
Received August 1, 2019, accepted September 3, 2019, date of publication October 7, 2019,
date of current version October 16, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2945840

An Efficient Tree-Based Algorithm for Mining
High Average-Utility Itemset
IRFAN YILDIRIM 1,2 AND METE CELIK1, (Member, IEEE)
1Department of Computer Engineering, Erciyes University, 38030 Kayseri, Turkey
2Department of Computer Engineering, Erzurum Technical University, 25050 Erzurum, Turkey

Corresponding author: Irfan Yildirim (irfanyildirim@erciyes.edu.tr)

ABSTRACT High-utility itemset mining (HUIM), which is an extension of well-known frequent itemset
mining (FIM), has become a key topic in recent years. HUIM aims to find a complete set of itemsets having
high utilities in a given dataset. High average-utility itemset mining (HAUIM) is a variation of traditional
HUIM. HAUIM provides an alternative measurement named the average-utility to discover the itemsets by
taking into consideration both of the utility values and lengths of itemsets. HAUIM is important for several
application domains, such as, business applications, medical data analysis, mobile commerce, streaming data
analysis, etc. In the literature, several algorithms have been proposed by introducing their own upper-bound
models and data structures to discover high average utility itemsets (HAUIs) in a given database. However,
they require long execution times and large memory consumption to handle the problem. To overcome
these limitations, this paper, first, introduces four novel upper-bounds along with pruning strategies and
two data structures. Then, it proposes a pattern growth approach called the HAUL-Growth algorithm for
efficiently mining of HAUIs using the proposed upper-bounds and data structures. Experimental results
show that the proposed HAUL-Growth algorithm significantly outperforms the state-of-the-art dHAUIM
and TUB-HAUIM algorithms in terms of execution times, number of join operations, memory consumption,
and scalability.

INDEX TERMS Average utility, high average utility itemset, tighter upper bounds, utility mining, pruning
strategy.

I. INTRODUCTION
Frequent itemset mining (FIM), which is one of the most
well-known techniques to discover relations among items in
large data, was originally introduced to discover frequently
purchased itemsets by customers [1]–[4]. Basically, the goal
of a FIM algorithm is to find a complete set of itemsets whose
frequencies (or supports) higher than or equal to a predefined
threshold in a given transactional database. However, FIM
assumes that databases contain only binary information and
all items in the database have same importance. In other
words, the non-binary attributes (i.e., weight importance) of
the items are not important. Therefore, the result of FIM is
not always sufficient (or meaningful) for different real-world
applications when the quantities and profits of items are
considered. For example, discovered itemsets by FIM may
be unimportant from the business perspective since cheap

The associate editor coordinating the review of this manuscript and
approving it for publication was Senthil Kumar.

products are more likely to be frequently purchased, but they
are less profitable.

The problem of high-utility itemset mining (HUIM)
[5], [6] was introduced as an extension of FIM to discover
more meaningful itemsets by taking into account non-binary
attributes of items. In the HUIM, both of purchased unit quan-
tities (internal utilities) and unit profits (external utilities)
of items are taken into account to determine how important
(or profitable) an itemset is. The utility of an itemset is
obtained by collecting the utility value of each item it contains
from the transactions that involve itself. The result of HUIM
includes only those itemsets whose utilities are not less than
a minimum high-utility threshold. Such itemsets are called
as high-utility itemsets (HUIs). However, as the length of the
itemset increases, its utility tends to be larger since the utility
of an itemset is the sum of the utiliy of each item that it
contains. Therefore, HUIM mainly suffers from generating
a large number of itemsets with long lengths. In addition,
because of the nature of the utility measurement in HUIM,

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 144245

https://orcid.org/0000-0002-5635-2991

I. Yildirim, M. Celik: Efficient Tree-Based Algorithm for Mining High Average-Utility Itemset

most of the discovered HUIs may contain items with low
utilities.

