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ABSTRACT This article deals with the problem of sequencing N jobs on a single machine with a restrictive
common due window. The objective is to minimize the total weighted earliness-tardiness penalties, which
conform to just-in-time (JIT) manufacturing. A novel backtracking simulated annealing (BSA) algorithm
with a backtracking mechanism and an effective coding scheme is proposed herein to solve this problem.
The performance of the proposed BSA algorithm is compared with that of the best available algorithm
and the simulated annealing (SA) algorithm using four benchmark problem sets. The computational results
reveal that the backtracking mechanism can improve the performance of the SA algorithm and make
the proposed BSA algorithm outperform the state-of-the-art algorithm. The proposed BSA algorithm is

sufficiently efficient to satisfy the real-world scheduling requirements of the JIT manufacturing system.

INDEX TERMS Scheduling, single machine, common due window, simulated annealing, backtracking.

I. INTRODUCTION

The single-machine scheduling problem (SMSP) is one of the
most studied manufacturing systems owing to its practica-
bility [1]. In recent decades, many investigations of various
SMSPs have examined the dispatching rules [2], [3] and
efficient heuristic algorithms [4]-[7], while applying various
criteria. An increasing number of manufacturers are paying
attention to just-in-time (JIT) production modes as they are
confronted with numerous challenges, including increased
product customization, short product life cycle and shortened
time to market. In practice, meeting the specified due dates of
jobs is critical for JIT production [8], [9]. Sidney [10] studied
an SMSP with the objective of minimizing the total tardiness-
earliness penalties for all jobs with target starting times and
corresponding due dates. Gens and Levner [11] focused on
minimizing the penalties of delayed jobs in an SMSP, and
proposed a fast algorithm for approximating a tight bound
on delay penalties. While these studies on SMSPs allowed
different due dates for different jobs, Kanet [12] concentrated
on a special case of the SMSP with a common due date. The
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goal was to minimize the mean deviation of job completion
times from the common due date. Raghavachari [13] deter-
mined the common due date in an SMSP, and sequenced jobs
with minimization of the weighted mean absolute deviation
of job completion times. He showed that the optimal job
sequence is V-shaped. A V-shaped job sequence indicates
a subset of jobs that are sorted in order of non-increasing
job processing times, while the remaining jobs, are sorted
in order of non-decreasing job processing times. Krieger and
Raghavachari [14] further revealed that the optimal schedule
that minimized the sum of the penalties (early or late) for
all jobs is V-shaped when all jobs have the same penalty
function. Owing to its effectiveness, the V-shaped sequence
has become a useful property for efficiently finding optimal
or near-optimal schedules in SMSPs with variable or constant
common due dates [15]-[17].

SMSPs with a common due date (CDD) have been proved
to be NP-complete [18], [19]. A review of the literature by
Gordon, et al. [20] included a comprehensive discussion of
the computational difficulty of solving such SMSPs. In light
of this difficulty of computation using exact methods (such
as by the branch-and-bound algorithm [21], heuristic algo-
rithms have become popular owing to their tractability and
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efficiency, as revealed by a study on the ant colony opti-
mization algorithm [22]. Although various SMSPs have been
extensively studied, most relevant research concerns SMSPs
with a CDD [23], [24]. However, the assumption of the single
due date may be unrealistic in some real-world operations.

The common due window (CDW), which has various
applications in JIT manufacturing, chemical processing,
project scheduling, and information technology [25], is a
generalization of the CDD. In this type of scheduling prob-
lem, jobs completed within a specified time interval are not
penalized, while jobs completed before or after the time
interval are penalized accordingly [26]. There are many use
cases and fields of application regarding CDD. For example,
if customers order some goods from a supplier, they generally
agree to accept small deviations from a fixed delivery date
due to unavoidable uncertainty such as ships waiting for
embarkation in a harbor. If a bundle of goods is transported
in bulk delivery, the arrival and departure times of a truck
may be specified by the customers, during which time the
goods must be dispatched. Furthermore, the agreement of due
windows typically occurs in problems associated with tour
planning [27].

In recent years, many researchers have focused on the
study of SMSPs with CDWs. The most famous and inter-
esting studies in the literature were selected and discussed
as follows. Anger et al. [28] first introduced the concept of
a common due window (CDW) to the SMSP. They revealed
that the SMSP with the objective of minimizing the number
of early and tardy jobs can be solved in polynomial time.
Thereafter, Kramer and Lee [29] considered variable and
fixed CDWs in SMSPs, and solved the related problems using
a polynomial-time algorithm and a pseudo-polynomial-time
algorithm, respectively. Liman and Ramaswamy [30] consid-
ered a restricted common due window (RCDW) and unre-
stricted common due window (UCDW) in SMSPs in which
the weighted sum of earliness penalties and the weighted
number of tardy jobs is minimized. A CDW problem is
called restrictive if the range of the CDW influences the
optimal sequence of jobs; it is called unrestrictive if the
left border of the range exceeds the sum of the processing
times of all jobs, or if the range of the CDW is a decision
variable [27]. Liman and Ramaswamy [30] proved that the
UCDW case is NP-complete and presented dynamic pro-
gramming algorithms to find the optimal schedule. Ventura
and Weng [31] concentrated on the RCDW in an SMSP in
which the mean absolute deviation of job completion times
is minimized. They presented a Lagrangian relaxation proce-
dure and two efficient heuristics for obtaining lower bounds
of the optimal solutions. Yoo and Martin-Vega [32] investi-
gated an RCDW in SMSP with the objective of minimizing
the total earliness and tardiness penalties. They showed that
the problem and its similar problem with release dates can
be solved in polynomial-time by a modified Moore’s Algo-
rithm [33]. Yeung et al. [34] further proved that the SMSP
with an RCDW problem, and the objective of minimizing the
total weighted earliness, tardiness and flow time penalties,
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becomes NP-hard. Biskup and Feldmann [27] investigated
an RCDW in SMSP and the objective of minimizing the
total weighted earliness and tardiness penalties. They sup-
ported the claim of Azizoglu and Webster [35] that an opti-
mal solution to the SMSP with an RCDW exists in which
jobs that are completed early or late exhibit the well-known
V-shaped property. The orders of early and late jobs fol-
low the dispatching rules of the weighted longest processing
time (WLPT) and weighted shortest processing time (WSPT),
respectively. Biskup and Feldmann [27] presented eight types
of possible optimal sequences. Since the problem is NP-
hard, they proposed a greedy heuristic (GH) algorithm to
find initial feasible solutions, and improved the process using
three meta-heuristics: the evolutionary strategy (ES), sim-
ulated annealing (SA) and threshold accepting (TA) algo-
rithms. To demonstrate the efficiency of the GH algorithm,
250 benchmark test problems were used. However, they seem
to have failed to consider that, with respect to the eight types
of possible optimal sequences, the processing of the first job
may straddle the boundaries of the RCDW.

