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ABSTRACT This article deals with the problem of sequencing N jobs on a single machine with a restrictive
common due window. The objective is to minimize the total weighted earliness-tardiness penalties, which
conform to just-in-time (JIT) manufacturing. A novel backtracking simulated annealing (BSA) algorithm
with a backtracking mechanism and an effective coding scheme is proposed herein to solve this problem.
The performance of the proposed BSA algorithm is compared with that of the best available algorithm
and the simulated annealing (SA) algorithm using four benchmark problem sets. The computational results
reveal that the backtracking mechanism can improve the performance of the SA algorithm and make
the proposed BSA algorithm outperform the state-of-the-art algorithm. The proposed BSA algorithm is
sufficiently efficient to satisfy the real-world scheduling requirements of the JIT manufacturing system.

INDEX TERMS Scheduling, single machine, common due window, simulated annealing, backtracking.

I. INTRODUCTION
The single-machine scheduling problem (SMSP) is one of the
most studied manufacturing systems owing to its practica-
bility [1]. In recent decades, many investigations of various
SMSPs have examined the dispatching rules [2], [3] and
efficient heuristic algorithms [4]–[7], while applying various
criteria. An increasing number of manufacturers are paying
attention to just-in-time (JIT) production modes as they are
confronted with numerous challenges, including increased
product customization, short product life cycle and shortened
time to market. In practice, meeting the specified due dates of
jobs is critical for JIT production [8], [9]. Sidney [10] studied
an SMSPwith the objective of minimizing the total tardiness-
earliness penalties for all jobs with target starting times and
corresponding due dates. Gens and Levner [11] focused on
minimizing the penalties of delayed jobs in an SMSP, and
proposed a fast algorithm for approximating a tight bound
on delay penalties. While these studies on SMSPs allowed
different due dates for different jobs, Kanet [12] concentrated
on a special case of the SMSP with a common due date. The
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goal was to minimize the mean deviation of job completion
times from the common due date. Raghavachari [13] deter-
mined the common due date in an SMSP, and sequenced jobs
with minimization of the weighted mean absolute deviation
of job completion times. He showed that the optimal job
sequence is V-shaped. A V-shaped job sequence indicates
a subset of jobs that are sorted in order of non-increasing
job processing times, while the remaining jobs, are sorted
in order of non-decreasing job processing times. Krieger and
Raghavachari [14] further revealed that the optimal schedule
that minimized the sum of the penalties (early or late) for
all jobs is V-shaped when all jobs have the same penalty
function. Owing to its effectiveness, the V-shaped sequence
has become a useful property for efficiently finding optimal
or near-optimal schedules in SMSPs with variable or constant
common due dates [15]–[17].

SMSPs with a common due date (CDD) have been proved
to be NP-complete [18], [19]. A review of the literature by
Gordon, et al. [20] included a comprehensive discussion of
the computational difficulty of solving such SMSPs. In light
of this difficulty of computation using exact methods (such
as by the branch-and-bound algorithm [21], heuristic algo-
rithms have become popular owing to their tractability and
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efficiency, as revealed by a study on the ant colony opti-
mization algorithm [22]. Although various SMSPs have been
extensively studied, most relevant research concerns SMSPs
with a CDD [23], [24]. However, the assumption of the single
due date may be unrealistic in some real-world operations.

The common due window (CDW), which has various
applications in JIT manufacturing, chemical processing,
project scheduling, and information technology [25], is a
generalization of the CDD. In this type of scheduling prob-
lem, jobs completed within a specified time interval are not
penalized, while jobs completed before or after the time
interval are penalized accordingly [26]. There are many use
cases and fields of application regarding CDD. For example,
if customers order some goods from a supplier, they generally
agree to accept small deviations from a fixed delivery date
due to unavoidable uncertainty such as ships waiting for
embarkation in a harbor. If a bundle of goods is transported
in bulk delivery, the arrival and departure times of a truck
may be specified by the customers, during which time the
goods must be dispatched. Furthermore, the agreement of due
windows typically occurs in problems associated with tour
planning [27].