To address these limitations, the problem of high
average-utility mining (HAUIM) is then introduced with
a more fair measurement named average-utility [7]. The
average-utility of an itemset is derived by dividing its utility
to the number of its items. An itemset is considered as a high
average-utility itemset (HAUI) if its average-utility value is
no less than a given minimum utility threshold (minUtil).
HAUIM is important for several application domains,

such as, business applications [8]–[10], medical data anal-
ysis [11], [12], streaming (or incremental) data analysis
[13]–[15], etc. In business applications, HAUIM can be used
for cross-marketing, shelf management, and new promotions
techniques to increase sales of high profitable itemsets [8]. In
medical data analysis, HAUIM can be used to discover rare
but critical combinations of symptoms and to find gene pat-
terns by taking into account gene importance and its degrees
of expression [11]. In streaming data analysis, HAUIM can be
used to analyze streaming datasets (such as, wireless sensor,
web click, etc.) by taking into account the characteristics of
streaming data [13].

A typical HAUIM approach aims to find a complete set of
HAUIs based on a given minUtil threshold. This process is
computationally complex due to anti-monotonic characteris-
tic of average-utilities of itemsets. The first proposed algo-
rithm to mine HAUIs is the Two-phase high average-utility
pattern mining (TPAU) algorithm [7]. Since then, several
algorithms, such as PAI [16], HAUP-Growth [17], HAUI-
Tree [18], HAUI-Miner, [19], FHAUM [20], MHAI [21],
EHAUPM [9], TUB-HAUPM [10], and dHAUIM [22] were
proposed to solve the HAUIM problem more efficiently.
However, all the existing HAUIM algorithms need long exe-
cution times and large amounts of memory to perform their
mining tasks, especially when the database size is large or the
minimum utility threshold is low.

Therefore, in order to enhance the efficiency of solv-
ing the problem of mining HAUIs, efficient strategies
should be developed, such as (1) introducing more effec-
tive upper-bounds and pruning strategies for early pruning
unpromising itemsets from the search space, (2) proposing
efficient data structures for reducing the memory consump-
tion and the cost of database scans in addition to avoid the
costly join operations, and (3) developing an effective mining
method to discover the complete and correct set of HAUIs by
utilizing all the strategies mentioned above together.

This study proposes an algorithm named as High
Average-Utility List-Growth (HAUL-Growth) algorithm for
mining HAUIs efficiently. The main contributions of this
paper can be listed as follows:
• Four new upper-bounds, which are named as exten-
sion upper-bound (eub), tighter extension upper-bound
(teub), bi-directional tighter extension upper-bound
(bteub), and maximum remaining k-items extension
upper-bound (max-reubk), are proposed for pruning
extensions of itemsets while ensuring that all HAUIs are

discovered. The eub and teub are designed to prune the
single-item extensions of itemsets. The bteub and max-
reubk are designed to prune the 2-items extensions of
itemsets. Among them, eub is calculated by utilizing
the initial database while the others are calculated by
utilizing the projected database obtained based on a total
processing order on items.

• A compact tree data structure, which is named
HAUL-Tree (High Average-Utility List-Tree), is pro-
posed to reduce the cost of database scans and avoid
the costly join operations. The HAUL-Tree is a compact
representation of the given database and is designed to
store the required information of mining HAUIs based
on a given minimum utility threshold, minUtil.

• A list-based data structure, which is named Information
List (IL), is also proposed. The IL of an itemset can be
easily obtained from the proposedHAUL-Tree structure,
which is designed to determine which single-item exten-
sions of the itemset are HAUIs and prune its 2-items
extensions.

• A pattern growth approach is proposed for efficiently
mining of HAUIs based on a divide and conquer strategy
by utilizing proposed upper-bounds and data structures.

• Experiments are conducted with several datasets. Exper-
imental results show that the proposed HAUL-Growth
algorithm outperforms the previous state-of-the-art
HAUIM algorithms, such as dHAUIM and TUB-
HAUPM, in terms of execution times, number of join
operations, memory usage, and scalability.

The rest of the paper is organized as follows. Section II
gives the related work. Section III presents basic concepts of
the problem of HAUIM. Section IV introduces the proposed
upper-bounds and pruning strategies. Section V presents the
details of the proposed data structures. The mining proce-
dure of the proposed algorithm is explained in Section VI.
Experimental evaluation of the proposed algorithm is given
in Section VII. Section VIII presents conclusion and future
works.