On the other hand, a number of recent studies have con-
sidered the SMSP with a UCDW problem. For example,
Li [36] investigated three different variants of the SMSP
with a UCDW problem and batch deliveries. The objective
was to minimize the total cost. He proposed polynomial-time
solution procedures for the corresponding problems with
significantly lower computational complexities than those
of known algorithms in the literature. Liu et al. [37] con-
sidered the SMSP with a UCDW problem involving con-
vex resource-dependent processing times. The objective was
to minimize the total resource consumption cost under the
constraint of a given schedule cost. They showed that the
problem is polynomially solvable. Zhao et al. [38] inves-
tigated an SMSP with a UCDW, time-dependent process-
ing times, and a controllable rate-modifying activity. The
objective was to minimize the sum of earliness, tardiness,
due-window-related costs and resource-related costs. They
proposed a polynomial solution for the problem under con-
sideration. Liu et al. [39] studied four SMSPs with a UCDW
problem, where the processing time of the job was affected
by the learning and positional effects. They proved that all
the presented problems are polynomially solvable. Zhang
et al. [40] studied the SMSP with a UCDW problem, lin-
ear decreasing processing times and maintenance activities,
which are two common and important factors in scheduling
practice. They proposed some optimality properties for the
CDW assignment problem, and formulated them to obtain a
polynomial time algorithm. Mor [41] extended the classical
method of minmax CDD assignment and single-agent SMSPs
to a setting involving two competing agents and a multi-agent
setting. Furthermore, he generalized the problems to the
SMSP with a UCDW problem and introduced efficient poly-
nomial time solutions for all studied problems. Yin [42]
investigated an SMSP with a UCDW and job-dependent
learning effect, and showed that it can be solved in poly-
nomial time. Wang and Li [43] dealt with four bi-criteria
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TABLE 1. The computational complexity and solution algorithms of existing research.

CDW Type  Authors Complexity  Algorithms
RCDW Anger, et al. [28] P O(nlogn)
Kramer and Lee [29] P O(nlogn)
Liman and Ramaswamy [30] P on*dy. »)
Biskup and Feldmann [27] NP-hard Heuristic
Ventura and Weng [31] NP-hard Heuristic
Yoo and Martin-Vega [32] P Heuristic
Yeung et al. [34] P Dynamic Programming
Azizoglu and Webster [35] NP-hard Branch-and-Bound
UCDW Mor [26] P O(n), O(n*)
Liman and Ramaswamy [30] NP-hard om*DY. ?)
Li [36] P o@n*), O(n*)
Liu et al. [37] P O(nlogn)
Zhao et al. [38] P on*)
Liu et al. [39] P o), O(nlogn)
Zhang et al. [40] P O(nlogn)
Mor [41] p O(max{n”,n"}), O(m" + m®In* +(m®logm®) +(m™)*)
Yin [42] P om®)
Wang and Li [43] P, NP-hard O(n), Mixed Integer Linear Programming
Wang et al. [44] P O(nlogn), O(n*)

SMSPs with a UCDW problem and resource-dependent pro-
cessing times, in which the resource amounts assigned to
the jobs can be either discrete or continuous. The authors
proposed pseudo-polynomial-time algorithms and an opti-
mal algorithm, which can help practitioners addressing cor-
responding problems faced in their specific environments.
At the same year, Mor [26] studied two extensions of min-
max SMSP with a UCDW problem. The first problem is
to minimize the maximum scheduling cost subject to max-
imal resource consumption; the second one is to minimize
the resource consumption subject to an upper bound on the
scheduling measure. It was proved that both considered prob-
lems are polynomially solvable. Wang et al. [44] dealt with
an SMSP with a UCDW problem, in which the objective
was to minimize the total position-dependent weighted cost.
A polynomial time solution algorithm was provided for the
corresponding problem.

The computational complexity and solution algorithms
of existing research for SMSPs with RCDW and UCDW
are summarized in Table 1. Generally, it can be seen
in Table 1 that there are many pseudo-polynomial-time algo-
rithms for the polynomially solvable problems, but only a
few meta-heuristic algorithms for the NP-hard problems. For
further detailed discussion on SMSCDWAPs, the reader is
referred to the recent survey article by Janiak et al. [25].

Motivated by the excellent research of Biskup and Feld-
mann [27], this study focuses on the SMSP with an RCDW
in which the total weighted earliness-tardiness penalties are
minimized. A novel backtracking simulated annealing (BSA)

VOLUME 7, 2019

algorithm, which uses a backtracking mechanism to escape
from local optima sequences and an effective coding scheme
to find possible optimal sequences and waiting times, is pro-
posed herein. Twelve types of possible optimal sequences are
presented in calculating the total weighted earliness-tardiness
penalties. The performance of the proposed BSA algorithm
is demonstrated by comparing its computational results with
those obtained using the state-of-the-art ES algorithm [27]
and the simulated annealing (SA) algorithm in solving four
sets of benchmark problems. The remainder of this paper
is organized as follows. The following section defines the
considered SMSP. Section 3 discusses 12 types of possible
optimal sequences and the formulae for the corresponding
objective functions. Section 4 describes in detail the proposed
BSA algorithm. Section 5 presents the computational exper-
iments and results obtained using four benchmark problem
sets. Finally, Section 6 draws conclusions and offers sugges-
tions regarding directions for future research.

Il. PROBLEM STATEMENT, DEFINITIONS AND NOTATION
The SMSP with an RCDW in this work is described as
follows. The following notations are used.
Notations:

j  jobindex

a;  unit penalty associated with the earliness of job J;

B;  unit penalty associated with the tardiness of job J;

pj  processing time of job J;

C; completion time of job J;
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dp  earliest due date

dr latest due date

Cg earliest possible completion time of all jobs
hg  given parameters that determine dg

hr  given parameters that determine dr

E;  earliness of job J;

T;  tardiness of job J;

Consider a set of N jobs J = {J;jj = 1,...,N} to
be processed on a single machine with an RCDW. The
objective is to determine the sequence of all jobs that
minimizes the total weighted earliness-tardiness penalties.
By applying the three-field classification scheme of Graham
et al. [45], the addressed SMSP can be expressed as the triplet
LIRCDW| " (ajE; + B;T}), where E;j and T; are the earliness
and tardiness of job J; (j = 1,2,...,N), respectively, and
a; and B; are the unit penalties (penalty weights) associated
with the earliness and tardiness of job J;, respectively. Let
pj»j = 1,..., N, be the processing time of job J;, and C;,
Jj = 1,...,N, be the completion time of job J;. For the
RCDW, let dg and dr represent the earliest (left boundary)
and latest (right boundary) due dates, respectively. With ref-
erence to Feldmann and Biskup [46], the size and position of
the RCDW, based on dg and dr, are predetermined as:

N
dg = |hg - Cgl = | he - Y _pj (1)
L=
N
dr = |hr - Cgl = | hr - Y _pj )
L =

where Cg is the earliest possible completion time of all jobs,
and hg and hr are the given parameters that determine dg and
dr, respectively.