In recent years, many researchers have focused on the
study of SMSPs with CDWs. The most famous and inter-
esting studies in the literature were selected and discussed
as follows. Anger et al. [28] first introduced the concept of
a common due window (CDW) to the SMSP. They revealed
that the SMSP with the objective of minimizing the number
of early and tardy jobs can be solved in polynomial time.
Thereafter, Kramer and Lee [29] considered variable and
fixed CDWs in SMSPs, and solved the related problems using
a polynomial-time algorithm and a pseudo-polynomial-time
algorithm, respectively. Liman and Ramaswamy [30] consid-
ered a restricted common due window (RCDW) and unre-
stricted common due window (UCDW) in SMSPs in which
the weighted sum of earliness penalties and the weighted
number of tardy jobs is minimized. A CDW problem is
called restrictive if the range of the CDW influences the
optimal sequence of jobs; it is called unrestrictive if the
left border of the range exceeds the sum of the processing
times of all jobs, or if the range of the CDW is a decision
variable [27]. Liman and Ramaswamy [30] proved that the
UCDW case is NP-complete and presented dynamic pro-
gramming algorithms to find the optimal schedule. Ventura
and Weng [31] concentrated on the RCDW in an SMSP in
which the mean absolute deviation of job completion times
is minimized. They presented a Lagrangian relaxation proce-
dure and two efficient heuristics for obtaining lower bounds
of the optimal solutions. Yoo and Martin-Vega [32] investi-
gated an RCDW in SMSP with the objective of minimizing
the total earliness and tardiness penalties. They showed that
the problem and its similar problem with release dates can
be solved in polynomial-time by a modified Moore’s Algo-
rithm [33]. Yeung et al. [34] further proved that the SMSP
with an RCDW problem, and the objective of minimizing the
total weighted earliness, tardiness and flow time penalties,

becomes NP-hard. Biskup and Feldmann [27] investigated
an RCDW in SMSP and the objective of minimizing the
total weighted earliness and tardiness penalties. They sup-
ported the claim of Azizoglu and Webster [35] that an opti-
mal solution to the SMSP with an RCDW exists in which
jobs that are completed early or late exhibit the well-known
V-shaped property. The orders of early and late jobs fol-
low the dispatching rules of the weighted longest processing
time (WLPT) andweighted shortest processing time (WSPT),
respectively. Biskup and Feldmann [27] presented eight types
of possible optimal sequences. Since the problem is NP-
hard, they proposed a greedy heuristic (GH) algorithm to
find initial feasible solutions, and improved the process using
three meta-heuristics: the evolutionary strategy (ES), sim-
ulated annealing (SA) and threshold accepting (TA) algo-
rithms. To demonstrate the efficiency of the GH algorithm,
250 benchmark test problems were used. However, they seem
to have failed to consider that, with respect to the eight types
of possible optimal sequences, the processing of the first job
may straddle the boundaries of the RCDW.

On the other hand, a number of recent studies have con-
sidered the SMSP with a UCDW problem. For example,
Li [36] investigated three different variants of the SMSP
with a UCDW problem and batch deliveries. The objective
was to minimize the total cost. He proposed polynomial-time
solution procedures for the corresponding problems with
significantly lower computational complexities than those
of known algorithms in the literature. Liu et al. [37] con-
sidered the SMSP with a UCDW problem involving con-
vex resource-dependent processing times. The objective was
to minimize the total resource consumption cost under the
constraint of a given schedule cost. They showed that the
problem is polynomially solvable. Zhao et al. [38] inves-
tigated an SMSP with a UCDW, time-dependent process-
ing times, and a controllable rate-modifying activity. The
objective was to minimize the sum of earliness, tardiness,
due-window-related costs and resource-related costs. They
proposed a polynomial solution for the problem under con-
sideration. Liu et al. [39] studied four SMSPs with a UCDW
problem, where the processing time of the job was affected
by the learning and positional effects. They proved that all
the presented problems are polynomially solvable. Zhang
et al. [40] studied the SMSP with a UCDW problem, lin-
ear decreasing processing times and maintenance activities,
which are two common and important factors in scheduling
practice. They proposed some optimality properties for the
CDW assignment problem, and formulated them to obtain a
polynomial time algorithm. Mor [41] extended the classical
method ofminmaxCDD assignment and single-agent SMSPs
to a setting involving two competing agents and a multi-agent
setting. Furthermore, he generalized the problems to the
SMSP with a UCDW problem and introduced efficient poly-
nomial time solutions for all studied problems. Yin [42]
investigated an SMSP with a UCDW and job-dependent
learning effect, and showed that it can be solved in poly-
nomial time. Wang and Li [43] dealt with four bi-criteria
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TABLE 1. The computational complexity and solution algorithms of existing research.

SMSPs with a UCDW problem and resource-dependent pro-
cessing times, in which the resource amounts assigned to
the jobs can be either discrete or continuous. The authors
proposed pseudo-polynomial-time algorithms and an opti-
mal algorithm, which can help practitioners addressing cor-
responding problems faced in their specific environments.
At the same year, Mor [26] studied two extensions of min-
max SMSP with a UCDW problem. The first problem is
to minimize the maximum scheduling cost subject to max-
imal resource consumption; the second one is to minimize
the resource consumption subject to an upper bound on the
scheduling measure. It was proved that both considered prob-
lems are polynomially solvable. Wang et al. [44] dealt with
an SMSP with a UCDW problem, in which the objective
was to minimize the total position-dependent weighted cost.
A polynomial time solution algorithm was provided for the
corresponding problem.