II. RELATED WORK
Many studies have been proposed for HUIM since the
utility model [5] is introduced by considering quantities
(i.e., internal utilities) and profits (i.e., external utilities)
of items. Two-Phase [6] algorithm is proposed with an
upper-bound strategy, called the transaction-weighted util-
ity (TWU) model, by adopting the downward closure (DC)
to prune the unpromising itemsets early and thus reduce to
search space. Although Two-Phase algorithm reduces the
search space, it still generates a large number of candidates.
Then, in order to reduce the number of candidates, several
algorithms, such as HUP-Tree [23], UP-Growth [24], and
UP-Growth+ [8], have been introduced. Among them, UP-
Growth+ is reported as the fastest algorithm compared to the
others [8]. All these algorithms are designed to discover HUIs
in two phases. In phase 1, they generates candidate HUIs
by overestimating itemsets’ utilities. Then, in phase 2, they

144246 VOLUME 7, 2019

I. Yildirim, M. Celik: Efficient Tree-Based Algorithm for Mining High Average-Utility Itemset

calculate the actual utility of each candidate HUI to obtain
the correct HUIs by performing a database scan.

To avoid computationally complex candidate generation
procedure of the above mentioned algorithms, in the liter-
ature, algorithms which discovers HUIs in a single phase
were introduced. These algorithms can be listed as HUI-
Miner [25], FHM [26], d2HUP [27], HUP-Miner [28],
EFIM [29], IMHUP [30], and mHUIMiner [31]. They use
their additional strategies to prune the search space more
efficiently and most of them are designed based on utility-list
structure [25]. Although HUIM can discover more useful
itemsets compared to FIM, it suffers from generating too
many itemsets with long lengths. The reason is that when
the size of itemsets gets increase, their utilities tend to be
increased.

In order to avoid this problem, the problem of high
average-utility itemset mining (HAUIM) is then introduced
with a more fair utility measurement called average-utility
by considering the length of itemsets. Most of the algo-
rithms used in HUIM is modified or extended to mine
HAUIs. The first proposed algorithm is TPAU [7]. It mines
HAUIs in two phases. It uses the average-utility upper-
bound (auub) property by adopting the DC to prune search
space. However, it suffers from generating of numerous can-
didate itemsets with multiple database scans. To speed up the
mining process of HAUIMs several algorithms are proposed.
A projection based algorithm, PAI [16], is proposed with
a pruning strategy. A tree based pattern growth approach,
HAUP-Growth [17], is proposed with a tree data structure
named as HAUP-Tree to avoid of multiple database scans
that TPAU suffers from. HAUI-Tree [18] is proposed to solve
HUIM by utilizing an index table. Then, HAUI-Miner [19]
is proposed to efficiently mine HAUIs using a compact list
structure called AU-List. Although, HAUI-Miner is more
efficient than previous works, it is still computationally com-
plex in terms of join operations [9].

Moreover, other HAUIM algoritms, such as FHAUM [20],
MHAI [21], EHAUPM [9], TUB-HAUPM [10], and
dHAUIM [22] are introduced with their upper-bounds, prun-
ing strategies, and data structures to speed up the discovery
process of HAUIs. Among them, FHAUM [20], MHAI [21],
and EHAUPM [9] perform the mining process by con-
structing their list-based data structures. These algorithms
determine promising 1-itemset based on the auub model.
The FHAUM [20] adopts the AU-List structure [19] to store
the required information for mining HAUIs. It uses a matrix
which stores the auub of 2-itemsets and two upper-bounds
called as lubau and tubau to prune the search space. The
MHAI [21] uses a list-based data structure named HAI-List
(High average-utility itemset list) to mine HAUIs and an
upper-bound called as mau to prune the search space. The
EHAUPM [9] uses a modified average-utility (MAU)-list
structure which is designed to store the remaining maximal
and revised transaction-maximum utilities of transactions.
Similar to FHAUM, it has a matrix structure named as
EAUCM for pruning k-itemsets (k ≥ 2). The upper-bounds

that EHAUPM is used to prune the search space are named
as lub and rtub. In addition, EHAUPM uses an additional
strategy named SUJ (Stop Unpromising Join Operations)
to avoid unnecessary join operations to reduce the cost of
mining HAUIs.

