
Received August 30, 2019, accepted September 20, 2019, date of publication October 7, 2019, date of current version October 28, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2946027

A Study on Realistic Energy Storage Systems for
the Privacy of Smart Meter Readings of
Residential Users
CONG-TOAN PHAM AND DANIEL MÅNSSON
School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, 114 28 Stockholm, Sweden

Corresponding author: Cong-Toan Pham (ctpham@kth.se)

This work was supported by the Swedish Energy Agency through the project Energy STOrage for smart Meter Privacy - STOMP.

ABSTRACT The introduction of smart meters sparked concerns about privacy breach through real-time
monitoring of electric power consumption. Valuable private information about occupancy, behaviour, health,
religion and wealth can be extracted from the user’s power profile which urges measurements to protect the
integrity of the user. One physical mitigation technique to assure privacy is explored using energy storage
systems. Real energy storage technologies are limited in their energy capacities and power capabilities, which
have to be appropriately sized to fulfil their role. This paper analyses and compares different energy storage
technologies (li-ion, lead-acid, electric double layer capacitor and flywheel) for the protection of residential
users by estimating the minimal required capacities and costs for both single and multiple user cases. The
analysis is based on actual measured user data from the REDD data set. The results show that the integrity can
be protected with reasonable capacities and investments ranging in the margin of market available products.

INDEX TERMS Energy storage system, privacy, smart meters, residential user.

I. INTRODUCTION
Smart meters (SMs) are the next generation of electricity
meters enabling near real-time monitoring of electric con-
sumption and generation at the customers’ premises. They
have been introduced with the purpose of improving the elec-
tric network reliability and efficiency, and allowing greater
control and feedback over the user’s own consumption. The
integration of such Information and Communication Tech-
nologies (ICTs) has opened up new possibilities and ser-
vices such as accurate consumer billing through dynamic
pricing or valuable real-time information for grid opera-
tors [1]. However, the interconnectivity and accessibility of
such devices gave rise to concerns regarding cybersecurity
and privacy.

Especially, the real-time monitoring of the user’s electric
energy consumption via SM reveals private information such
as occupancy, behaviour and wealth. The potential privacy
breach has sparked public interest on various media: espe-
cially, the potential abuse of such information. The leaked
information can go so far to expose the use of individual home
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appliances [2], [3] and even the TV program being watched
if a sufficient data sampling rate is available (≥0.5 Hz) [4].
In short, the power consumption of the TV varies with chang-
ing brightness. A person with prior knowledge of the power
consumption patterns of certain TV programs or movies can
deduce the content being viewed on the TV based on the non-
intrusive load monitoring method (NILM) as applied in [4].
Identifying information about health and religious affiliation
is also not too far-fetched if, for example, patients are using
medical equipments (e.g., heart monitoring) or religious fes-
tivities take place (e.g., fasting period with less cooking prac-
tices). Similarly to the TV all that is required is an adequate
estimate of the power consumption profiles of the individual
appliances: in this case the cardiac monitor or the cooking
appliances such as a stove, a kettle, and a microwave etc.

This issue creates a conflict of interest between the con-
sumer and the grid utility over the disclosed data. Several
solutions and methods have been investigated in achieving
a compromise between both factions by guaranteeing safety
(encryption) and use of only necessary information (legisla-
tions) [1]. However, the aim of this paper does not focus on
either option, but instead explores the idea of manipulating
the electric consumption profile measured by the SM through
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energy storage systems (ESSs). In fact, the ESS is utilized to
alter the power profile in such a way that the least amount
of information about the user can be deduced: i.e. a constant
power profile. In [3] and [5] the idea was studied to use
ESS to mask the user’s profile or, more specifically, what
mitigation impact an ESS can potentially have on privacy.
Please note, that in this study it is assumed that the ESS is iso-
lated, i.e., disconnected from the internet and free from other
surveillance. The latter focuses on identifying the minimum
required storage capacity and power capabilities of an ESS
needed to fulfil the task. However, a real ESS is bound by
constraints limiting its output or capacity. For example, bat-
tery energy storage systems (BESSs) feature limited power
output due to their restrictions of discharging current. Similar
restrictions apply to other energy storage technologies as well
such as flywheels, where a maximum rotational speed marks
the upper limit of safe operation. Furthermore, real ESSs
exhibit losses and delayed responses to sudden input changes,
which affect the storage’s overall performance and efficiency.
Here, this translates to important information leakage. Hence,
the results in [5] provide an initial picture of the requirement
for an ESS to comply with the demand for privacy. But, fur-
ther investigation is required to transfer previous conclusions
to real ESSs.