Throughout the paper, parameters hr and hr satisfy the
inequality 0 < hg < hr < 1 such that (dr — dg) < Ckg.
Additionally, the latest due date satisfies d7 > minj—1,.._n pj;
otherwise, an optimal sequence can be easily obtained by
sequencing all jobs in order of non-decreasing p; / Bj. The
critical assumptions made in the 1|[RCDW| )" («;E; + B;T))
problem herein are described as follows.

o All jobs are independent of each other and processed
consecutively on one machine.

o The first job in a production sequence may be processed
after the beginning of the scheduling horizon, which is
at time zero.

o The machine can only process a job once and must pro-
cess all jobs without any interruption from the beginning
of the processing of the first job to the completion of the
last job.

o The setup time of the machine is negligible.

« No job is interrupted and no machine breaks down.

o The size and position of the RCDW are predetermined
and fixed.

o The RCDW is smaller than the makespan of the N jobs.
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o The latest due date (right boundary) of the RCDW is
after the earliest possible completion of any one job.

Ill. TWELVE TYPES OF POSSIBLE OPTIMAL SEQUENCES
With respect to the I1|[RCDW|}" (o;Ej + B;Tj) problem,
Biskup and Feldmann [27] discussed eight types of possi-
ble optimal sequences. The orders of early and tardy jobs
follow the WLPT and WSPT rules, respectively (and so
exhibit V-shaped property). For ease of explanation, let S;
G = 1,2,...,N) be the starting time of job J; E =
(iIC; < dg}, W = {JjIS; = dg, C; < dr}, and T =
{JjIS; = dr} denote the sets of non-straddling jobs with
starting and completion times before, within and after the
RCDW, respectively. Then, an optimal sequence exhibits the
following well-known properties [35].

Property 1: In an optimal sequence, jobs must be in a
V-shaped arrangement, meaning that jobs in set E (or T) are
ordered by non-increasing (or non-decreasing) ratio p; / aj (or
i/ B)-

Property 2: An optimal sequence exists in which either
the job in the first position begins at time zero or one job is
completed at dg or dr.

Property 1 implies that one or two straddling jobs may be
present in the optimal sequence, and Property 2 means that an
optimal sequence may exist in which all jobs have production
waiting times. Given these two properties, twelve types of
possible optimal sequences are provided, presented in Fig. 1.
Therein, Jg (with §; < dg VvV dp < C; < dr),Jr (with
dp < Sj < dr \/Cj > dr) and Jg (Witth < dE\/Cj >
dr) represent left-straddling, right-straddling and double-
straddling individual jobs, with starting and completion times
that straddle the RCDW boundaries dg, dr and both dg and
dr, respectively. Note that the twelve cases are established
under the following assumptions:

o dg > min{py, pa2,...,pn}; otherwise, the problem is
trivial. The optimal solution is ordering the jobs accord-
ing to non-decreasing ratios p; / B;j and starting the first
job at time zero.

,,,,,

becomes trivial.

Case 1 (W = ¢) involves production waiting time and
right-straddling job J7. Case 2 (E = W = ¢) involves
left-straddling job Jg and right-straddling job J7. Case 3 (E =
W = ¢) involves double-straddling job Jp. Cases 4 and 5
involve production waiting times, and Case 4 involves left-
straddling job Jg. In Case 6, all jobs are non-straddling
jobs. Case 7 involves right-straddling job J7 with production
waiting time. In Cases 8 to 12, production begins at time
zero; Cases 8 and 9 involve the left-straddling job Jg and
right-straddling job Jr, respectively. Cases 10 and 11 (E =
¢) involve both a left-straddling job Jg and a right-straddling
job Jr. Case 12 (W = ¢) involves the double-straddling
job Jp. In more detail, the first, seventh and ninth cases are
characterized by the existence of one job completed exactly
in dg; the fourth and eighth cases are characterized by the
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0 d, RCDW d,
Case 1 E J, T
Case 2 | Z T
Case 3 Iy T
Case 4 E il w T
Case 5 E w T
Case 6 E w T
Case 7 E w I T
Case 8 E Ji W T
Case 9 E w Jr T
Case 10 E Ji w Jr T
Case 11 Iz w Jr T
Case 12 E Iy T

FIGURE 1. Twelve types of possible optimal sequences.

existence of one job completed exactly in dr; the fifth and
sixth cases are characterized by the existence of one job
completed exactly in dr and another job completed exactly
in dr. In the remaining five cases: cases 2, 3, 10, 11 and 12,
at least one straddling job occurs. In the third and twelfth
cases a double-straddling job occurs. These straddling jobs
are stressed by shading. In cases 1, 3, 4, 7, 8, 9 and 12 only
one straddling job emerges and in cases 2, 10 and 11 two
straddling jobs occur. Moreover, in the first, fourth, fifth,
and seventh cases, their first job of set E starts later than
time point zero. To simulate the leading idle time of these
cases, set E is moved slightly to the right in Fig. 1. It is
noted that for an optimal solution the existence of two strad-
dling jobs or a double-straddling job are inconsistent with
leading idle time (Property 2). Otherwise, the total weighted
earliness-tardiness penalties could be decreased by moving
all jobs to the left or to the right. Additionally, as seen in
cases 1, 2, 3, 10, 11 and 12, sets E and W can be empty, but
we have to mention that set T cannot be empty, as an empty
set T contravenes the assumption that the CDW is restrictive.

These twelve types provide a more complete and accu-
rate perspective on all possible optimal sequences associated
with various straddling jobs and production waiting times.
To facilitate the proposed BSA algorithm to evaluate possible
candidate solutions, these cases are classified into six groups
(GI1-G6); each is associated with a formula for the total
weighted earliness-tardiness penalties, as follows.

