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ABSTRACT Instantaneous drowsiness (i.e., lapse or micro-sleep) during various activities such as driving
or construction causes enormous socioeconomic losses. Thus, a virtuous cycle system that monitors a
subject’s drowsiness can improve work efficiency and safety. We propose a novel framework to detect
instantaneous drowsiness with only a two-second length of electroencephalography (EEG). To achieve
reliable performance, we use multitaper power spectral density for feature extraction along with extreme
gradient boosting as a machine learning classifier. In addition, we introduce a novel phenotype labeling
of instantaneous drowsiness by combining both task dependent and independent measures of alertness
(psychomotor vigilance task and electrooculography technique, respectively). The results show that our
techniques outperform others used in previous studies. We also identified which spectral components (θ ,
α, and γ ) and channels (Fp1, Fp2, T3, T4, O1, O2, and electrocardiogram) play important roles in our
drowsiness detection framework. To verify the applicability for a mobile environment, we implemented our
framework on a wireless EEG, as well as on a wired EEG. We hereby present our successful results.

INDEX TERMS Drowsiness, lapse, electroencephalography, wireless electroencephalography.

I. INTRODUCTION
A sufficient amount and good-quality sleep is directly related
to cognitive function. Surprisingly, however, over 30% of
adults are chronically sleep-deprived, sleeping less than seven
hours [1]–[5]. They commonly suffer from major sleep dis-
orders such as insomnia or sleep apnea, which usually results
in extreme daytime drowsiness [4], [6], [7]. The extreme day-
time drowsiness is associated with lowered attention, which
causing considerable socioeconomic burden to the commu-
nity [8]–[10]. It hinders work productivity [11], lowers aca-
demic achievements [12], [13], and increases the risks of
traffic or workplace accidents [14], [15]. Therefore, a vir-
tuous cycle system that can monitor drowsiness or attention
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and provide proper feedback is of vital importance both for
improving work efficiency and for the safety of our society.

We can categorize previous drowsiness detection
approaches into two types, i.e., task performance and
biosignal-based methods. One representative example of the
task performance-based method is vehicle motion (VM)
monitoring [16]–[19]. However, its usage is restricted to
a driving condition only. Another representative method is
psychomotor vigilance task (PVT) [20]–[23], where subjects
are asked to respond to certain stimuli (visual or audio) as
fast as possible. However, the limitation of PVT is that the
subject must stop their ongoing task. Electrooculography
(EOG) monitoring [19], [24]–[28] is one of the biosignal-
based methods. It tracks eye movements or blinking patterns
(e.g. frequency and speed) to detect drowsiness using a
video camera or an infrared device. The limitation of the
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EOG-based approaches is that they only capture secondary
eye responses caused by the homeostatic or circadian sleep
drive in the central nervous system. Inevitably they have a
low temporal resolution, and are influenced by environmental
factors such as wind, temperature, and humidity.

Current algorithms for drowsiness detection are mostly
based on electroencephalography (EEG) monitoring. These
studies measure electrical activities of the brain associated
with drowsiness, extract meaningful features from EEG,
and use a classifier to distinguish various states of one’s
alertness and drowsiness [29]–[31]. Some previous works
have adopted machine learning-based classifiers and have
shown promising classification results [32]–[43]. However,
they mainly focused on classifying long-term states such as
conditions before or after driving, and they fail to capture
more instantaneous drowsiness (i.e. lapse) which may cause
severe accidents.

In this work, to address the limitations of previous works,
we propose a novel framework to detect instantaneous
drowsiness using a short time segment (∼ 2 seconds) of EEG.
The main contributions of this paper, as an extension of our
previous work [44], are as follows:
• We define a novel phenotype labelingmethod for instan-
taneous drowsiness by combining the advantages of
PVT (as a standard reference) and EOG monitoring (as
a task-independent measurement).

• We propose a novel framework outperforming the pre-
vious approaches by adopting multitaper power spectral
density (MPSD) for EEG feature extraction and extreme
gradient boosting (XGBoost) as a classifier.

• We identify key frequency bands and channels for
drowsiness detection.

• We demonstrate that using only seven channels (Fp1,
Fp1, T3, T4, O1, O2, and ECG) can provide comparable
performance to using the original twenty with less than
2% accuracy degradation.