Providing privacy via ESSs is the main focus of this study.
In this study an experimentally verified circuit model of ESSs
is applied to residential power consumption profiles to judge
what ESS capacities are appropriate to maintain privacy.
A set of four different ESSs (li-ion, lead-acid, electric double-
layer capacitor (EDLC), flywheel energy storage (FES)) are
compared for their suitability in this particular application.
In addition, this paper uses actual measured user data from
the REDD data set [6] (date, load power consumption etc.).

The paper follows the structure of first introducing the
model approach used to analyse ESSs in Section II-A.
Section II-B describes the parameters and assumptions made
for the ESS model. Then, a reference point for the ESSs
and the measure of privacy level is defined (Section II-C).
A brief description of the load profiles is provided for the
usedREDD data in Section II-D. Next, four different ESSs are
investigated and discussed for single users (III-A), followed
by a comparison of capacity and cost for different levels of
privacy protection (III-B), and finally an analysis for multiple
consumers (III-C). A short summary of the findings and
concluding remarks are given in the Sections IV and V.

II. ENERGY STORAGE FOR PRIVACY
A. ENERGY STORAGE MODEL
In [5] ESSs have been investigated to protect the user’s pri-
vacy by masking the user load profile as a constant flat power
profile. The premise of the aforementioned study is based
on the postulate that a constant profile leaks the minimum
amount of information. Hence, the ESS’s task is to store and
absorb power in accordance to the user’s behaviour to obtain
the desired flat profile. In other words the momentaneous

FIGURE 1. Schematic of the electric power supply from the utility (left),
denoted as Pi, to the consumer z. The smart meter SM measures the
power consumption from the utility to the user. The Energy management
unit (EMU) monitors and controls the power in-/outflow between load
and ESS.

FIGURE 2. Equivalent circuit models for (a) kinetic and (b) potential
storages.

power to be handled by the ESS is the power difference P1
between the instantaneous power consumption of the user Pz
and the desired (and reported by the SM) power Pi = k (see
Fig. 1).

P1(t) = Pi(t)− Pz(t) = k − Pz(t) (1)

A real ESS may only uphold P1 to a limited degree since
efficiency, self-discharge and delayed response affect the
ESS’s overall performance. Thus, this paper applies a more
realistic modelling of ESS to privacy protection schemes.
The model used in this context has been adopted from [7]
(see Fig. 2). The lumped model encompasses the dynamic
behaviour these ESSs display in form of the electrical equiv-
alent components resistance, capacitance, inductance as well
as dependent sources. Depending on the type of ESS dif-
ferent parts of the model apply. The potential storage part
in Fig. 2 (b) represents the li-ion, lead-acid battery or EDLC.
Here, the EDLC is treated as a pure capacitor with the voltage
source Vb omitted, and for the batteries two series RC-branch
instead of one are used here. More components can be added
for better dynamic response behaviour. The flywheel is suffi-
ciently modelled by the kinetic storage part only in Fig. 2 (a).
Depending on the nature of storage technology some compo-
nents vary with the storage’s state. For example Vb changes
with the state-of-charge (SoC) of the battery or Rs with the
rotational speed of a flywheel. The model is verified in [8],
and a more detailed description of the components can be
found in [7].
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TABLE 1. ESS circuit model parameters and constraints.

Note, in this study ageing effects of the ESSs have been
neglected partly due to the fact that the studied time frame
is short (24 hr) where ageing is deemed negligible. However,
for longer time periods (>months) degradation is crucial for
a realistic representation of the ESSs, and time dependent
components have to be adopted (e.g., Rs(t)).

