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ABSTRACT Drawing upon Lyapunov stability theories and online adaptive dynamic programming (ADP)
technique, we propose a novel optimal control scheme for the nonlinear time delay system. Our contribution
is twofold. First, we investigate the asymptotical stability problem and obtain a generalized stability condition
in terms of linear matrix inequalities (LMIs). An explicit, easy-computing delay bound is presented by virtue
of Gronwall’s inequality. Second, we propose the neural network (NN)-based optimal control strategy by
utilizing two approximate NNs. The NN-based optimal control law converges to the real optimal control
law since that the estimation errors of NNs weights converge to zero. Numerical examples are presented to
illustrate our results.

INDEX TERMS Adaptive dynamic programming (ADP), delay systems, neural network (NN), nonlinear
systems, optimal control.

I. INTRODUCTION
For various control systems and communication networks,
time delays are widely existed and may cause bad perfor-
mance, poor robustness, and even task failure. Therefore, it is
of fundamental significance to analyze the stability and con-
trol problems on systems subject to time delays. In general,
time delay systems are analyzed either by time-domain or
frequency-domain approach (see [1]–[3], and the references
therein). For linear systems with constant time delay, it is
readily available to the necessary and sufficient conditions
on stability in terms of linear matrix inequalities (LMIs)
from time-domain theories [4] and small gain theorem from
frequency-domain techniques [5], to name a few. On the
other hand, it is relatively far more complicated when dealing
with the stability of nonlinear time delay systems. Over the
current literature, the stability on nonlinear systems subject to
constant time delays is mainly investigated based on sliding
mode control theories [6], H∞ optimizationmethod [7], LMI
techniques [8], neural networkds (NNs) and adaptive control
maneuver [9], etc. The past work, nevertheless, sheds few
lights on the development of nonlinear time delay system
theories, and leaves it an open problem yet up to now.

The associate editor coordinating the review of this manuscript and
approving it for publication was Bohui Wang.

At the same time, optimal control theory has gained lots
of attention and progress during the last decade. There are
numerous results applicable to optimal control of linear sys-
tems by using classical methods, such asmaximum principle,
convex optimization, dynamic programming [10], while the
counterparts for nonlinear systems are much fewer, especially
for delayed nonlinear systems. The difficulties in optimal
control of nonlinear systems largely arises from solving the
Hamilton-Jacobi-Bellman (HJB) equations, which for the
case usually consist of nonlinear partial differential equa-
tions. To solve nonlinear HJB equations, an adaptive dynamic
programming (ADP) algorithm was first proposed in [11].
In recent studies, an iterative ADP (also termed as online
ADP) algorithm was advocated to set up the infinite hori-
zon oriented optimal control concerning nonlinear systems
[12], while in [13], [14] and [15], the online ADP algo-
rithm was adopted to discrete-time nonlinear systems with
internal dynamics, zero-sum nonlinear differential games and
continuous-time chaotic systems, respectively. The optimal
control policy of nonlinear system thus exhibits a somehow
flourishing development (see [16], [17] and the references
therein).

Despite the considerable advances on the investigation of
nonlinear plants, the optimal control of nonlinear systems
subject to time delays poses a great challenge to researchers
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as the lack of useful methodologies and tools. The difficulties
by nature arise from the coupled delay states in the nominal
plant. In this vein, the current state is determined upon the past
states in terms of delays and the obtained control law, which
is unknown until the the current time. Available results con-
cerning the optimal control of nonlinear time-delay systems
remain minor.

In this paper, we consider a class of nonlinear plants against
uncertain delays. Our contribution is twofold. First, we seek
to find out the largest admissible time delay of the objec-
tive plant and sufficient asymptotical stability conditions are
obtained in virtue of Lyapunov-Krasvovskii functionals and
mathematic inequalities theories. Moreover, an explicit, easy-
computing delay bound is presented by virtue of Gronwall’s
inequality. On the other hand, drawing upon online ADP
technique, the NN-based optimal control law is proposed by
using two NNs to approximate the performance index func-
tion and optimal input, respectively. It is proved the weight
estimation errors converge to zero. Therefore, the NN-based
approximate optimal control law converges to the real optimal
control law. Numerical examples are presented to show the
effectiveness of our results.