Gl. Case 1: ZjeE aj(de — Cj) + BUr) [pUT) + dE — dr]
+Y et B [PUT) + dE — dr + pj]

G2. Case 2: B(J7) [pUE) + pUt) — dr] +.
Y et B [PUE) + pUr) — dr + pj]

G3. Case 3: B(Jp) [p(Up)—dr 1+ jer B [PUB)—dr +1j].
G4. Cases 410 6: Y ;g oj(dp — C) + D _icr Bipj-
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GS5. Cases 7to 11: 3 g oj(de — Cj) + BUT)
(PUT) +de — drl+ Yjer B [pUT) + di — dr + pj]

G6. Case 120 Y . gpajde — C) + BUBTUp) +

Y jer B [TUB) + ;]
where T'(Jp) = Z/’EE pj +pUp) —dr.

IV. PROPOSED BSA ALGORITHM

This work develops a novel SA-based heuristic, called
backtracking simulated annealing (BSA), to solve the
1|IRCDW| )" (ajEj + B;T;) problem. The SA algorithm is a
well-known local search-based meta-heuristic that can escape
from the local optima by accepting, with small probabil-
ity, worse solutions during the search process. This famous
algorithm has been successfully used to solve many hard
combinatorial optimization problems, such as neural net [47],
benchmark functions [48], image restoration problem [49],
0-1 Knapsack Problem [50], and quadratic assignment prob-
lem [51]. An SA algorithm typically begins with a randomly
generated initial solution. Then, at each iteration, it finds a
solution in the neighborhood of the current solution. If the
new solution is better than the current solution, it replaces the
latter with the former and the search process resumes from
the new current solution. It also allows a worse neighborhood
solution to replace the current solution, with a small probabil-
ity, so that the procedure can escape local optima at which it
may otherwise become trapped. The proposed BSA algorithm
applies a backtracking mechanism to escape from the local
optima sequences and an effective coding scheme to search
for possible optimal sequences and the waiting time for the
LIRCDW | )" (ajEj + BiT)).

The following subsections describe the solution represen-
tation and coding procedures, the neighborhood solutions,
the parameters used in the proposed BSA algorithm, and the
procedure of its implementation.

A. SOLUTION REPRESENTATION AND

CODING PROCEDURE

In this study, a solution is coded using a non-negative integer
value to represent the waiting time, LT (0 < LT < dg),
and n integers to specify an ordered list of n jobs. Given a
waiting time and an ordered list, the corresponding solution
[T is coded using the following two steps. In the first step,

the completion time Cp;; (j = 1,...,N) of the jth job in an
ordered list is calculated as follows:

Ciy = LT +pm 3)

Cij+11 = Cpjy + P+ )

Based on its completion time, each job is identified as
being a member of one of the three sets of non-straddling
job (E, W, and T) or one of the three straddling jobs (Jg,
Jr and Jp). In the second step, the jobs in E are re-arranged
in order of non-increasing ratio p;/a;, while the jobs in T
are re-arranged in order of non-decreasing ratio p;/f;. Since
the value of the objective function must be computed fre-
quently in the search process, the method for quickly sorting
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dr=38 d;=64
Js o || s Jo | Jo | Js J3 Jio
7 18 3742 48 64 74 85 96 116 136

FIGURE 2. The Gantt chart of the optimal solution.

Begin

1. Input Ty, T Liwer, 0 1., » Buon-improving and problem instance;

2. Generate initial solution IT by RGH heuristic

3. T<Ty;Buy<0;Ig,, < 1I1;n,=n, 0=1,23)

4. while (T>T;) do

5. for (i=0; i < I;,,, i++)

6. Generate p <« random() ;

7. Let LT be the leading idle time of solution IT;

8. Ny =1+, +1555

9. if(p<n/nyand LT <d,) { LT < LT+1; r_index « 1;}

10. else if (o> (7, +n,)/n.and LT>0) { LT < LT-1; r_index < 2;}

11. else { r_index < 3;}

12. Randomly choose two jobs in different set (£, W, T) using new LT and swap them to
obtain new solution IT,,,,;

13. AE < obj(I1,, )—obj(I1);

14. if (A<O0) then 77, .. < 7, i 15

15 else if (A>O) then 771~_index <~ ni‘_indwc - 1’

16. else 77, 0 <1 e — 0.1

17. if (nri[ndex < nmin ) then { nriind@c <« nmin ’}

18. if (A<0) then IT=1I1,,,;

19. else {

20. Generate y < random();

21. if (y<e™")then {IT1«TII,, ;}

22. }

23. if (obj(IT) < 0bj(I1,,, ) then {I1«1I1, ; B, «0};

24, else {B,,,—B,.,+1;}

25 if ( Bnan = Iiter X Bnanfimpruving ) then { Bnon <« 0 ; H A HB(’SI ’}

26.  end for

27. T<oaf;

28. end while

End

FIGURE 3. Pseudo-code of the proposed BSA algorithm.

jobs in a V-shape that was proposed by Lin, et al. [52] is
used. This method is performed using two pre-established
lookup tables to quickly determine the sequences of jobs
in E and T. Procedures and an example of its use were
presented by Lin, et al. [52]. After the jobs in E and T
are sorted in a V-shape, the ordered list in the solution
is coded as (E, Jg, W(or Jp), Jr, T). Notably, if Jp exists,
then W = ¢.

The coding procedure is demonstrated by applying it to
a random generated instance (see Table 2) with ten-job,
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drp = 38 and dr = 64. Given a waiting time of seven and
a permutation list (5, 2, 7, 1, 4, 3, 9, 10, 6, 8), from Egs. (3)
and (4),Cs =7+ 11 = 18,C; 18 +19 = 37, (4
3745=42,C; =42+ 6 =48,C4 =48+ 16 = 64, C3
64 4+20 = 84,C9g = 84 4+ 10 = 94, Cyo 94 4 20
114, C¢ 114 4+ 11 125, Cg 125 + 11 = 136.
Therefore, E = {15,]2},JE = J7,JB = CD,]T = (I),W =
{J1,Ja}, T = {J3, Jo, J10, J6, Jg}, and the right straddling or
double-straddling job does not exist. Finally, by sorting the
jobs in E and T in a V-shape, the ordered list in the solution
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TABLE 2. Data for a random generated instance.

is recoded as (5, 2,7, 1,4, 9, 6, 8, 3, 10), and the solution
is then coded as IT = (7] 5,2,7, 1,4, 9, 6, 8, 3, 10). The
Gantt chart of this solution is shown in Fig. 2. This solution
is indeed the optimal solution of the above problem instance.