The computational complexity and solution algorithms
of existing research for SMSPs with RCDW and UCDW
are summarized in Table 1. Generally, it can be seen
in Table 1 that there are many pseudo-polynomial-time algo-
rithms for the polynomially solvable problems, but only a
few meta-heuristic algorithms for the NP-hard problems. For
further detailed discussion on SMSCDWAPs, the reader is
referred to the recent survey article by Janiak et al. [25].
Motivated by the excellent research of Biskup and Feld-

mann [27], this study focuses on the SMSP with an RCDW
in which the total weighted earliness-tardiness penalties are
minimized. A novel backtracking simulated annealing (BSA)

algorithm, which uses a backtracking mechanism to escape
from local optima sequences and an effective coding scheme
to find possible optimal sequences and waiting times, is pro-
posed herein. Twelve types of possible optimal sequences are
presented in calculating the total weighted earliness-tardiness
penalties. The performance of the proposed BSA algorithm
is demonstrated by comparing its computational results with
those obtained using the state-of-the-art ES algorithm [27]
and the simulated annealing (SA) algorithm in solving four
sets of benchmark problems. The remainder of this paper
is organized as follows. The following section defines the
considered SMSP. Section 3 discusses 12 types of possible
optimal sequences and the formulae for the corresponding
objective functions. Section 4 describes in detail the proposed
BSA algorithm. Section 5 presents the computational exper-
iments and results obtained using four benchmark problem
sets. Finally, Section 6 draws conclusions and offers sugges-
tions regarding directions for future research.

II. PROBLEM STATEMENT, DEFINITIONS AND NOTATION
The SMSP with an RCDW in this work is described as
follows. The following notations are used.
Notations:

j job index
αj unit penalty associated with the earliness of job Jj
βj unit penalty associated with the tardiness of job Jj
pj processing time of job Jj
Cj completion time of job Jj
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dE earliest due date
dT latest due date
CE earliest possible completion time of all jobs
hE given parameters that determine dE
hT given parameters that determine dT
Ej earliness of job Jj
Tj tardiness of job Jj

Consider a set of N jobs J = {Jj|j = 1, . . . ,N } to
be processed on a single machine with an RCDW. The
objective is to determine the sequence of all jobs that
minimizes the total weighted earliness-tardiness penalties.
By applying the three-field classification scheme of Graham
et al. [45], the addressed SMSP can be expressed as the triplet
1|RCDW |

∑
(αjEj + βjTj), where Ej and Tj are the earliness

and tardiness of job Jj (j = 1, 2, . . . ,N ), respectively, and
αj and βj are the unit penalties (penalty weights) associated
with the earliness and tardiness of job Jj, respectively. Let
pj, j = 1, . . . ,N , be the processing time of job Jj, and Cj,
j = 1, . . . ,N , be the completion time of job Jj. For the
RCDW, let dE and dT represent the earliest (left boundary)
and latest (right boundary) due dates, respectively. With ref-
erence to Feldmann and Biskup [46], the size and position of
the RCDW, based on dE and dT , are predetermined as:

dE = bhE · CEc =

hE · N∑
j=1

pj

 (1)

dT = bhT · CEc =

hT · N∑
j=1

pj

 (2)

where CE is the earliest possible completion time of all jobs,
and hE and hT are the given parameters that determine dE and
dT , respectively.
Throughout the paper, parameters hE and hT satisfy the

inequality 0 < hE < hT < 1 such that (dT − dE ) < CE .
Additionally, the latest due date satisfies dT ≥ minj=1,...,N pj;
otherwise, an optimal sequence can be easily obtained by
sequencing all jobs in order of non-decreasing pj

/
βj. The

critical assumptions made in the 1|RCDW |
∑

(αjEj + βjTj)
problem herein are described as follows.

• All jobs are independent of each other and processed
consecutively on one machine.

• The first job in a production sequence may be processed
after the beginning of the scheduling horizon, which is
at time zero.

• The machine can only process a job once and must pro-
cess all jobs without any interruption from the beginning
of the processing of the first job to the completion of the
last job.

• The setup time of the machine is negligible.
• No job is interrupted and no machine breaks down.
• The size and position of the RCDW are predetermined
and fixed.

• The RCDW is smaller than the makespan of the N jobs.