• We verify the applicability of the proposed framework
for a mobile environment by using a wireless EEG with
dry-sensors as well as a wired EEG with wet-sensors.

II. RELATED WORKS
A. TASK PERFORMANCE-BASED DROWSINESS
DETECTION METHODS
The VM monitoring module [16]–[19], and the PVT
[20]–[22] determine the drowsiness level by measuring task
performance. The VM monitoring modules receives input
from driving directions and from changes in lane-keeping.
It is vulnerable to weather, road condition, and vehicle
type. The PVT is a well-established measure of alertness
or sustained attention. For the standard ten-minutes PVT,
the subjects are required to click a button with the dom-
inant hand’s thumb as soon as possible when the visual
signals are presented in random intervals (2–10 seconds)
[20], [23]. Response time is a validated indicator of the
alertness level. The PVT can measure changes in alert-
ness caused by sleep disorders and deprivation [20]–[23].

Sleep deprivation leads to a fluctuation in sustained attention
because of the interaction of involuntary sleep-initiating
and counteracting wake-maintaining systems, thus result-
ing in lapses (errors of omission to respond for given
stimuli). However, to complete the given task, subjects
need to interrupt the ongoing task, thus hindering the
work-continuity. In this study, the PC-PVT platform
(Biotechnology High Performance Computing Software
Applications Institute, http://bhsai.org/software/pcpvt, MD,
USA) is adopted [45] (Section III-C). Both PC-PVT and
standard PVT have the same functionality. PC-PVT uses a
personal computer, whereas PVT uses a specific hardware.
The PC-PVT data are used to label drowsiness for EEG
segments. The labeled data are then utilized to train the
supervised classification-based drowsiness detection model.

B. EOG-BASED DROWSINESS DETECTION METHODS
EOG-based drowsiness detection uses a video camera
to analyze eye movement markers such as speed, fre-
quency, blinking, and winding. Daytime drowsiness is
closely associated with several ocular parameters (e.g., slow
movements, increased closure time, and increased blink-
ing frequency) [19], [24], [26]–[28]. R100 (Phasya, Bel-
gium) is a recently developed EOG-based method [46]. The
R100 exploits glasses equipped with a high-speed camera to
sense eye and eyelid movements. It can continuously monitor
the level of drowsiness with minimal or no disruption of
the ongoing task, and provide a task-independent measure of
drowsiness. In this study, we use the R100 device to acquire
a long length of drowsiness information. The obtained infor-
mation is used to define the drowsiness state label discussed
in Section III-C.

C. EEG-BASED DROWSINESS DETECTION METHODS
EEG changes are closely related to alertness fluctuations.
Regarding drowsiness, Putilov and Donskaya [47] reported
that when the subjects’s eyes are open, the power of the
alpha and theta bands increase, and with eye closure only the
theta band power increases. Alloway et al. [48] reported that
the alpha band power increases when the eyes are open but
decreases when they close.

In the previous studies, the drowsiness label was vari-
ously defined. The methods for labeling can be categorized
into three types. The first category is a questionnaire-based
method such as the Epworth [49] and Karolinska sleepiness
scale [47]. A simple questionnaire such as ‘‘how sleepy are
you now?’’ is given to the subject. The output is hardly objec-
tive. The second approach is task performance evaluation that
uses VM detection modules [32], [33], [38], [50], [51] or
response time to specific stimuli [37], [51], [52]. The third
type is EOG-based method. Li and Chung [53] defined the
label with EOG information but only used the parameter of
eyelid closure ratio.

To the best of our knowledge, our drowsiness labeling
method is the first approach that utilizes both R100 and
PVT. R100 provides a task-independent and long-term
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FIGURE 1. The Framework is composed of four main steps: Data acquisition, feature extraction, drowsiness labeling, and drowsiness detection. For
wireless EEG protocol, the drowsiness level was evaluated only with PVT (please see Section III-E for the details).

measurement of drowsiness, and PVT sets the references for
extreme sleepiness.