The remainder of this paper is organized as follows.
In Section II, we present the mathematic formulation of the
nonlinear time delay system and introduce some prelimi-
nary lemmas. The stabiliyt conditions and NN-based opti-
mal control solution are obtained in Section III. Illustrative
examples are demonstrated in Section IV and conclusions are
subsequently followed in Section V.

II. PROBLEM FORMULATION
In the beginning of this section, we introduce our notations
used in this paper. Let R refer to the space of real numbers,
Rn and Rn

+ refer to the space of real vectors and positive
real vectors with n-dimension, and Rl×p refers to the space
of real vectors with l × p-dimension. For any real matrix A
and function x(t), AT and xT (t) denote the transpose of A
and x(t), respectively. For a Hermitian matrix A, its largest
eigenvalue is denoted as λ(A). The expression A ≥ 0 means
A is nonnegative definite, and A > 0 means it is positive
definite, while A < 0 means it is negative definite. Let ‖x(t)‖
denote the Euclidean norm of x(t). Then it is defined as

‖x(t)‖ =
√
xT (t)x(t).

The symbol ∇x denotes the partial differential operator
∂·

∂x
.

Consider the following nonlinear system

ẋ(t) = Ax(t − τ )+ f (t, x(t), x(t − σ ))u(t), (1)

where x(t), u(t) ∈ Rn are the system state and input signal,
τ, σ > 0 are unknown constant, referring the delay param-
eter in the linear and nonlinear plant, respectively. In NN
community, τ is also known as leakage delay, and σ is
termed as transmission or processing delay, see [18], [19],
etc. By considering two independent time delay constants,

we deal with the generalized circumstance of nonlinear sys-
tems with leakage delays and/or transmission delays. Assume
that A is a constant real matrix with appropriate dimension,
and f (t, x(t), x(t − σ )) is nonlinear and Lipschitz continuous
with f (t, 0, 0) = 0. By employing the so-called model trans-
formation [2], the original system (1) can be expressed as

d
dt
(x(t)+A

∫ t

t−τ
x(u)du)=Ax(t)+ f (t, x(t), x(t − σ ))u(t).

(2)

It is worth noting that by taking model transformation addi-
tional dynamics will be introduced into the system. As such,
the stability of the system (2) implies that of the system (1)
but not vice-versa [20].

Our purpose in this paper is to design the optimal control
law in terms of input u(t) to optimize the performance index
function below

J (x(t), u(t)) =
∫
∞

t
L(x(s), u(s))ds, (3)

where

L(x(s), u(s)) = xT (s)Qx(s)+ uT (s)Ru(s), (4)

with matrix Q being nonnegative definite, and R = RT being
symmetric and positive definite. As a consequence, the HJB
function is

H (x, u, t) = L(x(t), u(t))+ JTx (Ax + fu), (5)

with Jx = ∂J/∂x referring to the partial derivative of
J (x(t), u(t)). Obviously, equation (5) satisfies

min{H (x, u, t)} = 0. (6)

Hence, the optimal performance index function is derived as

J∗(x(t), u(t)) = min
∫
∞

t
L(x(s), u(s))ds,

and the corresponding optimal input is

u∗ = −
1
2
R−1f T J∗x .

Consequently, the nominal system (2) is equivalent to the
following if the optimal control is achieved

d
dt
(x(t)+ A

∫ t

t−τ
x(u)du)

= Ax(t)−
1
2
f (t, x(t), x(t − σ ))R−1f T J∗x ,

which can be further expressed as

d
dt
(x(t)+A

∫ t

t−τ
x(u)du)=Ax(t)+F(t, x(t), x(t−σ )), (7)

with F(·) being a nonlinear function

F(t, x(t), x(t − σ )) = −
1
2
f (t, x(t), x(t − σ ))R−1f T J∗x .

As such, we are led to examine the stability on system (7)
instead of the original system (1). To facilitate control system
design, the following assumption is presented.
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Assumption 1: The nonlinear function F(t, x, y) satisfies

‖F(t, x, y)−F(t, x1, y1)‖≤α‖x−x1‖2+β‖y−y1‖2, (8)

where t, x, y, x1, y1 ∈ Rn, and α, β are some positive scalar.
Under Assumption 1, one can conclude that the original

system (1) has unique equilibrium if√
α + β‖A−1‖ ≤ 1, (9)

according to the famous contraction mapping theorem [21].
The detailed proof can be found in [22], thus is omitted.

