to approximate its
determinant. Furthermore, the number of negative sub-region
samples is much larger than the number of positive and weak
positive sub-region samples, which may increase the risk
of over-fitting. To overcome the drawback, we simply set
µ1 = µ2 = ρ = 1/2.

C. OPTIMIZATION ALGORITHM
In this section, we optimize the objective function Eq. (5) to
obtain the transformationmatrixM . For simplicity, we denote
the objective function as 8(M ) in the following discussion.
We employ the greedy axis-rotating approach to search the

transformation matrix M iteratively that maximizes 8(M ).
Let M (t − 1) to be the estimation for M at iteration t − 1.
We seek matrix Y (t) ∈ SO(d), so that the estimation at step t
is M (t) = Y (t)M (t − 1), where SO(d) is the d-dimensional
special orthogonal group. Due to SO(d) corresponding to a
set of rotation operations in Rd , the resulting M (t) will be
orthogonal matrix as well satisfying MTM = I . Essentially,
we find Y (t) to provide a steep ascent in 8(M ). According
to the Lie algebra, the optimal rotation direction for M is
found by

Yγ = exp(γβ
∑
p,q

λp,q(Bp,q − Bq,p)), (10)

where 2 ≤ p ≤ d , p + 1 ≤ q ≤ d , β is step length, and γ is
the step number for searching optimal rotation direction. Bp,q
is a matrix whose (p, q)-th element is one and all others are
zero. In addition, λp,q is expressed as:

λp,q =
18p,q

(
∑
p,q
182

p,q)1/2
, (11)

The 18p,q is approximated by:

18p,q = [8(Yp,qM (t − 1))−8(M (t − 1))]/α, (12)

where

Yp,q = exp(α(Bp,q − Bq,p)), (13)

where α is a small positive number. The iterative algorithm
terminates when |M (t) − M (t − 1)| ≤ δ. Here, δ is a
small positive number. The above process is illustrated in
Algorithm 1. More details about SO(d) can be found in [27].

Based on the contextual information and sub-region pair
learning strategy, there are two advantages of the proposed
CRML. Firstly, to fully mine the contextual information,
we consider three kinds of sub-region pairs, simultaneously.
Secondly, we obtain the optimal transformation matrix M
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Algorithm 1 Greedy Axis Rotation
Input: M (0), α > 0, β > 0, 0 > 0, δ ≥ 0
Output: M (t)
Initialize M (0) is initialized by the PCA method for
(xIk − z

I
k ), (x

W
k − z

W
k ) and (xEk − z

E
k );

While 1 do
If |M (t)−M (t − 1)| ≤ δ, break;
1. For all the p, q calculate:
1) Yp,q according to Eq. (13)
2) 18p,q according to Eq. (12)
3) λp,q according to Eq. (11)

2. The optimal rotation direction Yγ can be computed
by Eq. (10), where γ ∗ = arg max

0≤γ≤0
8(YγM (t − 1))

3. Y (t) = Yγ ∗
4. M (t) = Y (t)M (t − 1)
end

by maximizing mutual information, which could increase the
discrimination of sub-region representations.

Since the high dimensionality of sub-region feature may
result in the curse of dimensionality, we first perform the
dimensionality reduction using the RP [28] which has been
proved to avoid information loss and meanwhile preserve
the relative distances between samples in a low dimension-
ality space. In addition, to fuse similarity scores in different
low dimensionality subspaces, we conduct n times of RP
to map the sub-region features into randomly chosen low-
dimensional subspaces. For each RP, the reduced features are
utilized to learn one transformationmatrix usingAlgorithm 1,
and then we calculate a global similarity score between two
pedestrian images using CCM. Finally, we add n similar-
ity scores obtained by all RPs as the final similarity score.
We term this extension as nCRML.

FIGURE 3. Context-Constrained Match between sub-regions.