The set of promising 1-itemsets is also determined based
on auub model by TUB-HAUPM [10]. However, for fur-
ther reduction of the number of promising 1-itemsets,
TUB-HAUPM performs multiple database scans. In each
database scan, it re-calculates the auub values of items after
removing unpromising items that obtained by the previ-
ous database scan. This process continues until there is no
unpromising items are obtained. Afterwards, it examines
the search space by utilizing two upper-bounds called as
mfuub and krtmuub. Since these upper-bounds are not com-
parable, TUB-HAUPM accumulates both of them for each
itemset from the related transactions and selects the one
which has lower value to check against to the given mini-
mum utility threshold for pruning the search space. However,
TUB-HAUPM does not have a data structure. It calculates
average-utility and upper-bounds for each candidate itemset
by performing an additional database scan.

To the best of our knowledge, the most recent HAUIM
algorithm is dHAUIM [22]. The dHAUIM, first, converts the
given database into an integrated quantitativematrixQ. After-
wards, by utilizng the Q, it obtains a utility vector that stores
all column utility values related to the item. In addition, the set
of row indices for each item are also determined. Moreover,
it uses a diffset technique to obtain the utility vectors of
itemsets during the examination of the search space. To prune
the search space, dHAUIM uses four upper-bounds which are
aub1, aub, iaub, and laub.
However, solving the problem of HAUIM by using

the state-of-the-art HAUIM algorithms is still very
time-consuming. The FHAUM [20], MHAI [21], and
EHAUPM [9] mainly suffer from the computationally expen-
sive join operations for generating a large number of list
structures during the mining phase. The TUB-HAUPM [10]
mainly suffers from numerous database scans to examine the
search space since it requires an additional database scan
to compute the utility and upper-bounds of each promising
itemset. The dHAUIMmainly suffers from the cost of obtain-
ing the utility vectors of itemsets since it is necessary to
calculate all the required column utilities to obtain the utility
vector of an itemset. More importantly, the upper-bounds
used by these algorithms for pruning the search space are
not tight enough, and so they suffer from generating a large
number of unpromising itemsets. Because of these reasons,
the state-of-the-art HAUIM algorithms do not perform well,
especially when the number of transactions and/or unique
items contained in a database is too large.

III. BASIC CONCEPT
In this section, definitions related to HAUIM are presented
based on the previous HAUIM studies.

VOLUME 7, 2019 144247

I. Yildirim, M. Celik: Efficient Tree-Based Algorithm for Mining High Average-Utility Itemset

Let I = {i1, i2, . . ., in} be a set of n unique items. A database
is denoted byDB= {T1, T2, . . ., Tm}. A transaction Tj, where
Tj ∈ DB and 0 < j ≤ m, is a subset of itemset I . An itemset
X = {i1, i2, . . . , ik} is a set of k unique items, where X ⊆ I .
In the database DB, each item in a transaction has two utility
values which are an internal utility (i.e., unit quantities) and
an external utility (i.e., unit profits).
TABLE 1. A sample database, DB.

A sample database given in Table 1 is used to explain the
definitions. In the database, there are six transactions with
eight different items (a, b, c, d , e, f , g, and h). Each transac-
tion contains multiple items with their internal utilities. For
example, the internal utility of item a in transaction T1 is
denoted as iu(a,T1) and equals to 2. The external utilities of
the items are given in Table 2. For example, the external utility
of item a is denoted as eu(a) and equals to 5.

TABLE 2. External utilities of items of the sample database.

Definition 1 (Utility and Average-Utility of an Itemset in
a Transaction): The utility and average-utility of an itemset
X in a transaction Tj are denoted as u(X , Tj) and au(X , Tj),
respectively. They are defined as:

u(X ,Tj) =
∑

i∈X∧X⊆Tj

iu(i,Tj)× eu(i), (1)

au(X ,Tj) =
u(X ,Tj)
|X |

. (2)

For example, let X = {a, c}. Therefore, u({a, c},T1) =
(iu(a,T1) × eu(a)) + (iu(c,T1) × eu(c)) = (2 × 5) + (1 ×
3) = 13. Besides, au({a, c},T1) is calculated as u({a, c},T1)
/ (|{a, c}|) = 13/2 = 6.5.
Definition 2 (Utility and Average-Utility of an Itemset in

a Database): The utility and average-utility of an itemset X
in a database DB are denoted as u(X , DB) and au(X , DB),
respectively. They are defined as:

u(X ,DB) =
∑

X⊆Tj∧Tj∈DB

u(X ,Tj), (3)

au(X ,DB) =
u(X ,DB)
|X |

. (4)