III. MAIN RESULTS
A. STABILITY ANALYSIS ON NONLINEAR
TIME-DELAY SYSTEMS
In this section, we aim to obtain stability condition for nonlin-
ear systems with time delays, including a sufficient asymptot-
ically stable condition in terms of LMIs and an explicit delay
bound independent of the nonlinear delay parameter. The
following preliminary lemma, adopted from [23], concerned
with mathematic inequalities on matrices and plays a vital
role in our subsequent stability results.
Lemma 1: Given real matrices 41, 42 ∈ Rl×p. The fol-

lowing inequality holds

4T
142 +4

T
241 ≤ η4

T
14341 + η

−14T
24
−1
3 42, (10)

for some real matrix 43 ∈ Rp×p and real scalar η with
43 = 4

T
3 > 0, η > 0.

Upon Lemma 1 and Lyapunov stability theories, we now
investigate the asymptotical stability of the original sys-
tem (1). This gives rise to the following theorem.
Theorem 1: The system (1) is asymptotically stable if for

some positive real scalar α, β, η1, and η2, there exists a real
matrix P = PT > 0 such that the following LMI holds

8 < 0, (11)

where

8 = Q1 + τQ2 + Q3,

Q1 = PA+ ATP+ η−11 P2 + α(η1 + τη2)I + τATPA,

Q2 = ATPA+ η−12 ATP2A, Q3 = β(η1 + τη2)I ,

and I is an identity matrix with appropriate dimension.
Proof: We begin by constructing the following

Lyapunov-Krasovskii functional V (t), which consists of
V1(t) and V2(t). Let

V1(t)=
(
x(t)+A

∫ t

t−τ
x(u)du

)T
P
(
x(t)+ A

∫ t

t−τ
x(u)du

)
,

and

V2(t) =
∫ t

t−τ

∫ t

s
xT (u)Q2x(u)duds+

∫ t

t−σ
xT (u)Q3 x(u)du.

In light of model transformation and equation (7), we are led
to

V̇1(t) = 2
(
x(t)+ A

∫ t

t−τ
x(u)du

)T
P

(Ax(t)+ F(t, x(t), x(t − σ ))) .

It is worth noting that above function has an upper bound

V̇1(t) ≤ xT (x)Q1x(t)+
∫ t

t−τ
xT (u)Q2x(u)du

+ xT (t − σ )Q3x(t − σ ),

according to Lemma 1.
In the similar manner, the time derivative of V2(t)

yields to

V̇2(t) = xT (t) (τQ2 + Q3) x(t)−
∫ t

t−τ
xT (u)Q2x(u)du

− xT (t − σ )Q3x(t − σ ).

Consequently, its upper bound can be computed as

V̇ (t) ≤ xT (t)8x(t),

which indicates that V̇ (t) is negative if8 is negative definite.
The proof is thus completed. �
Theorem 1 provides the generalized sufficient LMI stabil-

ity criterion for the nonlinear system (1) subject to time delays
with the aid of matrix inequality and model transforma-
tion techniques. In what follows, we shall introduce another
matrix inequality tool, the Gronwall’s inequality, to generate
an alternative, easy computing stability condition [24]. The
obtained condition might be conservative to some systems
since that it is independent of the nonlinear delay parame-
ter. However, there do exist important instances where the
condition (14) tend to be nonconservative, which will be
subsequently demonstrated in Section IV.
Lemma 2: Assume that f (t) ∈ R and η(t) ∈ R with

η(t) > 0 are continuous functions. If ζ (t) is a non-decreasing
function and satisfies

f (t) ≤ ζ (t)+
∫ t

a
η(s)f (s)ds, (12)

then the following inequality holds

f (t) ≤ ζ (t)e
∫ t
a η(s)ds. (13)

According Lemma 1 and 2, we obtain the following corollary
in which explicit delay bound on τ are derived.
Corollary 1: Consider the nonlinear system (1) subject to

time delays. The system (1) is asymptotically stable if A is
stable and

τ < ‖A‖−1 . (14)

Proof: Let the Lyapunov-Krasovskii functional V (t) be
the same as in Theorem 1. Then for t = t0, we have