• The latest due date (right boundary) of the RCDW is
after the earliest possible completion of any one job.

III. TWELVE TYPES OF POSSIBLE OPTIMAL SEQUENCES
With respect to the 1|RCDW |

∑
(αjEj + βjTj) problem,

Biskup and Feldmann [27] discussed eight types of possi-
ble optimal sequences. The orders of early and tardy jobs
follow the WLPT and WSPT rules, respectively (and so
exhibit V-shaped property). For ease of explanation, let Sj
(j = 1, 2, . . . ,N ) be the starting time of job Jj;E =

{Jj|Cj ≤ dE },W = {Jj|Sj ≥ dE , Cj ≤ dT }, and T =
{Jj|Sj ≥ dT } denote the sets of non-straddling jobs with
starting and completion times before, within and after the
RCDW, respectively. Then, an optimal sequence exhibits the
following well-known properties [35].
Property 1: In an optimal sequence, jobs must be in a

V-shaped arrangement, meaning that jobs in set E (or T) are
ordered by non-increasing (or non-decreasing) ratio pj

/
αj (or

pj
/
βj).
Property 2: An optimal sequence exists in which either

the job in the first position begins at time zero or one job is
completed at dE or dT .
Property 1 implies that one or two straddling jobs may be

present in the optimal sequence, and Property 2 means that an
optimal sequence may exist in which all jobs have production
waiting times. Given these two properties, twelve types of
possible optimal sequences are provided, presented in Fig. 1.
Therein, JE (with Sj < dE ∨ dE < Cj ≤ dT ), JT (with
dE ≤ Sj < dT ∨ Cj > dT ) and JB (with Sj < dE ∨ Cj >
dT ) represent left-straddling, right-straddling and double-
straddling individual jobs, with starting and completion times
that straddle the RCDW boundaries dE , dT and both dE and
dT , respectively. Note that the twelve cases are established
under the following assumptions:

• dE ≥ min{p1, p2, . . . , pN }; otherwise, the problem is
trivial. The optimal solution is ordering the jobs accord-
ing to non-decreasing ratios pj

/
βj and starting the first

job at time zero.
• dT − dE <

∑
j=1,...,N pj; otherwise, the problem

becomes trivial.

Case 1 (W = φ) involves production waiting time and
right-straddling job JT . Case 2 (E = W = φ) involves
left-straddling job JE and right-straddling job JT .Case 3 (E =
W = φ) involves double-straddling job JB. Cases 4 and 5
involve production waiting times, and Case 4 involves left-
straddling job JE . In Case 6, all jobs are non-straddling
jobs. Case 7 involves right-straddling job JT with production
waiting time. In Cases 8 to 12, production begins at time
zero; Cases 8 and 9 involve the left-straddling job JE and
right-straddling job JT , respectively. Cases 10 and 11 (E =
φ) involve both a left-straddling job JE and a right-straddling
job JT . Case 12 (W = φ) involves the double-straddling
job JB. In more detail, the first, seventh and ninth cases are
characterized by the existence of one job completed exactly
in dE ; the fourth and eighth cases are characterized by the
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FIGURE 1. Twelve types of possible optimal sequences.

existence of one job completed exactly in dT ; the fifth and
sixth cases are characterized by the existence of one job
completed exactly in dE and another job completed exactly
in dT . In the remaining five cases: cases 2, 3, 10, 11 and 12,
at least one straddling job occurs. In the third and twelfth
cases a double-straddling job occurs. These straddling jobs
are stressed by shading. In cases 1, 3, 4, 7, 8, 9 and 12 only
one straddling job emerges and in cases 2, 10 and 11 two
straddling jobs occur. Moreover, in the first, fourth, fifth,
and seventh cases, their first job of set E starts later than
time point zero. To simulate the leading idle time of these
cases, set E is moved slightly to the right in Fig. 1. It is
noted that for an optimal solution the existence of two strad-
dling jobs or a double-straddling job are inconsistent with
leading idle time (Property 2). Otherwise, the total weighted
earliness-tardiness penalties could be decreased by moving
all jobs to the left or to the right. Additionally, as seen in
cases 1, 2, 3, 10, 11 and 12, sets E and W can be empty, but
we have to mention that set T cannot be empty, as an empty
set T contravenes the assumption that the CDW is restrictive.