B. NEIGHBORHOOD
The change operator of the LT and the job swap operator
are used to generate the solution from the neighborhood of
the current solution IT. The set of solutions in the neigh-
borhood of the current solution IT is denoted as AN (IT).
In each iteration, the LT is determined by applying one of
three rules: increase one (R1), reduce one (R;), and keep the
same (R3) the current LT, according to the formula prob, =
nr/ Z?:l 0, (r = 1,2, 3), where prob, is the probability of
choosing rule R, and 7, is the fitness value of rule R, which
is auto-tuned in each iteration according to the following
criteria:

(1) If the current solution is improved and updated to a new
obtained solution that is generated by applying a selected
rule (R,), then set n, =: n, + 1;

(2) Otherwise, if the new obtained solution that is generated
by applying a selected rule (R, ) is worse than the current
solution, then set n, =: n, — 1. If B, < Nmin, and then
Ny =: Nmin,» Where npin is the minimal allowed value of
n(r=1,2,3).

(3) Otherwise, n, =: n, — 0.1.

Notably, in the application of the three LT updating rules,
the possible range of LT (0 < LT < dg) must be considered.
If the LT is zero or greater than dg, the R, and R cannot be
applied, respectively. For example, if current LT is 7, new LT
will be 8, 6, and 7 for R1, Ry, and R3 rule, respectively. After
the LT is changed, a new feasible solution IT,,,, is generated
from N/ (IT) by randomly choosing and swapping the i and
the /™ positions of jobs in IT. Notably, if the selected jobs are
in the same set E, W, or T, the sequence of jobs in IT cannot
be improved; therefore, two jobs may not be selected from a
single set. For example, if IT = (7/5,2,7, 1,4, 9,6, 8, 3, 10),
then E = {Js,h},Jg = J7,Jp = @,J7 = &,
W = {J1,4}, T = {J3,J9,J10,J6, J3}. Swap Jo and Jyg
will not change the objective function value of I because the
V-shape property is applied; therefore, two jobs which are not
in the set can be swapped.

C. BSA PROCEDURES

The pseudo-code of the proposed BSA algorithm is shown
in Fig. 3. Let Ty and Ty represent the initial and final
temperatures, respectively; i, denotes the total number of
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FIGURE 4. The average ARDs of all compared algorithms.

iterations that the perturbation should repeat at a certain
temperature; « indicates the control coefficient of the cool-
ing schedule; npyin represents the minimal value of n,(r =
1,2, 3), where 7, is the fitness value of choosing rule R,;
Brion—improving stands for the cumulative number of consec-
utive temperature reductions. If the best value of the objec-
tive function is not improved by Bjon—improving cOnsecutive
temperature reductions, then the incumbent solution will be
backtracked to the current best solution. The detailed proce-
dures of the proposed BSA algorithm to be used to solve the
1|IRCDW| )" (a;Ej + B;T;) problem are described as follows.

Initially, the current temperature T is set to T and an initial
solution IT is obtained using the revised greedy heuristic
(RGH) [53]. The value of the objective function of IT is
denoted as obj(IT). The current best solution ITp,s is set to
IT, and 0bj(I1j,s; ) is initialized as obj(IT).

At each iteration, a neighborhood solution IT,,,, with wait-
ing time is generated from N(IT), and its objective function
value is evaluated. If obj(I1,,,) is not worse than obj(IT),
then I1,,,, replaces IT as the incumbent solution. Otherwise,
[T,ew 1s accepted as the incumbent solution with a small
probability. This probability is typically calculated using the
Boltzmann function. More specifically, let AE = obj(I1je)—
obj(IT); then the probability of replacing IT with a worse
neighborhood solution IT,e,, is e~2£/T)_ Such a replacement
is implemented by randomly generating a number 0 < r < 1
and replacing IT with IT,,,, when r < e(ZAE/T)

The current temperature 7 decreases after I, iterations at
the current temperature, according to the formula 7' =: T,
0 < a < 1. If MHpey is not improved in Bjon—improving
then the backtracking mechanism is implemented by setting
the current solution IT to ITp.s. The searching procedure
terminates when the current temperature is lower than the
final temperature T, and the best solution is then output.

V. COMPUTATIONAL EXPERIMENTS AND RESULTS

The performance of the proposed BSA algorithm is compared
with those of SA (BSA without a backtracking mechanism)
and EA [27], which is the best available algorithm published
in the literature. All of the BSA, SA, and EA algorithms
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TABLE 3. ARDs of the compared algorithms for each size of test problem.

SA BSA

Problem Set N ARD Time* ARD Time ARD Time
I 10 3.019 0.010 0.000 0.046 0.000 0.101
20 0.000 0.047 0.000 0.140 0.000 0.185
50 1.230 0.435 0.000 0.622 0.000 0.662
100 0.415 2.219 0.010 2.031 0.053 2.065
200 0.233 13.328 0.012 7.398 0.029 7.457

Average 0.979 - 0.004 - 0.016 -
II 500 1.459 173.8 0.034 43.6 0.003 44.0
1000 74.079 1302.5 0.021 169.1 0.001 169.4

Average 37.769 - 0.027 - 0.002 -
111 10 34.165 0.011 0.000 0.045 0.000 0.100
20 8.764 0.053 0.000 0.140 0.000 0.186
50 1.513 0.455 0.000 0.641 0.000 0.686
100 1.689 2.404 0.000 2.156 0.000 2.205
200 0.842 14.276 0.011 8.009 0.009 8.012

Average 34.165 - 0.000 - 0.000 -
v 500 0.292 186.9 0.037 46.6 0.003 47.1
1000 11.197 1422.3 11.197 180.3 0.000 181.3

Average 5.744 - 5.617 - 0.002 -

Total Average 9.921 - 0.809 - 0.007 -

*: CPU time in seconds.
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FIGURE 5. The number of solutions obtained by BSA is better, equal to, or worse than those obtained by SA and EA.

2.67 GHz CPU and 4 GB of RAM. EA was re-coded
and run on the same computer; the computational times
were then compared. The following subsection describes the

utilize an initial solution that is obtained using RGH [53]. The
proposed BSA algorithm was coded using C language and
executed on a personal computer with an Intel Core 2 i7-920
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TABLE 4. Paired t-tests on ARDs of the compared algorithms for each size of test problem.