V (t0)=
(
x(t0)+ A

∫ t0

t0−τ
x(u)du

)T
P
(
x(t0)+A

∫ t0

t0−τ
x(u)du

)
+

∫ t0

t0−τ

∫ t0

s
xT (u)Q2x(u)duds

+

∫ t0

t0−σ
xT (u)Q3x(u)du,
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where Q2, Q3 are as defined in Theorem 1. Therefore,

V (t) ≤ λ(P)

∥∥∥∥x(t0)+ A ∫ t0

t0−τ
x(u)du

∥∥∥∥2
+ λ(Q2)

∫ t0

t0−τ

∫ t0

s
‖x(u)‖2duds

+ λ(Q3)
∫ t0

t0−σ
‖x(u)‖2du

≤

(
(1+ τ‖A‖)2 λ(P)+

1
2
τ 2λ (Q2)+σλ(Q3)

)
‖x(t0)‖2.

Assume that ‖x(t0)‖2 = 0, and M is some positive scalar.
As proved in Theorem 1, it yields to

V (t) < V (t0) < M0 <∞, for t > t0.

Evidently for t > t0,

λ(P)

∥∥∥∥x(t)+ A ∫ t

t−τ
x(u)du

∥∥∥∥2 ≤ M0,
which leads to

‖x(t)‖ ≤ ‖A‖
∫ t

t−τ
‖x(u)‖du+

√
M0
λ(P)

.

Based on Lemma 2, we are led to

‖x(t)‖ ≤

√
M0
λ(P)

eτ‖A‖, t > t0. (15)

Hence the system is asymptotically stable if

τ‖A‖ < 1.

This completes the proof. �
Note that the stability of A implies that the system (1) is

stable when the linear plant is delay free and the nonlinear
delay parameter goes infinity, i.e., τ = 0, σ → ∞. Hence
the stability condition obtained in Corollary 1 is independent
of the nonlinear delay parameter σ . In other words, σ can
be arbitrarily large as long as the linear delay parameter τ
satisfies condition (14). As such, it has large freedom in
the design of optimal controller; nevertheless, the stability
criterion herein is somehow conservative. One may develop
refined delay-dependent stability conditions with less con-
servatism by means of advanced mathematic inequalities
techniques.

B. NN-BASED ONLINE ADP ALGORITHM
In the following paragraph, we shall develop an online ADP
algorithm to achieve the optimal control policy with the use
of NNs approximations. We utilize a two-layer NN, consists
of critic NN and actor NN, to estimate the performance index
function and optimal input respectively. Under this structure,
the weights for both NN are iteratively tuned in real-time.

LetWc ∈ Rl×p refer to the ideal weight matrix in the critic
NN, φc(x) refer to the activation function and εc(x) refer to
the approximation error. As for the actor NN, let Wa ∈ Rl×p

refer to the real weights, φa(x) refer to the activation function,

and εa(x) refer to the approximation error. It is useful to make
the following assumption.
Assumption 2: a) The approximation errors of critic NN
and actor NN are positively bounded by ‖εc‖ ≤ εcM and
‖εa‖ ≤ εaM .

b) The residual error εH is positively bounded by ‖εH‖ ≤
εHM .

c) The activation function of the actor NN is positively
bounded by φm ≤ ‖φa‖ ≤ φM .

Upon Assumption 2, the performance index function
J (x(t), u(t)) of critic NN thus turns to be

J (x) = W T
c φc(x)+ εc(x). (16)

Based on the universal approximation property [25], there
always exists a NN such that εc(x) is bounded. The HJB
function is

H (x(t), u(t),Wc) = W T
c ∇xφc (ẋ)+ x

TQx + uTRu

+ ∇xε
T
c (ẋ)− εH , (17)

thus leading to

εH = W T
c ∇xφc (ẋ)+ x

TQx + uTRu+∇xεc (ẋ) ,

since that

H (x(t), u(t),Wc) = 0.

Let Ŵc ∈ Rl×p refer to the real weight matrix of critic NN.
Then the estimation of equation (16) is

Ĵ (x) = Ŵ T
c φc(x). (18)

The corresponding HJB function can be further expressed as

H (x(t), u(t), Ŵc) = Ŵ T
c ∇xφc (ẋ)+ x

TQx + uTRu. (19)

Let W̃c refer to the error of weight estimation with

W̃c = Wc − Ŵc.