D. FEATURE EXTRACTION FOR EEG SIGNALS
Many types of feature extraction techniques have been pro-
posed to retrieve useful EEG information and apply it to
drowsiness detection studies. The most widely used feature
is band power (BP). Especially theta (4 − 8 Hz) and alpha
(8 − 16 Hz) bands have played a key role [37], [38], [54],
[55]. To achieve more detailed frequency information than
BP, some studies [41], [50], [52] have used power spectral
density (PSD) estimation or wavelet decomposition. How-
ever, the PSD-based approaches suffer from high bias and
variance in estimation. A single-taper PSD (SPSD) method
was developed to address high bias issues [56]. Nonetheless,
the SPSD technique was not able to fix the high variance
in estimation. To solve this issue, a multitaper PSD (MPSD)
method has been developed [57]. MPSD allows precise esti-
mation by aggregating multiple independent SPSDs, thus
outperforming SPSD for estimating the sleep stages [58]. To
the best of our knowledge, this is the first study that applies
MPSD for detecting drowsiness with EEG.

E. MACHINE LEARNING METHODS FOR
DROWSINESS DETECTION
Many studies based on machine learning techniques have
been proposed for detecting drowsiness. Linear regres-
sion was first applied for drowsiness detection [37]. Since
then, several studies have used artificial neural networks
(ANNs) [34], [41], [51], [52] and support vector machines
(SVMs) [33], [51], [54]. In our study, we use the extreme
gradient boosting (XGBoost) method [59], which offers the
following benefits: ease of use, scalability, accuracy, and

computational efficiency. In addition, it has good records
on recent machine learning competitions [60]. Furthermore,
we can estimate the importance of each input feature by using
the branch gain in XGBoost. This information can suggest
which EEG frequency bands and channels are relevant to the
drowsiness level, and guide the target of the electrode appli-
cation and the frequency band analysis, thereby enhancing
performance and reducing resource inputs in future studies.

III. METHODS
As depicted in Figure 1, the proposed framework includes
four steps: data acquisition, feature extraction, drowsiness
labeling, and drowsiness detection. For the first step, data
acquisition, we acquire the EEG signals from the recruited
subjects. Furthermore, we perform an R100 and a PC-PVT
(see section III-A). As the second step, we extract the
MPSD [57] feature from the preprocessed EEG segments (see
section III-B). In the next step, the instantaneous drowsiness
label is defined for each EEG segment using the R100 ensem-
ble outputs, and is validated by comparing lapse informa-
tion from PC-PVT (see section III-C). For the last step,
XGBoost [59] is trained with the features and labels which
are respectively acquired from previous steps. The trained
XGBoost decides whether a given EEG segment is acquired
during a drowsiness condition or not (see Section III-D).

A. DATA ACQUISITIONS
1) SUBJECTS
We recruited eight healthy subjects (4 men and 4 women; age,
26.8±3.4 years old; body mass index, 20.9±2.1 kg/m2) who
were non smokers and did not have any neurologic diseases
and sleep disorders such as obstructive sleep apnea, insomnia,
primary hypersomnia, or restless legs syndrome. None took
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FIGURE 2. Illustration of two EEG acquisition protocol (wired and wireless). There are two random ordered conditions (sleep-deprived and no-sleep
deprived) for each protocol. While the wired EEG device is worn for an entire, the wireless EEG device was only worn during the PVT task.

TABLE 1. Sleep time (minutes) for each condition.

any medication affecting sleep or alertness, and they reported
no involvement in shift work for the previous one-year period
and no travel to an area with a different time zone during the
month before enrollment. All participants had intermediate
chronotype, and slept regularly, sleeping between six and
eight hours per day.

The institutional review committee of Seoul national uni-
versity Bundang hospital and the Seoul national university
approved the wired and wireless EEG protocols, respectively.
All participants submitted written informed consent.

2) EXPERIMENTAL PROTOCOL
A schematic presentation is shown in Figure 2. We conducted
two protocols (wired EEG and wireless EEG), and each
protocol consisted of two conditions (sleep-deprived and no-
sleep-deprived). Two conditions were randomly ordered, and
the inter-condition interval was two weeks. During the study
period, subjects were instructed to have regular sleep formore
than seven hours per night; however, in the sleep-deprived
condition, they were instructed to sleep less than four hours
on the night before the EEG acquisition. Each subject’s
compliance to the given sleep-wake schedule was monitored
through daily sleep logs. Sleep duration was successfully
controlled as shown in Table 1, 216.3±30.2 minutes on a
sleep-restricted day. All the subjects abstained from alcohol
and caffeine for at least the 48 hours before and during the
day of the EEG measurement.