For example, both of items a and c appear together in
transactions T1, T5, and T6. Therefore, u({a, c},DB) and
au({a, c},DB) are calculated as u({a, c},T1)+u({a, c},T5)+
u({a, c},T6) = 13 + 14 + 8 = 35 and u({a, c},DB) /
(|{a, c}|) = 35/2 = 17.5, respectively.
Definition 3 (Transaction Utility and Total Utility of a

Database): The transaction utility of a transaction Tj and
total utility of a database DB are denoted as u(Tj) and u(DB),
respectively. They are defined as:

u(Tj) =
∑
ik∈I

u(ik ,Tj), (5)

tu(DB) =
∑
Tj∈DB

u(Tj). (6)

For example, u(T1) = u(a,T1) + u(c,T1) + u(d,T1) +
u(f ,T5)+ u(h,T1) = 10+ 3+ 8+ 7+ 30 = 58. Similarly,
u(T2) = 38, u(T3) = 19, u(T4) = 86, u(T5) = 30, and
u(T6) = 29. Therefore, tu(DB) = u(T1) + u(T2) + u(T3) +
u(T4)+ u(T5)+ u(T6) = 260.
Definition 4 (High Average-Utility Itemset): An item-

set X is called as high average-utility itemset (HAUI) if
its average-utility au(X ,DB) is not lower than a minimum
threshold minUtil given by the user.
For example, consider the minUtil is set to 10% of

tu(DB) = 260, which is 26. Therefore, itemset {a, c} is not a
HAUI since au({a, c},DB) = 17.5 < 26.

Note that, the average-utility of an itemset may be higher or
lower than the average-utility of any of its subsets or supersets
in the problem of HAUIM. So, to obtain a DC property
in HAUIM, an anti-monotonic measure called the average
utility upper bound (auub) is used in the previous studies
[7], [17]. The following definitions are related to auub.
Definition 5 (MaximumUtility of a Transaction):Themax-

imum utility of a transaction Tj is denoted as mu(Tj) and
defined as:

mu(Tj) = max{u(ik ,Tj)|ik ⊆ Tj}. (7)

For example, mu(T1) = max(u(a,T1), u(c,T1), u(d,T1),
u(f ,T1), u(h,T1)) = max(10, 3, 8, 7, 30) = 30.
Definition 6 (Average-Utility Upper-Bound): The average-

utility upper-bound (auub) of an itemset X is denoted as
auub(X) and defined as:

auub(X) =
∑

X⊆Tj∧Tj∈DB

mu(Tj). (8)

For example, auub({a, c}) = mu(T1)+mu(T5)+mu(T6) =
30+ 9+ 10 = 49.
Definition 7 (Downward Closure Property of auub): If an

itemset X has an auub value lower than minUtil then all
supersets of X have auub values lower than minUtil [7].
Therefore, this downward closure property of auub can be
used to prune search space while mining HAUIs.

For example, the auub({d, g}) = mu(T2) = 16 <

minUtil = 26. Therefore, none of the extensions of {d, g}
can be HAUI. There is no need to examine them.

144248 VOLUME 7, 2019

I. Yildirim, M. Celik: Efficient Tree-Based Algorithm for Mining High Average-Utility Itemset

IV. PROPOSED UPPER-BOUNDS
To prune the search space efficiently, this study introduces
four new upper-bounds named as extension upper-bound
(eub), tighter extension upper-bound (teub), bi-directional
tighter extension upper-bound (bteub), and maximum
remaining k-items extension upper-bound (max-reubk). All
of them are designed to determine whether extensions of
itemsets can be pruned. In other words, they are proposed
to prune the extensions of itemsets while ensuring that
all HAUIs are found. Below, eub, teub, bteub, and max-
reubk with their pruning strategies are mentioned. Lastly,
their effectiveness are discussed by comparing the existing
upper-bounds of the literature.