These twelve types provide a more complete and accu-
rate perspective on all possible optimal sequences associated
with various straddling jobs and production waiting times.
To facilitate the proposed BSA algorithm to evaluate possible
candidate solutions, these cases are classified into six groups
(G1-G6); each is associated with a formula for the total
weighted earliness-tardiness penalties, as follows.
G1. Case 1:

∑
j∈E αj(dE − Cj)+ β(JT ) [p(JT )+ dE − dT ]

+
∑

j∈T βj
[
p(JT )+ dE − dT + pj

]
G2. Case 2: β(JT ) [p(JE )+ p(JT )− dT ]+.∑
j∈T βj

[
p(JE )+ p(JT )− dT + pj

]
G3. Case 3: β(JB) [p(JB)−dT ]+

∑
j∈T βj

[
p(JB)−dT+pj

]
.

G4. Cases 4 to 6:
∑

j∈E αj(dE − Cj)+
∑

j∈T βjpj.

G5. Cases 7 to 11:
∑

j∈E αj(dE − Cj)+ β(JT )
[p(JT )+ dE − dT ]+

∑
j∈T βj

[
p(JT )+ dE − dT + pj

]
G6. Case 12:

∑
j∈E αj(dE − Cj) + β(JB)T (JB) +∑

j∈T βj
[
T (JB)+ pj

]
where T (JB) =

∑
j∈E pj + p(JB)− dT .

IV. PROPOSED BSA ALGORITHM
This work develops a novel SA-based heuristic, called
backtracking simulated annealing (BSA), to solve the
1|RCDW |

∑
(αjEj + βjTj) problem. The SA algorithm is a

well-known local search-basedmeta-heuristic that can escape
from the local optima by accepting, with small probabil-
ity, worse solutions during the search process. This famous
algorithm has been successfully used to solve many hard
combinatorial optimization problems, such as neural net [47],
benchmark functions [48], image restoration problem [49],
0-1 Knapsack Problem [50], and quadratic assignment prob-
lem [51]. An SA algorithm typically begins with a randomly
generated initial solution. Then, at each iteration, it finds a
solution in the neighborhood of the current solution. If the
new solution is better than the current solution, it replaces the
latter with the former and the search process resumes from
the new current solution. It also allows a worse neighborhood
solution to replace the current solution, with a small probabil-
ity, so that the procedure can escape local optima at which it
may otherwise become trapped. The proposedBSA algorithm
applies a backtracking mechanism to escape from the local
optima sequences and an effective coding scheme to search
for possible optimal sequences and the waiting time for the
1|RCDW |

∑
(αjEj + βjTj).

The following subsections describe the solution represen-
tation and coding procedures, the neighborhood solutions,
the parameters used in the proposed BSA algorithm, and the
procedure of its implementation.

A. SOLUTION REPRESENTATION AND
CODING PROCEDURE
In this study, a solution is coded using a non-negative integer
value to represent the waiting time, LT (0 ≤ LT ≤ dE ),
and n integers to specify an ordered list of n jobs. Given a
waiting time and an ordered list, the corresponding solution
5 is coded using the following two steps. In the first step,
the completion time C[j] (j = 1, . . . ,N ) of the jth job in an
ordered list is calculated as follows:

C[1] = LT + p[1] (3)

C[j+1] = C[j] + p[j+1] (4)

Based on its completion time, each job is identified as
being a member of one of the three sets of non-straddling
job (E, W, and T) or one of the three straddling jobs (JE ,
JT and JB). In the second step, the jobs in E are re-arranged
in order of non-increasing ratio pj/αj, while the jobs in T
are re-arranged in order of non-decreasing ratio pj/βj. Since
the value of the objective function must be computed fre-
quently in the search process, the method for quickly sorting

VOLUME 7, 2019 148745



S.-W. Lin et al.: Single Machine Job Sequencing With a Restricted Common Due Window

FIGURE 2. The Gantt chart of the optimal solution.

FIGURE 3. Pseudo-code of the proposed BSA algorithm.

jobs in a V-shape that was proposed by Lin, et al. [52] is
used. This method is performed using two pre-established
lookup tables to quickly determine the sequences of jobs
in E and T. Procedures and an example of its use were
presented by Lin, et al. [52]. After the jobs in E and T
are sorted in a V-shape, the ordered list in the solution
is coded as (E, JE ,W(or JB), JT ,T). Notably, if JB exists,
thenW = φ.