All EEG measurements were performed from 9:30 AM
to 6:30 PM in an isolated space. Subjects were allowed to
have regular meals and water, but abstained from drinking
caffeine and alcohol, smoking, and napping. The first meal
was before 9:30 AM and the lunch was between 12:30 PM

and 1:30 PM. The subjects’ behaviors were continuously
monitored by real-time video.

3) EEG AND DROWSINESS MEASUREMENT
A standard wet-electrode EEG (Beehive Horizon, Grass
Technologies, Natus, USA) and a cap-type dry-electrode
EEG (Ybrain Inc., Republic of Korea) device were adopted
for the wired and wireless EEG protocols, respectively.
A total of 19 EEG electrodes were placed according to the
standard 10-20 system, and an additional single ECG channel
(modified type II lead) was recorded. The recording list is as
below:

set C = {Fp1,Fp2,F7,F3,Fz,F4,F8,T3,T4,
T5,T6,C3,Cz,C4,P3,Pz,P4,O1,O2,ECG}. (1)

A referential montage was adopted in which all the electrodes
were referenced to the left mastoid electrode (A1).

For the wired EEG protocol, the EEG data were con-
tinuously recorded from 9:30 AM to 6:30 PM, and five
drowsiness measurements were taken at two-hour interval
(Figure 2). Each measurement consisted of two recordings
with continuous background EEG monitoring: a 60-minute
R100 recording and a ten-minute PVT in the middle of the
former. For the wireless protocol, subjects wore the EEG cap
every two hours for 20 minutes (Figure 2). As wireless EEG
cap interfered the stable application of R100 and the EEG
artifacts increased due to the contacts between the temporal
EEG electrodes and the temple bows of the R100 eye glasses,
only PVT information was used to phenotype drowsiness. For
both protocols, all the recording programs were installed on
a single laptop to synchronize the time axis for EEG, R100,
and PVT data.

B. FEATURE EXTRACTION
1) EEG PREPROCESSING
The jth channel EEG signal x j is computed by the subtraction
from the electric potential ij to the iA1 signal from the left
mastoid (channel A1) as below:

x j = ij − iA1. (2)
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Other montage (average referential and longitudinal bipolar
montage) did not show significant performance difference
with the left mastoid reference montage. A 1 Hz low-pass
filter and a 50 Hz high-pass filter is set. The sampling rate
is 200 Hz.

To prevent drowsiness-related accidents, the length of the
EEG signal required for detecting instantaneous drowsiness
should be short. In our approach, we split the EEG signal
without overlap into a specific length (1–16 seconds) seg-
ment. When the size of the window was set to w, the EEG
segment could be expressed as follows:

x ji = [x j(i−1)∗w+1, x
j
(i−1)∗w+2, . . . x

j
i∗w]. (3)

2) MULTITAPER SPECTRAL FEATURE EXTRACTION
In this study, multitaper power spectral density (MPSD) [57]
based feature extraction is performed on each EEG seg-
ment. For the x ji in (3), single power spectral density (SPSD)
sji(f ) [56] at the frequency f is calculated as follows:

sji(f ) = 1t

∣∣∣∣∣
w∑
k=1

w(l)
k x

j
(i−1)∗w+ke

2πkf1t

∣∣∣∣∣
2

, (4)

where w is a taper function and 1t indicates the sampling
duration. MPSD is computed by averaging L number of
SPSDs generated with orthogonal tapers as follows:

s̄ji(f ) =
1
L

L∑
l=1

sj(l)i (f ). (5)

The MPSD of the x ji for m frequencies is given as follows:

sji = [s̄ji(f1), s̄
j
i(f2), . . . , s̄

j
i(fm)]. (6)

The spectral information of n number of channels for the EEG
segment Xi is defined as Si = [s1i , s

2
i , . . . , s

n
i ] ∈ Rm∗n.

C. DROWSINESS LABELING
Since our approach is based on supervised learning, it is
necessary to define a label indicating drowsiness for given
EEG segments. To focus on detecting instantaneous drowsi-
ness, we define a label of whether the subject showed lapse
or not during PVT measurement. However, EEG with PVT
information (50 minutes per day) is not enough to train
the model. Thus, to define the label yi, we aggregate the
R100 information (five hours per day) in section III-C1. Then,
we find a proper threshold to binary yi and validate how well
yi is related to the occurrence of the lapse in section III-C2.