A. EXTENSION UPPER-BOUND (EUB)
The extension upper-bound (eub) is designed to determine
itemsets whose extensions do not promise to contain any
HAUI. Details are given below.
Definition 8 (Sum of the Largest n Utilities in a Trans-

action): The sum of the largest n utilities in a transaction
Tj is denoted as SLn(Tj) and calculated by summing up the
largest n utilities in Tj.
For example, transaction T2 consists of items d , e, and

g, where u(d,T2), u(e,T2), and u(g,T2) are 8, 16, and 14,
respectively. Since the largest 2 utilities in T2 are 16 and 14,
SL2(T2) = 16+ 14 = 30.
Definition 9 (Extension Upper-Bound of an Itemset in a

Transaction): The extension upper-bound (eub) of an itemset
X in a transaction Tj, where X ∈ Tj, is denoted as eub(X ,Tj)
and defined as:

eub(X ,Tj) =

SL|X |+1(Tj)
|X | + 1

, if |Tj| ≥ |X | + 1

0, otherwise,
(9)

where |X | is the number of items that X has.
For example, eub(d,T2) = eub(e,T2) = eub(g,T2) =

SL2(T2)/2 = 30/2 = 15, eub({d, e},T2) =

eub({d, g},T2) = eub({e, g},T2) = SL3(T2)/3 = 38/3 =
12.67, and eub({d, e, g},T2) = 0.
Definition 10 (Extension Upper-Bound of an Itemset in a

Database): The extension upper-bound of an itemset X in a
database DB is denoted as eub(X ,DB) and defined as:

eub(X ,DB) =
∑

X⊆Tj∧Tj∈DB

eub(X ,Tj). (10)

For example, itemset {d, e} is seen in transactions T2,
T4, and T5. Therefore, eub({d, e},DB) = eub({d, e},T2) +
eub({d, e},T4)+eub({d, e},T5) = ((16+14+8)/3)+((40+
30+ 6)/3)+ ((9+ 8+ 8)/3) = 46.33
Definition 11 (Extensions Promising Itemset (EPI)): If

eub(X) ≥ minUtil is obtained, then itemset X is called as an
extension promising itemset (EPI).

For example, {d, e} is an EPI since eub({d, e}) = 46.33 ≥
minUtil = 26. In addition, {d, e} can also be called as 2-EPI
since |{d, e}| = 2.

For example, eub(a), eub(b), eub(c), eub(d), eub(e),
eub(f), eub(g), and eub(h) are obtained as 47, 44, 72.5, 87.5,
58.5, 64, 24.5, and 20, respectively. Therefore, the set of
1-EPIs is obtained as {a, b, c, d , e, f } since items g and h
have eub values lower than minUtil = 26.
Theorem 1: None of the extensions of an itemset X has

average-utility value greater than eub(X).
Proof: Let Y be any extension of an itemset X , and Tids(Y)

and Tids(X) be the sets of transactions including Y and X ,
respectively. Since, u(Y ,Tj) can be at most as SL|Y |(Tj) for
each transaction Tj ∈ Tids(Y), it is clear that au(Y ,Tj) ≤
SL|Y |(Tj)
|Y |

≤
SL|X |+1(Tj)
|X | + 1

= eub(X ,Tj) holds for each Tj ∈

Tids(Y). Moreover, Tids(Y) ⊆ Tids(X) is also true, and so
Theorem 1 is correct. �
Pruning Strategy 1 (Pruning the Search Space Based on

eub): Based on the Theorem 1, if eub(X) < minUtil, then
none of extensions of the itemset X can be a HAUI. In other
words, if an itemset is not an EPI, then its extensions are not
HAUIs. Thus, there is no need to examine the extensions of
itemsets if they are not EPIs.

For example, when minUtil = 26, items g and h are
not EPIs, and so their extensions cannot contain any HAUI.
Therefore, there is no need to examine the extensions of
items g and h.