The estimation error of HJB equation ec thus is computed as

ec = H (x(t), u(t),Wc)− H (x(t), u(t), Ŵc),

or equivalently,

ec = H (x(t), u(t), W̃c)− εH .

Hence, the squared estimation error is Ec =
1
2
eTc ec. We are

then led to find the optimal weight update law such that Ec is
minimized.

In light of Levenberg-Marquardt algorithm (LMA) [26],
the tuning rule of critic NN weight is derived as

˙̂Wc = −θc
∂E1
∂Ŵc

= −

θcς
(
ςT Ŵc + xTQx + uTRu

)
(
ςTς + 1

)2 , (20)
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FIGURE 1. State response of the system (28).

with the learning rate θc > 0 and ς = ∇xφ (ẋ(t)).
Moreover, the estimation error of critic NN weight is
dynamically updated according to

˙̃Wc = −
θcς

(
ςT W̃c + εH

)
(
ςTς + 1

)2 . (21)

On the other hand, we construct the performance index
function of actor NN as

u(t) = W T
a φa(x)+ εa(x). (22)

Let û(t) denote the estimated input with û(t) = Ŵ T
a φa(x),

where Ŵa denotes the current weight of actor NN. Hence,
the estimation error εu is equal to

εu = Ŵaφa +
1
2
R−1f T∇xφTa (x)Ŵc. (23)

As a result, the tuning rule of actor NN weight is

˙̂Wa = −θaφa

(
Ŵaφa +

1
2
R−1f T∇xφTa (x)Ŵc

)
(24)

with the learning rate θa > 0. Denote the estimation error of
actor NN weight by W̃a, then

W̃a = Wa − Ŵa.

Consequently, the estimation error of actor NN weight is
dynamically updated along with

˙̃Wa=−θaφa

×

(
W̃aφa+

1
2
R−1f T∇

(
φTa (x)

)
Ŵc+εa+

1
2
R−1f T∇xεc

)
(25)

We shall prove that the estimation errors of critic and actor
NNs weights are bounded in the following part.
Theorem 2: Let W̃c, W̃a denote the weights estimation

errors of critic and actor NNs, and θc, θa denote the learning
rate. Then W̃c and W̃a are convergent to zero if their weight
update policies are as stated in (21), (25), and satisfying

0 < θc < min

{
4θaς2m

2ς2m +
∥∥R−1f∇xφ∥∥2 , 2ς

2
m

ς2M

}
, (26)

FIGURE 2. The control trajectory of the system (28).

0 < θa <
4φ2M
3φ2m

, (27)

where ςm is the lower bound of

∥∥∥∥ ς

(ςT ς+1)
2

∥∥∥∥ , ςM is the

corresponding upper bound, φm and φM are as defined in
Assumption 2.

Proof: Let the Lyapunov function Ṽ be Ṽ = Ṽ1 + Ṽ2,
where

Ṽ1 =
1
2
tr
(
W̃ T
c θ
−1
c W̃c

)
,

and

Ṽ2 = tr
(
W̃ T
a θcθ

−1
a W̃a

)
.

Consequently, the upper bounds of ˙̃V1 and ˙̃V2 are computed
as

˙̃V1 =
1
θc
W̃ T
c
˙̃Wc

= −

W̃ T
c θcς

(
ςT Ŵc + εH

)
(
ςTς + 1

)2
≤ −

(
ς2m −

1
2
θcς

2
M

)∥∥∥W̃ 2
c

∥∥∥+ ε2H

2θc
,
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FIGURE 3. The simulation curve of critic NN weights.

and

˙̃V2 =
2θc
θa
W̃ T
a W̃a

≤ −

(
θc −

3θaθc
4

)∥∥∥W̃a

∥∥∥2 ‖φm‖2
+

θc
∥∥R−1f∇xφ∥∥2 ∥∥∥W̃c

∥∥∥2
4θa

+
θc
(
εa + 1/2R−1f T∇xεc

)2
2θa

.

The rest proof follows directly from Lyapunov stability
theories, thus is omitted. �
In fact, we can achieve only a nearly optimal control by

using NN based approach with the existence of NN recon-
struction errors in general. Theorem 2, nevertheless, indicates
the proposed NN-based optimal control law converges to
the real optimal control policy as the convergence of the
estimation errors of NNs weights.