B. ENERGY STORAGE PARAMETERS AND ASSUMPTIONS
Four different storage technologies, namely a li-ion bat-
tery [9], a lead-acid battery [10], a EDLC [11] and a
FES driven by a permanent magnet synchronous machine
(PMSM) [12] have been analysed.

Table 1 summarizes the storage parameters and assump-
tions made for the models. Note, the table lists only the initial
values during the start of simulation. Some parameters such
as series resistance Rs or Vb can change over the course,
dependent on the condition of the ESS during operation
(e.g., Rs(SOC), R1(SOC), R2(SOC), C1(SOC), C2(SOC) and
Vb(SOC) for the li-ion and lead-acid batteries). The data used
for the li-ion and lead-acid battery has been established from
data sheets [9], [10] and through experimental testing [8].
EDLCs are also electrochemical devices similar to batteries
which can also display non-linear characteristics [13], [14].
In this study, however, the EDLC is simplified as a pure
capacitor (i.e., constant parameters) which is an acceptable
approximation seen in [8] and pointed out in [15]. The FES
is a flywheel system enclosed in a vacuum chamber and
stabilized by magnetic bearings. The dominant loss factor
is attributed to the bearings where Vm and Rs represent a
constant and a speed dependent torque loss respectively.

The ESS’s operation is limited by the constraints listed on
the right side in table 1. Here, we characterize the level of
energy reserve of an ESS by the state-of-energy (SoE) instead
of the more commonly used term of state-of-charge (SoC)
used in batteries. The reason stems from the more intuitive
use of this metric for the alternative storage technologies.
The SoC expresses the ratio of accumulated electric charge
measured in Coulomb (or Ah) to the nominal charge capacity,
which is not directly transferable to ESSs of different physical
nature such as flywheels or pumped-hydro stations.

All ESSs start with 50 % SoE and cannot be discharged
below 20 % state-of-energy (SoE).1 Note, the assumed initial
SoE for the real ESSs differs from the initial SoE (0 %SoE)

1The minimum and maximum SoE is equal for easier comparison, even
though some storage technologies can utilize deeper discharge levels.

of the later described ideal ESS (Section II-C). This reduces
the direct comparability between the real and ideal ESS. But,
it is a necessary adjustment to represent real ESSs based on
the minimum and maximum limitations. Otherwise, an initial
empty (SoE = 0 %) or fully charged ESS (SoE = 100 %)
would limit its use if further discharge or charge is requested
while its SoE lies below SoEmin or would rise above SoEmax.
Choosing either one initial condition for the real ESS leads to
a reduction of privacy protection. Hence, for that reasoning
we choose 50 % SoE0 to give leeway for the ESS’s oper-
ation range. Note though, that this assumption entails that
the real ESS needs to be oversized based on the restricted
SoE range (SoEmin-SoEmax) and initial starting point (SoE0).
Furthermore, the BESS’s and EDLC’s operation is limited
by the minimum and maximum allowed voltage and current
input. The FES is similarly constrained in the input current to
the PMSM and by the allowed rotational speed range (rad/s).

C. IDEAL ENERGY STORAGE AND COVERAGE FACTOR
The main objective is to protect the user’s privacy by not
leaking valuable information on the user’s behaviour based
on their electric power consumption. A constant power con-
sumption reported by the SM is postulated to guarantee pro-
tection as described earlier in equation (1). However, this has
to be achieved with the least effort, i.e., the smallest possible
ESS. In this sense, the power k (Pi(t) = k) is chosen in such a
way to minimize the storage capacity (see (2)). Furthermore,
we assume that the energy W (t) in the ideal ESS is empty at
the beginning (i.e., W (0) = 0) and demand that W (t) ≥ 0 ∀t
(see (3)). Wmax denotes the maximum energy stored in the
ESS during the course of the studied time period t (Wmax =

max(W (t))). Depending on how k is determined the ESS is
charged and discharged differently with different outcome in
size. An example can be seen in Fig. 3 where P1 must be met
by the ESS at all times to achieve Pi = k . The peak point
of W (t) marks the maximum needed energy capacity of the
ESS.

argmin
k∈[0,∞]

{Wmax} = argmin
k∈[0,∞]

{max(W (t))} (2)