1) R100-BASED DROWSINESS LABELING
The EEG segment (1–14 seconds) is relatively short com-
pared to the time required by the R100 (60 seconds); thus,
the multiple outputs dln of the R100 correspond to a single
EEG segment. Therefore, in our work, to increase robustness,
we aggregate the R100 outputs into one representative value,
as shown in Figure 3. We adopt an averaging method to

FIGURE 3. Since multiple R100 outputs correspond to given a EEG
segment Xi , one representative drowsiness level dlarg is aggregated by
averaging.

define the label dlargi corresponding to the ith EEG segment
as follows:

dlargi =
1
N

N∑
n=1

dlni . (7)

To validate the averaging method, the majority of dls and the
first dl1 output are compared empirically in the experiment.

To binalize the dlargi , the following formula is defined:

yi =

{
1 if dlargi ≥ threshold
0 if dlargi < threshold.

(8)

yi = 1 represents the instantaneous state and yi = 0 repre-
sents the normal state. The following section discusses how
to decide the threshold using PVT information.

2) THRESHOLD SEARCHING FOR LABEL BINARIZATION
A lapse is a temporary episode of drowsiness which lasts
for a second where a subject fails to respond in a certain
time (t) [61]. Let RTi be the PVT response time in Xi, then
occurrence of the lapse Li can be defined as

Li =

{
1 if RTi ≥ t
0 if RTi < t

. (9)

To determine a precise threshold of (8), we use the method
proposed by Francois’ [46]. The threshold in (8) is chosen
which to minimize the distance between yi in (8) and Li
in (9). By assuming Li as target and yi as a predicted target,
we calculate the sensitivity and specificity based on their
difference. Thus, the receiver operating characteristic (ROC)
curve can be plot by modifying the threshold value. The
optimal threshold is determined when the average of the
sensitivity and specificity is maximized. Once the threshold
is determined, we are able to determine yi over the entire
duration when the subject wears R100.

D. DROWSINESS DETECTION
A binary classifier using the XGBoost is trained for each
subject with the feature vector Si and the corresponding label
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FIGURE 4. Evaluation results on three methods of drowsiness level definition. (a) ROC curves and AUC values for the three methods on three values of t .
(b) Sensitivity and specificity trends as function of a sweeping AE drowsiness level on three values of t .

yi respectively as the input and the output. XGBoost is an
ensemble method that aggregates a outputs from K number
of classification and regression trees (CART) as follows:

ŷi =
T∑
t

ft (Si), (10)

where fk represents the kth tree model. The objective function
is given by

Obj =
M∑
i

l(yi, ŷi)+
K∑
k

�(fk ), (11)

where l(·) and �(·) are the loss function and the complexity
of trees respectively withM training samples. l(·) is the cross-
entropy, which is defined as

l(yi, ŷi) = −yi log ŷi − (1− yi) log(1− ŷi). (12)

In our problem, the ratio of the negative class (normal state)
samples against the positive class (drowsiness) samples is
approximately 8 : 2. Since these imbalanced data can cause
biased classification [62], by multiplying a weight, we define
a cost-sensitive loss l(yi, ŷi) as (13)

lc(yi, ŷi) = −wcyi log ŷi − (1− yi) log(1− ŷi), (13)

where wc = (# of positive)/(# of negative).
XGBoost is based on an additive training technique that

progressively adds trees to increase the precision of the pre-
diction as

ŷ(t) = ŷ(t−1) + ft (S), (14)

where t = 1, . . . ,T , and ŷ0 = 0. Since XGBoost is vulner-
able to overfitting, the area under curve (AUC) values of the
validation sets are used as a criterion for early stopping. The
training stops when there is no further improvement after the
addion of more than 300 trees. In our work, we used five-fold
cross-validation to validate our framework.