The coding procedure is demonstrated by applying it to
a random generated instance (see Table 2) with ten-job,

dE = 38 and dT = 64. Given a waiting time of seven and
a permutation list (5, 2, 7, 1, 4, 3, 9, 10, 6, 8), from Eqs. (3)
and (4) , C5 = 7 + 11 = 18,C2 = 18 + 19 = 37,C7 =

37+ 5 = 42,C1 = 42+ 6 = 48,C4 = 48+ 16 = 64,C3 =

64 + 20 = 84,C9 = 84 + 10 = 94,C10 = 94 + 20 =
114,C6 = 114 + 11 = 125, C8 = 125 + 11 = 136.
Therefore, E = {J5, J2}, JE = J7, JB = 8, JT = 8,W =
{J1, J4},T = {J3, J9, J10, J6, J8}, and the right straddling or
double-straddling job does not exist. Finally, by sorting the
jobs in E and T in a V-shape, the ordered list in the solution
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TABLE 2. Data for a random generated instance.

is recoded as (5, 2, 7, 1, 4, 9, 6, 8, 3, 10), and the solution
is then coded as 5 = (7| 5, 2, 7, 1, 4, 9, 6, 8, 3, 10). The
Gantt chart of this solution is shown in Fig. 2. This solution
is indeed the optimal solution of the above problem instance.

B. NEIGHBORHOOD
The change operator of the LT and the job swap operator
are used to generate the solution from the neighborhood of
the current solution 5. The set of solutions in the neigh-
borhood of the current solution 5 is denoted as N (5).
In each iteration, the LT is determined by applying one of
three rules: increase one (R1), reduce one (R2), and keep the
same (R3) the current LT, according to the formula probr =
ηr/

∑3
l=1 ηl, (r = 1, 2, 3), where probr is the probability of

choosing rule Rr and ηr is the fitness value of rule Rr , which
is auto-tuned in each iteration according to the following
criteria:
(1) If the current solution is improved and updated to a new

obtained solution that is generated by applying a selected
rule (Rr ), then set ηr =: ηr + 1;

(2) Otherwise, if the new obtained solution that is generated
by applying a selected rule (Rr ) is worse than the current
solution, then set ηr =: ηr − 1. If ηr < ηmin, and then
ηr =: ηmin, where ηmin is the minimal allowed value of
ηr (r = 1, 2, 3).

(3) Otherwise, ηr =: ηr − 0.1.
Notably, in the application of the three LT updating rules,

the possible range of LT (0 ≤ LT ≤ dE ) must be considered.
If the LT is zero or greater than dE , the R2 and R1 cannot be
applied, respectively. For example, if current LT is 7, new LT
will be 8, 6, and 7 for R1,R2, and R3 rule, respectively. After
the LT is changed, a new feasible solution 5new is generated
from N (5) by randomly choosing and swapping the ith and
the jth positions of jobs in5. Notably, if the selected jobs are
in the same set E,W, or T, the sequence of jobs in5 cannot
be improved; therefore, two jobs may not be selected from a
single set. For example, if5 = (7|5, 2, 7, 1, 4, 9, 6, 8, 3, 10),
then E = {J5, J2}, JE = J7, JB = 8, JT = 8,

W = {J1, J4},T = {J3, J9, J10, J6, J8}. Swap J9 and J10
will not change the objective function value of5 because the
V-shape property is applied; therefore, two jobs which are not
in the set can be swapped.

C. BSA PROCEDURES
The pseudo-code of the proposed BSA algorithm is shown
in Fig. 3. Let T0 and Tf represent the initial and final
temperatures, respectively; Iiter denotes the total number of

FIGURE 4. The average ARDs of all compared algorithms.

iterations that the perturbation should repeat at a certain
temperature; α indicates the control coefficient of the cool-
ing schedule; ηmin represents the minimal value of ηr (r =
1, 2, 3), where ηr is the fitness value of choosing rule Rr ;
Bnon−improving stands for the cumulative number of consec-
utive temperature reductions. If the best value of the objec-
tive function is not improved by Bnon−improving consecutive
temperature reductions, then the incumbent solution will be
backtracked to the current best solution. The detailed proce-
dures of the proposed BSA algorithm to be used to solve the
1|RCDW |

∑
(αjEj + βjTj) problem are described as follows.

Initially, the current temperature T is set to T0 and an initial
solution 5 is obtained using the revised greedy heuristic
(RGH) [53]. The value of the objective function of 5 is
denoted as obj(5). The current best solution 5best is set to
5, and obj(5best ) is initialized as obj(5).
At each iteration, a neighborhood solution5new with wait-

ing time is generated from N (5), and its objective function
value is evaluated. If obj(5new) is not worse than obj(5),
then 5new replaces 5 as the incumbent solution. Otherwise,
5new is accepted as the incumbent solution with a small
probability. This probability is typically calculated using the
Boltzmann function.More specifically, let1E = obj(5new)−
obj(5); then the probability of replacing 5 with a worse
neighborhood solution5new is e(−1E/T ). Such a replacement
is implemented by randomly generating a number 0 < r < 1
and replacing 5 with 5new when r < e(−1E/T ).