BSA vs. SA Problem Set N Mean S-Dev t-value DF P-value Significant
I 10 0.000 0.000 - 49 - No
20 0.000 0.000 - 49 - No
50 0.000 0.000 - 49 - No
100 -0.043 0.215 1.764 49 0.08397 No
200 -0.017 0.122 1.432 49 0.15845 No
I 500 0.031 0.062 3.761 49 0.00045 Yes
1000 0.020 0.024 6.070 49 0.00000 Yes
111 10 0.000 0.000 - 49 - No
20 0.000 0.000 - 49 - No
50 0.000 0.000 - 49 - No
100 0.000 0.000 - 49 - No
200 0.002 0.038 0.956 49 0.34399 No
v 500 0.033 0.056 4.468 49 0.00005 Yes
1000 11.197 32.536 2.707 49 0.00932 Yes

BSA vs. ES Problem Set N Mean S-Dev t-value DF P-value Significant
I 10 3.019 0.000 1.423 49 0.16111 No
20 0.000 0.000 - 49 - No
50 1.230 0.000 2.624 49 0.01155 Yes
100 0.355 0.233 2.786 49 0.00758 Yes
200 0.204 0.086 3.949 49 0.00025 Yes
I 500 1.456 2.052 5216 49 0.00000 Yes
1000 74.078 35.976 14.816 49 0.00000 Yes
111 10 34.165 0.000 3.451 49 0.00116 Yes
20 0.000 0.000 2.537 49 0.01443 Yes
50 1513 0.000 2.954 49 0.00481 Yes
100 1.656 0.011 3.934 49 0.00026 Yes
200 0.833 0.038 6.396 49 0.00000 Yes
v 500 0.288 0.285 7.357 49 0.00000 Yes
1000 11.197 32.536 2.645 49 0.01096 Yes

benchmark problems, parameter value determination, and
computational results.

A. BENCHMARK PROBLEMS

To evaluate the performance of the proposed BSA algo-
rithm in solving the 1|RCDW|}" («jE; + B;Tj) problem,
four problem sets (I, II, III, and IV) extended from the
well-known benchmark problems [54] are used. The Prob-
lem set I comprises the benchmark problems with the
number of jobs N = {10, 20,50, 100, 200}, and pos-
sible combinations of RCDW parameters (hg, hr) =
{(0.1,0.2), (0.1, 0.3), (0.2, 0.5), (0.3, 0.4), (0.3,0.5)}. Ten
benchmark problems are generated for each combination

VOLUME 7, 2019

yielding a total of 250 benchmark problems in the problem
set I. Notably, problem set I was also used in tests by Biskup
and Feldmann [53] and Ying et al. [54]. The experimental
design of problem set II is the same as that of problem
set I, but with N = {500, 1000}. Therefore, problem set
IT comprised 100 benchmark problems. The experimental
designs of problem sets III and IV are the same as those of
problem sets I and II, respectively, except that (hg, hr) =
{(0.4,0.5), (0.4,0.6), (0.5, 0.6), (0.5,0.7), (0.6,0.7)}. As a
result, a total of 700 benchmark problems are
considered.

The performance of the compared algorithms is evalu-
ated using the average relative deviation (ARD), defined as
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TABLE 5. The number and percentage of solutions obtained by the BSA are better, equal to, or worse than those obtained by SA and ES algorithms.

BSA vs. SA BSA vs. ES
Problem

Set N Better Equal Worse Better Equal Worse
I 10 0 0.00% 50 100.00% 0 0.00% 1 2.00% 49 98.00% 0 0.00%
20 0 0.00% 50 100.00% 0 0.00% 0 0.00% 50 100.00% 0 0.00%

50 0 0.00% 50 100.00% 0 0.00% 9 18.00% 41 82.00% 0 0.00%

100 0 0.00% 48 96.00% 2 4.00% 14 28.00% 35 70.00% 1 2.00%

200 4 8.00% 42 84.00% 4 8.00% 28 56.00% 21 42.00% 1 2.00%

Sub total 4 1.60% 240 96.00% 6 2.40% 52 20.80% 196 78.40% 2 0.80%

I 500 29 58.00% 13 26.00% 8 16.00% 50 100.00% 0 0.00% 0 0.00%
1000 40 80.00% 2 4.00% 816.00% 50 100.00% 0 0.00% 0 0.00%
Subtotal 69 69.00% 15 15.00% 16 16.00% 100 100.00% 0 0.00% 0 0.00%

1 10 0 0.00% 50 100.00% 0 0.00% 11 22.00% 39 78.00% 0 0.00%
20 0 0.00% 50 100.00% 0 0.00% 7 14.00% 43 86.00% 0 0.00%

50 0 0.00% 50 100.00% 0 0.00% 12 24.00% 38 76.00% 0 0.00%

100 0 0.00% 50 100.00% 0 0.00% 23 46.00% 27 54.00% 0 0.00%

200 4 8.00% 44 88.00% 2 4.00% 39 78.00% 10 20.00% 1 2.00%

Sub total 4 1.60% 244 97.60% 2 0.80% 92 36.80% 157 62.80% 1 0.40%

v 500 36 72.00% 8 16.00% 6 12.00% 48 96.00% 2 4.00% 0 0.00%
1000 50 100.00% 0 0.00% 0 0.00% 50 100.00% 0 0.00% 0 0.00%
Subtotal 86 86.00% 8 8.00% 6 6.00% 98 98.00% 2 2.00% 0 0.00%
Total Average 163 23.29% 507 72.43% 30 4.29% 342 48.86% 355 50.71% 3 0.43%

follows:

best

objt—objbes!
obj;

B

ARD = x 10, 000%00

n

Here, objl’.l is the value of the objective function in the
i" benchmark problem that was obtained by algorithm A;
objf-’“’ is the best value of the objective function in the i
benchmark problem that was obtained by any of the compared
algorithms, n is the number of benchmark problems under

consideration, and %oo is a per ten thousand sign.

B. PARAMETER VALUE DETERMINATION

Since all of the relevant parameters may influence the
performance of the proposed BSA algorithm, exten-
sive computational testing was carried out to evaluate
them. In the preliminary tests, the following combina-
tions of parameter values were used in 16 benchmark
problems that were randomly selected from the four
sets thereof, and each problem was solved by three
independent applications of the proposed BSA algo-
rithm: liyer € {500, 1000, 1500, 2000}; Byon—improving €
{5, 10, 15, 20}; nmin € {10, 20, 30}; To € {3, 5, 10, 15, 20};
a € {0.96,0.97,0.98,0.99}, and Tr < {0.01, 0.05,0.10,
0.15, 0.20}. The test results showed that the best performance
of the BSA algorithm was achieved within a reasonable
computation time using 7o = 10, Tr = 0.1, Iz, = 1000,
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Bron—improving = 5, min = 10, and o = 0.98. Accordingly,
these parameter values were used in the experiments.