W (t ′) =
∫ t ′

0
P1(t)dt =

∫ t ′

0
(k − Pz(t)) (3)

The ideal ESS can serve as a reference point for real
ESSs. A smaller ESS is not able to provide the necessary
capacity to absorb and deliver sufficient energy. An oversized
ESS is underutilized, introduces higher self-discharge losses
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FIGURE 3. Power and energy profile of an ideal ESS (Wmax = 2.41 kWh) to
fulfil privacy requirement (Pi(t) = k = 420 W) from the REDD dataset [6].
The SM reports the constant Pi instead of the real consumption.

and investment effort. Since real ESSs feature losses and
technical constraints (e.g., minimum or maximum allowed
SoE, current or voltage levels etc.) they are bound to deviate
from the ideal case. The interesting question to answer is what
type and size of different storage technologies is required.

If we understand a breach of privacy by not keeping Pi(t)
constant then we can loosely define that the degree of lost
privacy is measured by the ESS not satisfying P1(t). In [16]
a coverage factor (Cf) was introduced to measure the degree
of overlap between the ESS’s actual power performance (Pst)
and a reference power profile. There, Cf is used to optimally
size ESSs to just follow the demanded reference curve. This
approach is also applicable in this study, where the demanded
reference curve is P1 the ESSs have to satisfy. A Cf of 1 indi-
cates that the ESS is fully able to provide Pst(t) = P1(t) ∀t
which means 100% privacy protection. On the other hand if
Cf is 0 the ESS does not provide any power equivalent to
having no ESS and 0% privacy protected. It is noteworthy
that the Cf factor does not scale proportionally to the percent-
age of protected privacy as some leaked power peaks may
contain more or less information. For example, the ESS may
only partially cover a peak power and revealing a portion
of actual user consumption. However, more information will
be exposed in case the ESS is fully depleted or charged
preventing further operation, and, thus, exposing the original
profile.

dp(t) = P1(t)− Pst(t)

Cf = 1−

∫ T
0 |dp(t)|dt∫ T
0 P1(t)dt

(4)

FIGURE 4. Comparison between the ESSs’ performance for a single day of
household 1. The minimum required capacity of the ESSs to fulfil Pi = k
as best as possible for this particular day is the maximum peak of
respective W (t).

D. USER LOAD PROFILE FROM REDD DATA
In this study the Reference Energy Disaggregation data set
(REDD) [6] is used to investigate the privacy focused appli-
cation of real ESS. The data set measures close to three weeks
worth of data on the power usage of six different households.
Unfortunately, as it has been pointed out in [5] interruptions
in measurements occur throughout the data set, where only a
few complete 24 h sets of continuous data are available (i.e.,
24 · 60 · 60 = 86400 consecutive data points). Additionally,
interruptions below 60 seconds are neglected by filling the
missing data points with a constant power from the previous
data point. With these assumptions a total of 27 full 24 h sets
divided between the six households are available.

As a side note, the profiles seen for the individual house-
holds can vary significantly from each other even within the
same household. This coincides with the notion in [17] that
examined possible factors contributing to the variation within
household energy consumption. There, it is inferred that the
behaviour of the occupants is the dominant factor on the
variability of consumption which means that the conclusions
drawn for one household are only to a limited extent transfer-
able to other households. In our case, the optimal size of the
ESS to protect the privacy has to be uniquely defined for each
household and cannot necessarily be understood as a general
rule of thumb for all residential buildings.

III. OPTIMAL STORAGE CAPACITY
A. REAL CAPACITY REQUIREMENT FOR SINGLE USER
PROFILE AT MAXIMUM PRIVACY
In this section the minimum required capacity of the ESSs for
the different households is estimated. The example in Fig. 4
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FIGURE 5. ESS comparison household 1 with 4 independent days of data.