By letting j as an index of a single leaf among theK number
of leaves in a tree, the object function (11) converges as

Obj∗ = −
1
2

K∑
k=1

G2
k

Hk + λ
+ γK , (15)

where λ and γ are parameters that control the trade-off rela-
tionship between the complexity and accuracy. G and H is
defined as

Gk =
∑
i∈Ik

∂ŷi l(yi, ŷi), Hk =
∑
i∈Ik

∂2ŷi
l(yi, ŷi), (16)

where Ik denotes a set of samples reaching the kth leaf in
each tree. The Obj∗ in (15) value measures how well a tree
is structured. The optimization of the tree is conducted by
expanding the leaves based on information gain (Gain) (17)
which is defined by

Gain =
G2
L

HL + λ
+

G2
R

HR + λ
−

G2
L + G

2
R

HL + HR + λ
− γ. (17)

Each term respectively denotes the left children score, and
the right children score, as well as the score without split. By
considering these three cases, a tree is structured to maximize
the total gain value. Following a pruning technique, if the gain
of each leaf is smaller than γ , tree addition is terminated.
Since each branch of the tree corresponds to one of the

feature, we can compute the total gain for a specific feature
by summing the gain of each branch. The sum represents the
importance of the corresponding feature. In our study, since
spectral information of each node is used as a feature, we are
able to easily compute the importance of each frequency and
each channel.

E. APPLICABILITY IN A WIRELESS EEG ENVIRONMENT
Wireless EEG was additionally acquired to confirm that
the framework is applicable in a wireless EEG environ-
ment. However, since drowsiness information from the
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FIGURE 5. The AUC distributions according to window size, w in (3).

R100 was not acquired in the case of wireless EEG, as below,
the extreme drowsiness for wireless protocol, ywli , was
defined directly with the lapse during the PVT tasks.

ywli =

{
1 if RTi ≥ t
0 if RTi < t.

(18)

t is adaptively considered for each subject as t = µ + 2 ∗ σ
where µ and σ are respectively the mean and the standard
deviation of RT. Except for drowsiness labeling, the rest of
the process is the same as with the wired EEG.

IV. RESULTS
A. EVALUATION OF DROWSINESS LABEL
ROC curves of the drowsiness label defined by the three
methods (average ensemble, majority ensemble, and first out-
put) in Section III-C are shown in Figure 4 (a). The proposed
averaging method shows a high AUC value regardless of t .
Therefore, we can conclude that the labeling defined by the
averaging aggregation method of R100 is most highly related
to lapse during PVT.

As discussed in Section III-C2, the proper threshold value
should be determined. Figure 4 (b) shows the sensitivity and
specificity values between Li in (9) and yi in (7) for every t .
The mean values of sensitivity and specificity are depicted as
bold lines. The mean values were maximized on dlens = 6. In
other words, if dlens ≥ 6 (=threshold), we assumed that the
subjects were suffering from instantaneous drowsiness.

B. COMPATIBILITY AS INSTANTANEOUS
DROWSINESS DETECTION
To instantaneously detect the drowsiness, the length of the
EEG signal should be short. We analyzed the AUC values
on various window sizes, w in (3). The highest accuracy was
reached with the two-second window size, which is suffi-
ciently short to detect instantaneously. Longer EEG segments
resulted in lower accuracy. We think that the chance of a
mixed condition of normal and drowsiness states in the long
EEG segment might produce a negative effect.

C. COMPARATIVE ANALYSIS
Comparisons between the techniques used in proposed
frameworks and other conventional techniques (three

FIGURE 6. AUC distributions on (a) features and (b) classifiers.

methods of feature extraction and five classifiers) were con-
ducted. Figure 6 depicts the distribution of AUC values.
By testing Delong’s method [63], the statistical significance
among the methods was analyzed.

1) COMPARISON AGAINST OTHER FEATURE EXTRACTION
METHODS
Three widely used feature extraction methods were imple-
mented and compared against MPSD. The first method was
band power (BP) [54], which uses the power values on spe-
cific bands, such as the delta (0.5− 4 Hz), theta (4 − 8 Hz),
alpha (8 − 13 Hz), beta (13 − 30 Hz), and gamma
(30 − 50 Hz) bands. The second was Welch’s method based
on SPSD [56]. The third method was the wavelet packet
decomposition (WPD) [64]. WPD is known to overcome the
previous methods’ limitation, i.e., the lack of precision with
nonstationary signals. For every feature extraction technique,
the XGBoost were used. As shown in Figure 6 (a), the method
that we used in our work,MPSD, shows the best performance,
whereas SPSD shows the worst. The multi-taper technique
significantly boosts the performance of extracting the spectral
information accurately.