C. COMPUTATIONAL RESULTS
Table 3 presents the ARD and average running time
(in seconds) to solve a problem of each size. The total
average ARD for all 700 instances that was obtained
using the proposed BSA algorithm is 0.007%co, whereas
the corresponding values that were obtained by SA and
ES are 0.809%c0 and 9.921%oo, respectively. Obviously,
the proposed BSA algorithm outperforms the state-of-the-
art ES algorithm and the traditional SA heuristic in solving
the 1|RCDW| )" (ojE; + B;T;) problem. The computational
times of the BSA and SA algorithms are almost equal
because they apply the same termination condition. In con-
trast, the computational times of the BSA and SA algorithms
are much shorter than that of ES when N > 200, indicating
that the encoding scheme of BSA and SA is more efficient
than that of ES. As shown in Fig. 4, compared with ES, the
proposed BSA can provide smaller ARDs for all different job
numbers. Fig. 4 shows that SA and BSA can provide almost
the same ARDs when the number of jobs is smaller than 500.
To verify the effectiveness of the proposed BSA algorithm,
paired t-tests are performed on the ARD obtained using this
algorithm to compare it with those of ES and SA algorithms.
Table 4 reveals that the proposed BSA algorithm significantly
outperforms the SA and ES algorithms for N = 500 and
1000 with problem sets IT and IV at the 95% confidence level.
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TABLE 6. The best known solutions of benchmark problem sets I and II.

Problem data set I

Problem set 11

K (hg,hy) N=10 N=20 N=50 N =100 N =200 N =500 N =1000
1 (0.1,0.2) 1896 4089 39461 139568+ 474405 2812324 13514502
(0.1,0.3) 1330 2713 28225 95211 324463 1915938 9315188
0.2,0.5) 540 1162 12754 39487 136751 810403 3914623
(0.3,04) 919 2294 21110 72110 246659 1476558 6948451
(0.3,0.5) 587 1559 13971 45826 158116 944399 4404641
2 (0.1,0.2) 947 8251 29043 120484 517302 3229169 11733558
(0.1,0.3) 539 5950 20133 82026 353001 2212062 8024367
(0.2,0.5) 191 2770 8468 35290 145421 935690 3368177
(0.3,0.4) 432 4482 15150 62421 267687 1679279 6098871
(0.3,0.5) 265 2923 9428 39705 169542 1076044 3882473
3 (0.1,0.2) 1488 5881 33180 124317 466667 2950841 11383782
(0.1,0.3) 1012 4067 23020 86236 319357 2000406 7695608
0.2,0.5) 398 1675 9962 38174 134610 834686 3140985
(0.3,0.4) 760 3035 17508 67046 244991 1534635 5778518
(0.3,0.5) 462 1998 11388 44048 156984 980797 3633073
4 (0.1,0.2) 2128 8977 25856 122901 564830 3075510 11201090
(0.1,0.3) 1576 6609 17544 84112 396584 2075252 7590369
(0.2,0.5) 712 3113 7373 35498 176837 841660 3148904
(0.3,0.4) 1162 4830 13609 65057 304632 1567957 5800727
(0.3,0.5) 740 3210 8418 41584 200659 988910 3672325
5 (0.1,0.2) 1150 4028 31456 119115 488829 2983984 11857765
(0.1,0.3) 755 2850 21689 82398 333482 2048254 8023851
(0.2,0.5) 284 1192 8947 34860 139842 858055 3287539
(0.3,0.4) 542 2112 15747 60963 254510 1534573 6087728
(0.3,0.5) 339 1341 9956 38781 162120 971873 3830152
6 (0.1,0.2) 1479 6306 33452 133545 458004 2654972 11067696
(0.1,0.3) 1023 4247 23261 89563 311824 1775879 7484909
(0.2,0.5) 439 1557 10221 35146 126398 708038 3097750
(0.3,0.4) 779 3042 17392 65472 233366 1328187 5707324
(0.3,0.5) 500 1778 11178 40858 146243 827793 3627473
7 (0.1,0.2) 2093 10204 42234 129849 428095 3027551 12684832
(0.1,0.3) 1521 7492 29274 90963 285328 2069491 8686112
(0.2,0.5) 717 3573 12000 39336 115477 873675 3651121
(0.3,0.4) 1190 5722 20696 67795 220289 1582907 6592156
(0.3,0.5) 809 3846 12935 43737 139043 1014404 4205935
8 (0.1,0.2) 1644 3742 42218 153965 474446 2976788 11686538
(0.1,0.3) 1287 2519 28403 106517 320676 1998263 7940720
(0.2,0.5) 670 990 11154 44963 129912 815282 3279303
(0.3,04) 952 1801 20965 80269 235477 1506415 6031322
(0.3,0.5) 680 1069 12913 51414 146955 947726 3794560
9 (0.1,0.2) 1466 3317 33222 111474 508275 3224615 11144396
(0.1,0.3) 1121 2342 23840 75152 350341 2205768 7539465
(0.2,0.5) 492 1056 10968 31266 147166 922679 3136842
(0.3,0.4) 772 1767 17972 57102 263243 1658772 5795388
(0.3,0.5) 513 1187 11935 36319 168041 1059669 3689098
10 (0.1,0.2) 1835 4673 31492 112799 514927 2977821 11822252
(0.1,0.3) 1384 3266 22036 78670 358435 2031659 8028517
(0.2,0.5) 691 1355 9653 34068 157881 848389 3293589
(0.3,0.4) 1047 2419 16510 59922 273834 1539930 6052594
(0.3,0.5) 717 1474 10597 38639 178442 974261 3813645

* Bold values indicate the best known solutions found by the BSA algorithm.
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TABLE 7. The best known solutions of benchmark problem sets Il and IV.