The current temperature T decreases after Iiter iterations at
the current temperature, according to the formula T =: αT ,
0 < α < 1. If 5best is not improved in Bnon−improving,
then the backtracking mechanism is implemented by setting
the current solution 5 to 5best . The searching procedure
terminates when the current temperature is lower than the
final temperature TF , and the best solution is then output.

V. COMPUTATIONAL EXPERIMENTS AND RESULTS
The performance of the proposed BSA algorithm is compared
with those of SA (BSA without a backtracking mechanism)
and EA [27], which is the best available algorithm published
in the literature. All of the BSA, SA, and EA algorithms
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TABLE 3. ARDs of the compared algorithms for each size of test problem.

FIGURE 5. The number of solutions obtained by BSA is better, equal to, or worse than those obtained by SA and EA.

utilize an initial solution that is obtained using RGH [53]. The
proposed BSA algorithm was coded using C language and
executed on a personal computer with an Intel Core 2 i7-920

2.67 GHz CPU and 4 GB of RAM. EA was re-coded
and run on the same computer; the computational times
were then compared. The following subsection describes the
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TABLE 4. Paired t-tests on ARDs of the compared algorithms for each size of test problem.

benchmark problems, parameter value determination, and
computational results.

A. BENCHMARK PROBLEMS
To evaluate the performance of the proposed BSA algo-
rithm in solving the 1|RCDW |

∑
(αjEj + βjTj) problem,

four problem sets (I, II, III, and IV) extended from the
well-known benchmark problems [54] are used. The Prob-
lem set I comprises the benchmark problems with the
number of jobs N = {10, 20, 50, 100, 200}, and pos-
sible combinations of RCDW parameters (hE , hT ) =

{(0.1, 0.2), (0.1, 0.3), (0.2, 0.5), (0.3, 0.4), (0.3, 0.5)}. Ten
benchmark problems are generated for each combination

yielding a total of 250 benchmark problems in the problem
set I. Notably, problem set I was also used in tests by Biskup
and Feldmann [53] and Ying et al. [54]. The experimental
design of problem set II is the same as that of problem
set I, but with N = {500, 1000}. Therefore, problem set
II comprised 100 benchmark problems. The experimental
designs of problem sets III and IV are the same as those of
problem sets I and II, respectively, except that (hE , hT ) =
{(0.4, 0.5), (0.4, 0.6), (0.5, 0.6), (0.5, 0.7), (0.6, 0.7)}. As a
result, a total of 700 benchmark problems are
considered.

The performance of the compared algorithms is evalu-
ated using the average relative deviation (ARD), defined as
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TABLE 5. The number and percentage of solutions obtained by the BSA are better, equal to, or worse than those obtained by SA and ES algorithms.

follows:

ARD =

[
n∑
i=1

objhi −obj
best
i

objbesti

]
n

× 10, 000

Here, objhi is the value of the objective function in the
ith benchmark problem that was obtained by algorithm h;
objbesti is the best value of the objective function in the ith

benchmark problem that was obtained by any of the compared
algorithms, n is the number of benchmark problems under
consideration, and is a per ten thousand sign.

B. PARAMETER VALUE DETERMINATION
Since all of the relevant parameters may influence the
performance of the proposed BSA algorithm, exten-
sive computational testing was carried out to evaluate
them. In the preliminary tests, the following combina-
tions of parameter values were used in 16 benchmark
problems that were randomly selected from the four
sets thereof, and each problem was solved by three
independent applications of the proposed BSA algo-
rithm: Iiter ∈ {500, 1000, 1500, 2000};Bnon−improving ∈
{5, 10, 15, 20}; ηmin ∈ {10, 20, 30};T0 ∈ {3, 5, 10, 15, 20};
α ∈ {0.96, 0.97, 0.98, 0.99}, and TF ∈ {0.01, 0.05, 0.10,
0.15, 0.20}. The test results showed that the best performance
of the BSA algorithm was achieved within a reasonable
computation time using T0 = 10,TF = 0.1, Iiter = 1000,

Bnon−improving = 5, ηmin = 10, and α = 0.98. Accordingly,
these parameter values were used in the experiments.

C. COMPUTATIONAL RESULTS
Table 3 presents the ARD and average running time
(in seconds) to solve a problem of each size. The total
average ARD for all 700 instances that was obtained
using the proposed BSA algorithm is 0.007 , whereas
the corresponding values that were obtained by SA and
ES are 0.809 and 9.921 , respectively. Obviously,
the proposed BSA algorithm outperforms the state-of-the-
art ES algorithm and the traditional SA heuristic in solving
the 1|RCDW |

∑
(αjEj + βjTj) problem. The computational

times of the BSA and SA algorithms are almost equal
because they apply the same termination condition. In con-
trast, the computational times of the BSA and SA algorithms
are much shorter than that of ES when N ≥ 200, indicating
that the encoding scheme of BSA and SA is more efficient
than that of ES. As shown in Fig. 4, compared with ES, the
proposed BSA can provide smaller ARDs for all different job
numbers. Fig. 4 shows that SA and BSA can provide almost
the same ARDs when the number of jobs is smaller than 500.