shows the comparison between power and energy profiles of
the different ESSs for household 1 day 2. The black dashed
line represents how an ideally suited ESS operates with the
corresponding energy capacity needed. Discrepancies in Pi
reveal that not all ESSs are fully able to provide P1, mani-
festing itself as Cf 6= 1. This is especially visible for EDLC
(see Fig 4). The desired constant power consumption seen by
the utility is therefore not guaranteed. Furthermore, taking a
closer look to the energy curves reveals different necessary
storage capacities to fulfil this task. The batteries and the FES
are considerably oversized (up to 230 % of Wmax,ideal). The
necessary flywheel size is slightly above the ideal case (130%
ofWmax,ideal) but lacks in efficiency compared to the batteries.
In this particular case, the EDLC’s Cf maximizes at 0.74,
which results in a storage size of less than one-fifth of the
necessary capacity. The EDLC system depletes exponentially
dependent on its time constant2 hinting to a considerable
energy loss of 99%within 8 hours. Paired with the charge and
discharging losses the EDLC system is barely able to uphold
energy levels above the minimum SoE, and, thus, low Cfs are
obtained even with increasing the capacities. From this it can
be concluded that EDLC are unsuited for this application and
timespan. The batteries and the FES are technically feasible
with li-ion system as the most promising option due to the
lower in generally required capacity compared to lead-acid,
and higher efficiency than the FES.

Similar results are observed when we take a look at the
other households and days. Figure 5-9 show the correspond-
ing storage sizes for the different households where each
bar represents one day of the respective house. It becomes
apparent that even within one household electricity consump-
tion can vary substantially, where different storage sizes are
required to satisfy privacy issues. It is unwise to customize
ESS for a single day, but this highlights the high variability in
the user’s consumption patterns (visible peaks in household

2τ = (R1C1)/2 ≈ 1.58 h when considering the relation W = 0.5 C1V 2

FIGURE 6. ESS comparison household 2 with 5 independent days of data.

FIGURE 7. ESS comparison household 3 with 6 independent days of data.

FIGURE 8. ESS comparison household 4 with 8 independent days of data.

1, 3, 4 and 6). Overall, the results seen in Fig. 5-9 and sum-
marized in Table 2 coincide well where li-ion battery systems
are 190-220%, lead-acid battery systems 230-290% and FES
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FIGURE 9. ESS comparison household 6 with 4 independent days of data.

TABLE 2. Average capacity requirement for single household.

115-140 % the size of the ideal storage. The EDLC are only
10-20 % of the size of Wmax,ideal due to the fact that larger
EDLC sizes do not improve Cf. The variance in percentage is
explained by the required power capability in the application.
Some profiles exhibit high short term power spikes (up to
10 kW in seconds/minutes intervals) unfavourable to battery
systems due to their limited power capabilities. As compen-
sation the BESS size has to be further increased, as dictated
by the theory of Ragone plots [18], which leads to redundant
capacity just to fulfil power demands. The opposite is true
for EDLCs which, in contrary to BESS, feature high power
in exchange for low energy capacity per unit.

The results show that the necessary (mean) storage capac-
ities to preserve privacy lie within the margin of existing
products on the market. For example, the Tesla Powerwall
(5 kW/ 13.5 kWh) [19], the RESU10H (5 kW/ 9.8 kWh)
from LG Chem [20] or the Varta element 12 (4 kW/ 13 kWh)
from Varta [21] are few examples of viable market available
lithium-ion based products. On the other hand EDLC and
FES have so far not experienced any residential use, but have
potential use in grid focused applications and services such as
voltage control, power quality, and smoothing of intermittent
power generation of renewable energy sources [22], [23].

B. ENERGY STORAGE SIZE AND COSTS VS PRIVACY
Another crucial aspect to consider is the potential costs for
investing in a system for privacy purposes alone, especially

TABLE 3. Main cost items of energy storage systems from [24], [26]. *The
COM,v and CRC for EDLC are not available and assumed 0 e/kWh and
229 e/kW (equal to CTCC) respectively.

answering the question what storage sizes and total costs
are expected for different levels of privacy. For example,
in exchange for a part of the user’s privacy a smaller sized
ESS can be a compromise between privacy and necessary
investment.