IV. CONTEXT-CONSTRAINED MATCH
After obtaining the transformation matrix M and the local
similarity scores between sub-region pairs, we should inte-
grate them into a global similarity score for the subsequent
matching. The traditional method obtains the global similar-
ity score between two pedestrian images by directly adding
the local similarity scores of corresponding sub-region pairs.
However, in the process of integration, viewpoint and pose
variations cause uncontrolled misalignment between images.
For example in Fig. 3, the sub-region pairs marked by red

are the corresponding sub-region pairs, but they are wrongly
matched. The correct matching should be the sub-region pairs
marked by green. Thus, corresponding sub-region pairs can-
not be directly compared. In our method, a novel integration
method named CCM is applied to tackle the misalignment
problem. The proposed CCM searches the most matched
sub-region for each sub-region in a certain range. Formally,
we obtain the maximal similarity score of a sub-region by
computing the minimum distance between sub-regions in the
range of CCM, and the global similarity score between an
image pair is given by

d(x, z) =
∑
k

min
R(k)

dk (xk , zR(k) ). (14)

R(k) =

{1, ..., k, ..., k + c}, 1 ≤ k ≤ c
{k − c, ..., k, ..., k + c} c+ 1 ≤ k ≤ K − c
{k − c, ..., k, ...,K }, K − c+ 1 ≤ k ≤ K

(15)

where k is the index of the k-th sub-region, K is the total
number of sub-regions in one pedestrian image, c is the
number of searching sub-regions, and R(k) is a set of sub-
regions for matching as shown in Fig. 3. Here, zR(k) represents
one of feature vectors of sub-regions in R(k), and dk indicates
the Euclidean distance between xk and zR(k) .

V. EXPERIMENTS
In this section, we evaluate our algorithm on three pub-
lic datasets, the VIPeR dataset [29], the QUML GRID
dataset [30] and the CUHK03 dataset [31]. We partition each
pedestrian image into several 10 × 10 sub-regions with an
overlapping step of 5 pixels and extract the LOMO feature [6]
for each sub-region. Several metric learning methods with the
same LOMO feature are compared, and the state-of-the-art
results are compared on three public datasets.

A. EXPERIMENTS ON VIPeR
VIPeR [29] is a widely used dataset for person
re-identification. It contains 632 pairs of pedestrian images
captured by two camera sensors in outdoor environment.
All images in this dataset are scaled to 128 × 48 pixels.
Following the widely used experiment protocol, we randomly
divide 632 pairs of images evenly, including 316 pairs for
training and the remaining 316 pairs for testing. The process
is repeated 10 times to obtain an average performance.

We compare our approach with several metric learning
methods, including ITML [22], LMNN [16], KISSME [24],
XQDA [6], EquiDML [25], KRKISS [18] SSM [34] and
MPML [37], and show the comparison results in Table 1.
It should be noticed that the compared metric learning meth-
ods also employ the same LOMO features as the proposed
method. The proposed nCRML achieves the best result.
We also compare our approach with the state-of-the-art
results reported on the VIPeR dataset. Table 2 shows the
results, where we can observe that nCRML_CCM achieves
the best result in all situations. These results prove the effec-
tiveness of our method.
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TABLE 1. Comparison with different metric learning methods with the
same LOMO feature on the VIPeR dataset (P=316). The identification
rates (%) at rank-1, rank-10 and rank-20 are listed.

TABLE 2. Comparison with the state-of-the-art results on the VIPeR
dataset (P=316). The identification rates (%) at rank-1, rank-10 and
rank-20 are listed.

B. EXPERIMENTS ON QMUL GRID
The QUML GRID [30] is a challenging person
re-identification dataset. It consists of 1275 person images
captured by 8 disjoint visual sensors. Among them, there
are 250 pedestrian image pairs, and each image pair is cap-
tured by different camera sensors. In addition, the remaining
775 pedestrian images do not belong to the above-mentioned
250 identities. In the experiment, the training set contains
125 image pairs, and the test set consists of 125 image
pairs and the 775 additional images. We apply the average
of 10 random trials as the accuracy.

TABLE 3. Comparison with different metric learning methods with the
same LOMO feature on the QMUL GRID dataset (G=900). The
identification rates (%) at rank-1, rank-10 and rank-20 are listed.