To verify the effectiveness of the proposed BSA algorithm,
paired t-tests are performed on the ARD obtained using this
algorithm to compare it with those of ES and SA algorithms.
Table 4 reveals that the proposed BSA algorithm significantly
outperforms the SA and ES algorithms for N = 500 and
1000 with problem sets II and IV at the 95% confidence level.
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TABLE 6. The best known solutions of benchmark problem sets I and II.
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TABLE 7. The best known solutions of benchmark problem sets III and IV.

However, the BSA algorithm is not statistically better than the
SA algorithm for N = 10, 20, 50, 100 and 200 with problem
sets I and III, perhaps because the SA algorithm also performs

well when it is applied to small and medium-sized problems.
Nevertheless, the BAS is indeed statistically better than ES,
even when N is 50.
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The computational results are analyzed with a focus on
the number of solutions obtained by the proposed BSA algo-
rithm; they are better, equal to, or worse than those obtained
by the SA and EA algorithms. As shown in Table 5, the pro-
posed BSA algorithm is better than, equal to, and worse
than the SA algorithm in 163 out of 700, 507 out of 700,
and 30 out of 700 benchmark problems, respectively. The
proposed BSA algorithm is better than, equal to, and worse
than the ES algorithm in 342 out of 700, 355 out of 700,
and 3 out of 770 benchmark problems, respectively. In the
benchmark problems with N = 500 and 1000, 67% and
90%, respectively, the solutions obtained using the proposed
BSA algorithm are better than those obtained using the SA
algorithm. In the test instances with N = 200, 500 and
1000, 67%, 98% and 100%, respectively, of the solutions
obtained using the proposed BSA algorithm are better than
those obtained using the EA algorithm. The analytical results
reveal that BSA outperforms SA in most benchmark prob-
lems with N ≥ 500, whereas BSA outperforms ES in most
of benchmark problems with N ≥ 200. As shown in Fig. 5,
compared with ES, the proposed BSA can provide much bet-
ter solutions when the number of jobs increases. Fig. 5 shows
that compared with SA, the BSA can provide better solutions
when the number of jobs is equal to and larger than 200.

To provide a benchmark for future research, Appendix
Table 6 presents the best known solutions of the 250 and
100 benchmark problems in problem sets I and II, respec-
tively, while Appendix Table 7 presents the best known solu-
tions of the 250 and 100 benchmark problems in problems
sets III and IV, respectively.

VI. CONCLUSION AND RECOMMENDATIONS FOR
FUTURE RESEARCH
This paper concerns the 1|RCDW |

∑
(αjEj + βjTj) prob-

lem, which is not only theoretically but also practically
interesting. We present a complete perspective on all pos-
sible optimal sequences associated with various straddling
jobs and production waiting times. An effective and effi-
cient BSA algorithm, which includes a backtracking mech-
anism and an effective coding scheme, is proposed to solve
the above problem. Computational experiments that involve
extensive benchmark test instances demonstrate that the
proposed backtracking mechanism can improve the per-
formance of the SA algorithm and make the proposed
BSA algorithm significantly outperform the best available
algorithm published in the literature. This research con-
tributes by providing useful optimization approaches to the
1|RCDW |

∑
(αjEj + βjTj) problem. Since few algorithms

are currently available for solving this stronglyNP-complete
problem, the presented approaches can help practitioners
solve real-world 1|RCDW |

∑
(αjEj + βjTj) problems with

respect to the JIT manufacturing system.
Many interesting related topics warrant further inves-

tigation. First, the problem herein should be extended
to include various plausible objectives. Second, more
effective and efficient meta-heuristics for solving the

1|RCDW |
∑

(αjEj + βjTj) problem warrant further explo-
ration. Third, more research is needed to develop exact
methods for solving the 1|RCDW |

∑
(αjEj + βjTj) problem.

Fourth, further investigations of problem variants with addi-
tional realistic constraints, such as sequence-dependent setup
times and release times, would support a rich body of future
studies. Fifth, the SMSP with an RCDW in which a bi-
objective function value is minimized, would be an interest-
ing target of research. Finally, future research could consider
other production systems (such as flow-shop and job-shop)
that involve an RCDW.

APPENDIX
See Tables 6 and 7.
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