The total costs cTC for an ESS are estimated based on
capital, operation and maintenance (O&M) and replacement
costs (see (5)). The capital costs divide into two parts: The
procurement of the storage vessel (cSV [e/kWh]) and the
power conversion system (cPCS [e/kW]). The O&M costs
comprise of a fixed (cOM,f [e/kW]) and variable cost fac-
tor (cOM,v [e/kWh]). A one time replacement cost (cRC
[e/kW]) is also included although this study investigates
only a 24 hours time period.3 The individual costs are cal-
culated based on the rated capacity (Wst) and rated power
(Pst) of the ESS at specific Cf values. Table 3 lists the cost
assumptions given in [24]. Information on the EDLC are only
available for the total capital costs CTCC and the fixed O&M
costs.

cTC = Wst ∗
(
cSV + cOM,v

)
+ Pst ∗

(
cPCS + cOM,f + cRC

)
(5)

Figure 10 illustrates how the ESS sizes and corresponding
total costs increase in average with higher requested privacy.
The size is detailed as a ratio between the actual compared
to the ideal ESS size (Wst/Wideal). The BESS are in average
more than two times (li-ion 2.24, lead-acid 2.71) the ideally
required size when considering 100 % privacy. Reducing the
requirement slightly significantly decreases the storage sizes,
where the highest reductions are achieved at the top 10 % Cf
(around 80-100 % capacity savings for batteries). The FES
has an advantage over the BESS due to its lower necessary
storage size even at near 100 % Cf (≈130 % of Wideal).
However, we keep in mind that the FES is in general less effi-
cient (η ≈62 %) than the BESSs. The EDLC rarely reaches
Cf values over 80 %. Higher Cf values are only achieved in
cases where the ESS is dominantly charged over the time
period. On first impression, this seems positive in regard to
the small storage size. But, with an low efficiency (η ≈ 15%)
this equates to wasting rather than storing energy even though
useful if only concerning the privacy preservation [25]. In this
sense the EDLC only works as load without being able to

3Long-time investigations (> several years) may require several
replacements.
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FIGURE 10. Top: Required average storage capacities to fulfil different
levels of privacy. Bottom: Total cost estimation for various ESS at different
levels of privacy. (left axis: li-ion, lead-acid, EDLC; right axis: FES.). Note,
high levels of Cf for EDLC are only obtainable under specific conditions
(dominantly charging).

return the energy which has already been lost through charg-
ing and self-discharge. Ultimately, a small storage capacity
is sufficient since only a fraction of the input energy is
retained.

Now, taking a closer look at the required costs for different
Cf the result is reversed where FES, even though close in size
to the reference, features the highest total costs in average
(≈ 260000e) (Fig. 10). This is ten times higher compared to
the other ESS alternatives, where li-ion amounts to roughly
25000 e, followed by EDLC (≈ 16000 e), and lead-acid as
the cheapest option (≈ 11000 e). The FES is significantly
oversized in terms of power capabilities (5.5 kW/unit) due to
the fact that the residential application is dominantly energy
rather than power focused, which ultimately stacks up the
costs for CPCS and CSV. The high specific power of FESs
(400-1500W/kg) compared to BESSs (75-300W/kg) favours
their usage in short term high power applications (up to few
hours) such as power quality and voltage regulation control
in the power grid [22]. In applications with long discharge
times over several hours the advantages of FESs diminish
due to significant self-discharge losses similar to the EDLC.
Hence, FESs commonly find application in conjunction with
other ESS [22], e.g. batteries, to compensate each other’s
shortcomings if both high power and high energy capacity
is demanded.

The cost calculations favour the lead-acid over li-ion bat-
tery due the overall low costs for all cost items (Table 3).
This is unsurprising with regard to the short time frame,
where major differences in performance remain negligi-
ble. However, a long-term analysis, and also including

ageing processes over several years will reveal differences
due to the distinct lifetimes of the technologies. In gen-
eral, the expected lifetime of lead-acid batteries is com-
monly 200-500 cycles dependent on its operation regime
compared to 1000+ cycles for li-ion batteries [22], [27].
In niche applications with short term high power demands,
i.e. short discharge durations with immediate recuperation,
FESs can surpass BESSs in terms of expected lifetime
(20000+ cycles [22]). Therefore, this cost calculation does
not deliver a full economic evaluation, but an initial picture
instead. As previously the EDLC is deemed unsuited in per-
formance and in economy with occurring costs higher than
lead-acid.