Performance comparison of differentmetric learningmeth-
ods with the same LOMO feature is presented in Table 3.
We can observe that the proposed nCRML achieves the high-
est accuracy. Compared with Table 1, it can be seen that the
GRID dataset is more challenging than the VIPeR dataset due
to the GRID dataset with 8 disjoint camera sensors, while the

TABLE 4. Comparison with the state-of-the-art results on QMUL GRID
(G=900). The identification rates (%) at rank-1, rank-10 and rank-20 are
listed.

VIPeR dataset only having two camera sensors. The success
of nCRML proves that fully learning the contextual informa-
tion in different low-dimensional subspaces could effectively
handle the poor image conditions and complex viewpoint
changes.

Table 4 shows the results compared with the state-of-
the-art results. In Table 4, our methods show quite better
performance than the other existing algorithms. Especially,
nCRML_CCM obtains 28.98% rank-1 identification rate,
achieving a new state of the art. Compared with the second
best one GOG_RGB, the improvement by nCRML_CCM
is +6.18%, +6.03%, and +5.80% at rank-1, rank-10, and
rank-20, respectively. The promising result indicates that the
proposed algorithm could learn a robust metric to deal with
such challenges on the GRID dataset.

C. EXPERIMENTS ON CUHK03
CUHK03 [31] is a large person re-identification dataset.
It contains 13,164 pedestrian images of 1,360 pedestrians
collected by six camera sensors. Each pedestrian is captured
by two disjoint camera sensors and has 9.6 images in average.
The CUHK03 dataset provides both pedestrian images man-
ually labelled and detected with a pedestrian detector, which
brings some part missing and misalignments in a realistic
scene.

According to the experimental setting in [24], [31], [34],
the dataset is randomly divided into a training set
of 1,160 pedestrians and a test set of 100 pedestrians.
All experiments are performed with 20 random partitions,
and the average results are presented with the single-shot
setting. The rank-1 accuracy of the state-of-the-art results
in both the manually labelled setting and the detected set-
ting are shown in Table 5. The proposed nCRML_CCM is
+6.93% and +8.08% higher than the second best method
EquiDML+LOMO [25] with the manually labelled setting
and the detected setting, respectively. It proves the effective-
ness of our method once again.

D. ABLATION STUDY
In this subsection, we implement the ablation study to per-
form in-depth analysis of the proposed method and the results
are presented in Table 6. CRML_WDL represents the trans-
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TABLE 5. Comparison with the state-of-the-art results at rank-1 (%) on
CUHK03 with both manually labelled setting and detected setting
(P=100).

TABLE 6. Comparison of the proposed method with other ablation
methods.

formation matrix is initialized by PCAwithout discriminative
learning. CRML_W indicates that we only utilize the second
term in Eq. (5) to learn the transformation matrix, that is
only the weak intra-region pairs and the extra-region pairs
are utilized. CRML (ε = 0) represents that we only employ
the first term in Eq. (5) to learn the transformation matrix,
i.e., only the intra-region pairs and the extra-region pairs are
utilized. nCRML_PCA illustrates that we replace RP with
PCA to conduct the dimension reduction operation. nCRML
(n = 1) denotes we only employ one time of RP operation.
From Table 6, six conclusions can be drawn.

Firstly, CRML_W is inferior to CRML due to the absence
of intra-region pairs which could provide the discriminative
information in the transformation matrix learning. Secondly,
compared with CRML (ε = 0), CRML improves +6.46%
at rank-1, +5.02% at rank-10, and +4.88% at rank-20. The
results verify the effectiveness of the weakly supervised
information provided by weak intra-region pairs. Thirdly,
compared with CRML_WDL, CRML greatly improves iden-
tification rates by about 20% in all situations. The results
indicate that our method could learn the discriminative
transformation matrix by maximizing the mutual informa-
tion. Fourthly, nCRML achieves better results than CRML.
This proves that RPs could avoid the dimensionality curse
and fully learn the contextual information in different low-
dimensional subspaces. Fifthly, nCRML (n = 1) achieves
better performance than nCRML_PCA. This illustrates the
RP operation is more effective than PCA. Finally, CRML and
nCRML are improved with the help of CCM. It is because

CCM could tackle the misalignment problem and seek the
optimal match among the neighboring sub-regions in the
process of similarity calculation.