2) COMPARISON AGAINST OTHER CLASSIFIERS
Five widely used machine learning classifiers were imple-
mented and compared. The first classifier was random forest
(RF) [65], which is a bagging-based ensemble technique.
The second classifier was SVM [66]. The remaining types of
classifiers were deep-learning (DL) models [67]. DL mod-
els could be implemented into various architectures. We
implemented three different architectures: fully connected
networks (FCNs), 1D convolutional networks (1D-CNNs),
and 2D convolutional networks (2D-CNNs). Due to class
imbalance, the training of the SVM and the DL models
showed difficulties on convergence. For this reason, we bal-
anced the training data by generating synthetic data using the
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FIGURE 7. Feature importance as a function of frequency. On certain frequencies that show peaks on feature
importance, t-test showed significant difference.

FIGURE 8. Topographic mapping of feature importance value.

synthetic minority over-sampling technique (SMOTE) [68]
for the drowsiness class. All the hyper-parameter sets were
selected using a greedy search.

As shown in Figure 6 (b), XGBoost which we used
in our work, shows the best results. RF-based detection
shows relatively good performance against the others. Even
though SMOTE was additionally applied as prepossessing
to overcome imbalanced data issue, SVM shows relatively
low performance with a biased classification on a major class
(normal state). Even though we applied various techniques
(e.g., such as skip connection, drop-out, and batch normal-
ization), DL models also do not show good performance.

D. FEATURE IMPORTANCE
As described in Section III-D, the importance of the input
features was computed using the gain value. The importance
values of a specific frequency are shown in Figure 7. Peaks
are shown in the theta and the alpha bands, which means
that these bands play a key role in decisions. This finding
shows consensus with the existing studies (e.g., the alpha
attenuation test [48] and the Karolinska drowsiness test [47]).
Furthermore, we found that the range (45 − 50 Hz) in the
gamma band is also important. Figure 8 shows a topological
mapping of importance. Seven channels (Fp1, Fp2, T3, T4,
O1, O2, and ECG) are the key channels among 10-20 system
channels.

E. CHANNEL REDUCTION
If the framework is based on fewer channels, a more
lightweight and cost-effective system can be implemented.
Detection performance according to various channel combi-
nations is shown as Figure 9. When all channels are used,
the best performance is obtained. When using seven selected
channels (Fp1, Fp2, T3, T4, O1, O2, and ECG) based on
the importance, a small performance drop of −1.80% is
observed. As the number of channels decreased, the per-
formance of the system continued to degrade. The perfor-
mance increased when the ECG channels were added for
all the cases. Furthermore, using only the channel of a spe-
cific region, the performance was in the order of the ECG-
temporal-frontal-occipital region. There was no significant
difference in performance between the left hemisphere (Fp1,
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FIGURE 9. Performance degradation according to channel reduction.

TABLE 2. Subject-specific performance of wire EEG and wireless EEG.

T3, O1, and ECG) and the right hemisphere (Fp2, T4, O2,
and ECG).

F. RESULTS ON WIRED AND WIRELESS EEG
As mentioned in Section III-E, in addition to the wired EEG
device, we have acquired additional data with the wireless
EEG system, which uses dry sensors. The performance of
each subject using the wired EEG and wireless EEG is
described in Table 2. The performance for each subject repre-
sents the mean and standard deviation of the five-fold cross-
validation. For the wired EEG, most of the metrics show
values above 0.78, which means that the proposed framework
can be applied to the actual situation. Additionally, all the
metrics have small standard deviations (less than 0.05 among
folds and subjects). For the wireless EEG, the AUC values for
all subjects showed an average performance degradation of
−6.55%. In addition, the standard deviation of performance
was higher in the wireless EEG than with the wired EEG.
In other words, it can be interpreted that detection is less
stable with the wireless EEG than with the wired EEG. This
performance degradation could be caused by the instability
of the dry sensor or the lack of EEG length used during
learning. However, since all indicators show a value of over
0.70, we expect the wireless EEG to be useful for drowsiness
detection in mobile a environment.