Problem set I11 Problem set IV
K (hE,hT) N =10 N =20 N =50 N =100 N =200 N =500 N =1000
1 (0.4,0.5) 693 2115 16159 56462 195486 1188996 5298116
(0.4, 0.6) 470 1478 10660 37147 129847 794983 3390555
(0.5, 0.6) 632 2115 13458 51549 181331 1120240 4582742
(0.5,0.7) 462 1507 9492 36399 127891 786787 3175075
(0.6, 0.7) 613 2148 13103 51398 181331 1120976 4539980
2 0.4,0.5) 408 3202 11321 47469 210182 1326189 4792029
(0.4, 0.6) 265 2054 7240 31478 136800 878713 3125881
(0.5, 0.6) 408 2529 9958 42562 189590 1227048 4340121
(0.5,0.7) 265 1675 6613 30468 132771 864513 3040446
(0.6,0.7) 408 2219 9670 42544 189489 1226290 4339326
3 0.4,0.5) 597 2590 13685 54382 197114 1239010 4547306
(0.4, 0.6) 402 1783 8862 36553 131818 822586 2966739
(0.5, 0.6) 554 2539 12000 49716 182261 1165025 4180534
(0.5,0.7) 402 1753 8379 35478 128261 815161 2901968
(0.6, 0.7) 571 2501 11964 49716 181828 1165026 4179117
4 0.4,0.5) 808 3406 10651 52257 242258 1241531 4611941
(0.4, 0.6) 545 2184 6842 34891 163792 821906 3042188
(0.5, 0.6) 664 2585 9707 48432 219420 1165534 4292135
(0.5,0.7) 474 1664 6683 33703 158107 816389 3001860
(0.6, 0.7) 620 2207 9630 48078 218734 1165534 4292137
5 0.4,0.5) 414 1660 11820 46227 201387 1177569 4810733
(0.4, 0.6) 283 1124 7721 29439 132217 756670 3136870
(0.5, 0.6) 377 1570 10525 39576 184939 1037437 4450742
(0.5,0.7) 269 1078 7463 26525 129898 722465 3086022
(0.6, 0.7) 373 1542 10502 38437 184939 1035553 4452216
6 0.4,0.5) 600 2227 13004 50347 181802 1046776 4577050
(0.4, 0.6) 417 1418 8121 32258 116811 691409 3045836
(0.5, 0.6) 575 2075 10342 44289 165372 988565 4297410
(0.5,0.7) 397 1430 6696 30557 114213 687317 3011451
(0.6, 0.7) 545 2114 9545 43879 165372 989247 4296003
7 0.4,0.5) 983 4228 15039 51898 180276 1259415 5184062
(0.4, 0.6) 688 2755 9586 34124 119709 833425 3392192
(0.5, 0.6) 866 3307 12799 45306 172017 1162321 4675651
(0.5,0.7) 609 2189 8895 31823 119341 817557 3272245
(0.6, 0.7) 812 2885 12585 44608 172017 1161582 4663784
8 0.4,0.5) 735 1244 16283 62674 179248 1181993 4705887
(0.4, 0.6) 448 780 10701 41454 113806 768471 3045284
(0.5, 0.6) 494 1102 15228 58020 157327 1080104 4276411
(0.5,0.7) 318 739 10582 41074 108709 752411 2969460
(0.6, 0.7) 421 1096 15145 58184 156738 1080817 4274879
9 0.4,0.5) 571 1465 13592 45447 205130 1304375 4673809
(0.4, 0.6) 335 1041 8964 29422 133219 861164 3093889
(0.5, 0.6) 413 1428 11129 41001 182230 1198181 4366051
(0.5,0.7) 278 1038 7443 28315 127845 842986 3049762
(0.6,0.7) 394 1428 10203 40962 181889 1197429 4366051
10 (0.4,0.5) 763 1804 12409 47525 216838 1201709 4738093
(0.4, 0.6) 507 1095 7800 31158 143958 776891 3074400
(0.5, 0.6) 584 1499 10176 43228 193926 1072017 4322155
(0.5,0.7) 387 872 7024 30141 136437 747205 3012394
(0.6,0.7) 507 1289 10090 43086 192192 1070428 4322154

* Bold values indicate the best known solutions found by the BSA algorithm.

However, the BSA algorithm is not statistically better than the well when it is applied to small and medium-sized problems.
SA algorithm for N = 10, 20, 50, 100 and 200 with problem Nevertheless, the BAS is indeed statistically better than ES,
sets I and III, perhaps because the SA algorithm also performs even when N is 50.
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The computational results are analyzed with a focus on
the number of solutions obtained by the proposed BSA algo-
rithm; they are better, equal to, or worse than those obtained
by the SA and EA algorithms. As shown in Table 5, the pro-
posed BSA algorithm is better than, equal to, and worse
than the SA algorithm in 163 out of 700, 507 out of 700,
and 30 out of 700 benchmark problems, respectively. The
proposed BSA algorithm is better than, equal to, and worse
than the ES algorithm in 342 out of 700, 355 out of 700,
and 3 out of 770 benchmark problems, respectively. In the
benchmark problems with N = 500 and 1000, 67% and
90%, respectively, the solutions obtained using the proposed
BSA algorithm are better than those obtained using the SA
algorithm. In the test instances with N = 200, 500 and
1000, 67%, 98% and 100%, respectively, of the solutions
obtained using the proposed BSA algorithm are better than
those obtained using the EA algorithm. The analytical results
reveal that BSA outperforms SA in most benchmark prob-
lems with N > 500, whereas BSA outperforms ES in most
of benchmark problems with N > 200. As shown in Fig. 5,
compared with ES, the proposed BSA can provide much bet-
ter solutions when the number of jobs increases. Fig. 5 shows
that compared with SA, the BSA can provide better solutions
when the number of jobs is equal to and larger than 200.

To provide a benchmark for future research, Appendix
Table 6 presents the best known solutions of the 250 and
100 benchmark problems in problem sets I and II, respec-
tively, while Appendix Table 7 presents the best known solu-
tions of the 250 and 100 benchmark problems in problems
sets III and IV, respectively.

VI. CONCLUSION AND RECOMMENDATIONS FOR
FUTURE RESEARCH

This paper concerns the 1|RCDW|}_ (ojE; + B;jTj) prob-
lem, which is not only theoretically but also practically
interesting. We present a complete perspective on all pos-
sible optimal sequences associated with various straddling
jobs and production waiting times. An effective and effi-
cient BSA algorithm, which includes a backtracking mech-
anism and an effective coding scheme, is proposed to solve
the above problem. Computational experiments that involve
extensive benchmark test instances demonstrate that the
proposed backtracking mechanism can improve the per-
formance of the SA algorithm and make the proposed
BSA algorithm significantly outperform the best available
algorithm published in the literature. This research con-
tributes by providing useful optimization approaches to the
1|IRCDW| )" (ajE; + B;T;) problem. Since few algorithms
are currently available for solving this strongly A/P-complete
problem, the presented approaches can help practitioners
solve real-world 1|RCDW| " («jE; + B;T;) problems with
respect to the JIT manufacturing system.

Many interesting related topics warrant further inves-
tigation. First, the problem herein should be extended
to include various plausible objectives. Second, more
effective and efficient meta-heuristics for solving the

VOLUME 7, 2019

1|IRCDW| )" (ajEj + B;T;) problem warrant further explo-
ration. Third, more research is needed to develop exact
methods for solving the 1|RCDW |} («;E; + B;T}) problem.
Fourth, further investigations of problem variants with addi-
tional realistic constraints, such as sequence-dependent setup
times and release times, would support a rich body of future
studies. Fifth, the SMSP with an RCDW in which a bi-
objective function value is minimized, would be an interest-
ing target of research. Finally, future research could consider
other production systems (such as flow-shop and job-shop)
that involve an RCDW.

APPENDIX
See Tables 6 and 7.
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