E. INFLUENCE OF PARAMETERS
In this subsection, we analyze several important parameters
on the VIPeR dataset and our experimental results have
shown that the conclusions can be generalized to QMUL
GRID and CUHK03 as well. To understand the influence
of the coefficient ε in Eq. (5), we conduct experiments with
different values of ε on VIPeR following the previous setting.
Table 7 presents the rank-1 identification rate with different ε.
It can be seen that when ε = 0.1, the proposed method
achieves the best result.

TABLE 7. The rank-1 identification rate (%) on VIPeR with different ε.

FIGURE 4. The rank-1 identification rate of the proposed CRML_CCM on
VIPeR with different m.

The parameterm denotes the number of non-corresponding
sub-region pairs belonging to the same pedestrian. The
parameter m influences the number of weak intra-region
pairs which could provide the contextual information for
pedestrian images. The results with different m are shown
in Fig. 4. When m = 2, we obtain the best result. This is
because pedestrians usually have a large misalignment, and
these misaligned pedestrians generally offset one or two sub-
regions. When m is too large, it may bring in some noise
so that the performance is weakened. When m is too small,
it does not provide the enough contextual information in the
matrix learning process.

The parameter c is the number of searching sub-regions
in CCM. CCM could tackle the misalignment problem and
search the most matched sub-region for each sub-region in a
certain range. The results with different c are shown in Fig. 5.
When c is too large, it may match the similar backgrounds,
and when c is too small, CCM could not search the most
matched sub-region due to the small search range. The pro-
posed method achieves the best result when c is equal to 2.
In order to represent the pedestrian images, we extract the

LOMO features for each sub-region. Then, RP is utilized to
reduce the dimensionality to d . We analyze the number of
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FIGURE 5. The rank-1 identification rate of the proposed CRML_CCM on
VIPeR with different c .

RPs n and the reduced dimensionality d with the proposed
nCRMLonVIPeR.We set n to {0, 1, 2, 3, 4, 5} (d = s/3). The
rank-1 accuracies are {46.07%, 47.68%, 49.45%, 50.83%,
49.72%, 47.83%}. d is chosen from {2s/3, s/2, s/3, s/4, s/5}
(n = 3), and the rank-1 accuracies are {49.05%, 49.34%,
50.83%, 48.71%, 47.92%}. Hence, n = 3 and d = s/3 yield
superior accuracy.

TABLE 8. The rank-1 identification rate of the proposed CRML with
different K on VIPeR.

We comprehensively analyze the influence of the param-
eter K and the results are shown in Table 8 where we can
see that the proposed CRML achieves the best result when
K = 5. In addition, K = 1 means learning a global
metric where the weak intra-region pairs and the contextual
information are lost. So, it obtains a worse result than all other
situations. When K = 2, it is the minimum value to ensure
the existence of weak intra-region pairs, but the performance
is significantly better than that of K = 1. Based on the above
analysis, we can see that the weak intra-region pairs could
learn the contextual information which is very important for
the performance of person re-identification.

VI. CONCLUSION
In this paper, we have proposed the CRML to overcome
appearance variances of pedestrian images in camera sensor
networks. The CRML learns a discriminative transformation
matrix using three kinds of sub-region pairs with the help of
mutual information. We then employ the greedy axis rotation
algorithm to optimize the transformation matrix. Further-
more, we have presented the nCRML to learn the contex-
tual information in different low-dimensional subspaces and
avoid the dimensionality curse. In the process of integration,
we apply CCM to overcome the misalignment problem and
locate the sub-region pairs with themaximum similarity in the
neighborhood. Comprehensive experiments on three datasets
have verified that the proposed method performs better than
the state-of-the-art methods for person re-identification in
camera sensor networks.
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