IV. EXAMPLES
Metzler systems are widely used in economics, population
systems, and biochemical system systems for growth behav-
ior modelling. A nonlinear Metzler delay system is in the
form of (1) with A = [aij] being a Metzlerian matrix satis-
fying aii < 0 and aij ≥ 0 for i 6= j [27]. In this section,
several numerical examples with regard to nonlinear Metzler
delay systems are presented to examine our algorithm.
Example 1: Consider the following Metzler delay system

ẋ(t)=
[
−2 1
1 −1

]
x(t − τ )+

[
sin x2(t − σ )
sin x1(t − σ )

]
u(t), (28)

with initial state x(0) = [2 1]T .
Since that the Metzlerian matrix A is stable, Corollary 1 is

applicable to the system (28). As suggested by Condi-
tion (14), an easy computing stability condition is obtained

by calculating ‖A‖. Hence, the system (28) is asymptotically
stable if τ < 0.5 for all possible σ . However, above stability
condition is somehow conservative. Indeed, Fig. 1 (a)-(b)
indicate that the nominal plant is stable when (τ, σ ) =
(0.5, 0.2) and (τ, σ ) = (0.5, 1). However, the nominal
system turns to be unstable when (τ, σ ) = (0.8, 1), as shown
in Fig. 1 (c).

More specifically, we consider the Metzler system (28)
with (τ, σ ) being (0, 0) and (0.5, 1), respectively. In other
words, we consider a nonlinear delay-freeMetzler system and
a nonlinear Metzler system with tow distinct delay parame-
ters. Assume the initial weights are

Wc = [0.1 0.1 0.1]T , Wa = [0 0 0]T .

Let Q = R = 1, the activation function of critic and actor
NNs to be

φc(x) = φa(x) =
[
x21 x1x2 x22

]T
.

By selecting the learning rates of critic and actor NNs as

θc = θa = 0.01,

the control trajectories of above mentioned two systems are
compared in Fig. 2. FromFig. 2we can see that it merely takes
2 seconds to achieve the optimal control when (τ, σ ) = (0, 0),
while it takes slightly longer, about 10 seconds, to reach the
control objective for system (28) with (τ, σ ) = (0.5, 1). The
convergence of the corresponding critic NNweights is shown
in Fig. 3, which indicates that the NN-based optimal control
approach is convergent to the real optimal control policy.
Consequently, we can conclude that the NN-based optimal
control is efficiently achieved under both cases.
Example 2: Consider another Metzler delay system

ẋ(t)=
[
−2 1
1 −1

]
x(t−τ )+

[
0

cos x1(t − σ )

]
u(t), (29)

with initial state x(0) = [0.5 1]T .
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FIGURE 4. State response of the system (29).

FIGURE 5. The control trajectory of the system (29).

Note that the linear time-delay plant of the system (28) and
system (29) are the same. Consequently, we are led to the
stability condition as in Example 1 that the system (28) is
asymptotically stable as long as τ < 0.5, based on Condition
(14) in Corollary 1. From Fig. 4(a) we can see that the
nominal system (29) is indeed unstable when τ = 0.5, which
means that sufficient stability condition herein is tight.

Meanwhile, we set the initial weights to be

Wc = [0.1 0.1 0.1]T , Wa = [0 0 0]T ,

and the learning rate of critic and actor NNs to be

θc = θa = 0.01.

As a result, the NN-based optimal control scheme is even-
tually achieved with the unstable system being stabilized,
as shown in Fig. 4(b) and the control trajectory converging
to zero, as shown in Fig. 5. Fig. 6 demonstrates the dynamic
of critic NN weights, from which we can conclude that

FIGURE 6. The simulation curve of critic NN weights.

the NN-based optimal control scheme converges to the real
optimal control scheme.

V. CONCLUSION
In this paper we propose a NN-based optimal control policy
for nonlinear systems subject to time delays. Sufficient
asymptotically stability criteria in terms of LMIs and Gron-
wall’s inequality are developed. The NN-based algorithm is
derived in virtue of online ADP strategy by using critic NN
and actor NN to approximate the optimal cost function and
optimal control input. The convergency of the weights esti-
mation errors is proved, thus indicating the optimal control is
actually achieved. Our work can be extended in a straightfor-
ward manner to nonlinear systems with time-varying delays.
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