Finally, the estimated costs for a singular household are
in range of market available products. Considering only the
capital costs of li-ion batteries the necessary storage size
and cost is overestimated to roughly 1100 e/kWh4 com-
pared to the available products from Tesla (Tesla Powerwall
650e/kWh [19]) or LG Chem (RESU10H 540e/kWh [20]).
Hence, mitigating privacy concerns through a single storage
module is possible and more so if lower privacy levels are
acceptable.

C. REAL CAPACITY REQUIREMENT FOR MULTI-USERS
Alternatively, multiple users can share an ESS to collectively
protect their privacy to the outside observer. In this sense,
the SM reports the accumulation of profiles similar to that of
an apartment complex. The approach remains the same but
only the combined load consumptions of all users have to be
balanced.

P1(t) = kM −
N∑
j=1

Pz,j(t) (6)

Unfortunately, the data available only provides single user
profiles. Therefore, in order to simulate multi-user applica-
tions this study artificially generates multiple user profiles
by combining the five available household power profiles
from the REDD data. The different profiles are summed up,
analogously to a situation where these households share a SM
in pairs, triplet, quadruple etc.

From Fig. 11 we can observe that the required storage
capacity and total cost decrease with increasing numbers of
users sharing one ESS as also noted in [5]. The greatest sav-
ings in cost are achieved by just sharing the ESSwith a second
user but converges to a minimum level of around 30-50 % of
the initial size and costs (li-ion: 600 Wh/user, 2000 e/user;
lead-acid: 850 Wh/user, 1000 e/user; EDLC: 110 Wh/user,
3200 e/user; FES: 670 Wh/user, 38000 e/user). Note, these
numbers are heavily dependent on the user’s consump-
tion patterns and the ESS device tested. Nonetheless, sub-
stantial savings can be expected for groups even in small
numbers.

4cTCC = Wst ∗ cSV + Pst ∗ cPCS
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FIGURE 11. Top: Average shared ESS capacity per user with increasing
numbers of users. Bottom: Total costs per user for different storage
technologies. (left axis: li-ion, lead-acid, EDLC; right axis: FES.).

IV. DISCUSSION
The results from the previous sections have shown that
privacy issues due to real-time monitoring of SM can
be mitigated by reasonable ESS capacity sizes and costs.
Market available products can be utilized to prevent leak-
age of private information, which can be affordable for
individual users but more so for grouped users. However,
the public acceptance remains to be discussed since no
financial merit is gained from this investment. The results
presented have to be interpreted with care. It has to
be pointed out that user consumption patterns can vary
heavily (e.g., seasonal changes in consumption), even
within the same household, that can make appropriate
sizing difficult if high levels of privacy ought to be
maintained.

Furthermore, what has not been addressed in this study
is what constant power Pi = k is suitable for a long time
investigation. Here, k is chosen in such a way that yields
the minimum of ESS capacity. However, this can lead to an
increase of the overall electric power consumption, and thus
higher cost, for the user if a constant high power has to be
maintained, especially when the ESS is mainly absorbing
additional energy.

Other aspects to consider for future investigations are the
influence of demand-side management schemes and electric
power tariffs on the ESS’s required capacity. Adding further
functions to the ESS creates additional value if, for exam-
ple, privacy and minimization of electric power purchase are
joined objectives.

Finally, the cost calculation only presents an initial pic-
ture, but is incomplete since ageing effects of ESSs are not
included in the model. Significant differences become more
visible in a long-term study over several years, where the

lifetimes of ESSs have greater impact on maintenance and
replacement costs.

V. CONCLUSION
The privacy breach through real-time monitoring of user
power profiles is a valid concern and has sparked discussion
about effective protection schemes. One option is to alter
the consumption profiles to outside viewers by the use of
ESSs. A comparison of different energy storage technologies
reveals their effectiveness in this particular application and
also minimum required capacity to fulfil the role. The BESS
are the most suitable options in terms of cost even though
considerable oversizing is necessary (up to 2-3x ideal ESS,
in average 10-15 kWh). We conclude that the use of com-
mercially available ESSs to protect privacy is possible and
viable.
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