V. DISCUSSION
We have proposed a novel framework for detecting instan-
taneous drowsiness, which can be applied regardless of the
subject’s circumstance. In other words, our framework is
able to detect drowsiness in any situation. Once the model
is trained, it does not require any extra tasks, such as PVT,
to evaluate the drowsiness. Moreover, since our framework
uses a short EEG segment of two seconds, it is able to quickly
detect and notify instantaneous drowsiness states such as a
lapse.

The proposed framework includes feature extraction using
MPSD and a classifier using XGBoost. The MPSD success-
fully contains meaningful spectral information within the
EEG data. As shown in the experiments, the XGBoost suc-
cessfully detects drowsiness by using spectral information.
Our framework shows the most outstanding performance
among various feature extraction techniques and machine
learning methods, as shown in Section IV-A.
Our framework also has the advantage of being able to

obtain the frequency bands and channels that play the most
important roles in detecting drowsiness. Through the experi-
ments, we reconfirmed that the alpha and the theta bands are
critical to detect drowsiness, which is consistent with the pre-
vious works [47], [48]. Furthermore, we have demonstrated
that the gamma frequency of 45 − 50 Hz also contributes
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to detection of drowsiness, which supports the recent studies
on the gamma-based sleepiness detection. Abnormal patterns
of gamma waves have been reported to be discovered from
patients with neurological disorders (e.g.,/Alzheimer’s dis-
ease, Parkinson’s disease, schizophrenia, and epilepsy) [49].

As a result of our experiment, the Fp1, Fp2, T3, T4, O1,
O2, and ECG channels have been shown to play important
roles for detecting drowsiness. According to the topological
findings, drowsiness detection is possible with the placement
of electrodes in the highly relevant regions (frontal, temporal,
occipital, and ECG). If only a small number of channels is
sufficient for drowsiness detection, we can expect cost and
weight reduction of the EEG device. Therefore, we evaluated
the performance of various channel combinations. As the
number of channels decreases, so does the performance.
However, when using the seven channels with the highest
importance, performance degradation is less than 2%. In other
words, even if only seven channels are used, the performance
of drowsiness detection is not dramatically decreased.

To examine the applicability of our framework to drowsi-
ness detection in a mobile device environment, this study
acquired additional data through a wireless EEG device using
dry sensors. However, the adopted wireless EEG system and
R100 were not compatible to be acquired simultaneously due
to interference. Since wireless EEG was acquired exclusively
during PVT, only approximately 50 minutes of EEG signals
per day were used for learning. Detection performance using
wireless EEG showed a performance degradation of less than
7%AUC compared to wired EEG, and a value of 0.70 ormore
in most performance indicators. Two main factors contribute
to performance degradation. The first factor is that a relatively
small amount of EEG was used for learning, compared to the
wired EEG. In the case of the wired EEG, we used five hours
per day, whereas only 50 minutes a day of EEG data were
available for wireless EEG. Since a small amount of learn-
ing data causes performance degradation, it is necessary to
accumulate sufficient learning data for wireless brain waves.
The second factor is the instability of the dry sensors in the
wireless EEG. Although the dry sensors have the advantage
of being easy to wear, they have lower signal quality and
higher motion-sensitivity than the wet sensors. Nevertheless,
performance degradation is not drastic; therefore, if these fac-
tors are improved, good and stable detection performance can
be expected in the mobile device environment using wireless
EEG. In future work, we need to develop and implement an
algorithm to handle the EEG artifacts and their effects on the
performance to detect drowsiness, especially for dry wireless
EEG system.

During the data acquisition, subjects were given various
constraints such as long measurements, limited movement,
and controlled sleep time. Such constraints make recruit-
ing difficult, which resulted in a small data: eight subjects
for the case of our study. Since the amount of data was
insufficient, the performances of the deep learning methods
such as FCN and CNN were not outstanding. According to
recent researches, deep learning has shown a state of the art

performance in various fields [69]–[75]. However, deep
learning can automatically extract meaningful features and
achieve great performance only with a sufficient amount of
data. As more data is collected later, we hope not only to
achieve better performance, but also to uncover new useful
features through deep learning. Another limitation of the
proposed framework due to the lack of data is that only
the intra-subject approach was considered. One model was
trained for one subject, which means that if there is a new
subject, the new model will need to be trained. For our
model to generalize over any subjects, more data should be
accumulated.
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