B. TIGHTER EXTENSION UPPER-BOUND (TEUB)
The search space of the problem can be represented as an
enumeration tree based on a total processing order on items
as mentioned in [9], [29]. This allows a tighter upper bound to
be developed for reducing the search space more efficiently.
For this reason, the second upper-bound named as tighter
extension upper-bound (teub) is designed to determine item-
sets whose extensions in the enumeration tree do not promise
to contain any HAUI. To obtain teub values of itemset, their
projected databases is used. Details are given below.
Definition 12 (Total Processing Order): The search space

of the problem can be represented as an enumeration tree
according to the eub-ascending order ≺, such that i1 ≺ i2 ≺
. . . ≺ in where eub(i1) < eub(i2) < . . . < eub(in).
In this study, items of 1-EPIs are kept and sorted according

to the above total processing order to examine the enumera-
tion tree of the search space. For example, the total processing
order≺ is obtained as {b≺ a≺ e≺ f ≺ c≺ d} for the running
example since eub(b) = 44 < eub(a) = 47 < eub(e) =
58.5 < eub(f) = 64 < eub(c) = 72.5 < eub(d) < 87.5.
Fig. 1 shows the enumeration tree of the running example.
Definition 13 (Items That Can Extend an Itemset):LetX be

an itemset, such that each item X ⊆ 1-EPIs. The set of items
that can extends X can be denoted as EIs(X), which contains
each item y ∈ 1-EPIs comes after all items of X according to
the ≺, that is;

EIs(X) = {y|y,where ∀ x ∈ X ≺ y)}. (11)

For example, EIs(a) = {e, f , c, d} and EIs({a, c}) = {d}.

VOLUME 7, 2019 144249

I. Yildirim, M. Celik: Efficient Tree-Based Algorithm for Mining High Average-Utility Itemset

FIGURE 1. The enumeration tree of the running example.

Definition 14 (Projected Transaction Using an Itemset):
Let X and Tj be an itemset and a transaction, respectively,
such that X ⊆ 1-EPIs and X ⊆ Tj. The projected transaction
of Tj using X can be denoted as PTj(X), which contains each
item i ∈ Tj, where i ∈ {X ∪ EIs(X)}.

PTj(X) = {i|i ∈ {X ∪ EIs(X)},Tj}. (12)

For example, take item f and transaction T1 = {(a : 2)
(c : 1) (d : 1) (f : 7) (h : 2)}. Since EIs(f) = {c, d}, PT1(f)
is obtained as {(f : 7) (c : 1) (d : 1)}. Similarly, PT4(f) and
PT6(f) are obtained as {(f : 6) (c : 2) (d : 5)} and {(f : 3)
(c : 1) (d : 1)}, respectively.

Note that, the set of projected transaction of an itemset
may contain the identical transactions, i.e., if two or more
transactions have the same set of items, they can be called as
identical transactions. Merging to the identical transactions
into a new single transactions reduces to cost of the projected
database scans as mentioned in [29]. The next definition
describes the projected database of an itemset.
Definition 15 (Projected Database of an Itemset): The

projected database of an itemsetX can be denoted asPDB(X),
which contains each projected transaction of X after the
identical projected transactions aremerged into a single trans-
action. Let IPTs(X) = {PT1(X),PT2(X),PTn(X)} be a set of
identical projected transactions using X . If they are merged
into a new single projected transaction NPT (X), the internal
utility of each item i of NPT (X) is defined as follows:

iu(i,NPT (X)) =
∑

PTj∈IPTs(X))

iu(i,PTj(X)). (13)

For example, since PT1(f), PT4(f), and PT6(f) con-
tain the same set of items, they are identical projected
transactions. If they are merged into a single transaction
NPT (f), the iu(f ,NPT (f)) is calculated as iu(f ,PT1(f)) +
iu(f ,PT4(f)) + iu(f ,PT6(f)) = 7 + 6 + 3 = 16.
In similar, iu(c,NPT (f)) and iu(d,NPT (f)) are calculated
as 4 and 7, respectively. Therefore, NPT (f) is obtained as
{(f : 16) (c : 4) (d : 7)} after merging the identical

projected transactions PT1(f), PT4(f), and PT6(f). As a result
PDB(f) = {NPT (f)} = {(f : 16)(c : 4)(d : 7)}.
Based on above definitions, the tighter extension

upper-bound can be modeled as follows.
Definition 16 (Tighter Extension Upper-Bound of an Item-

set): The tighter extension upper-bound of an itemset X is
denoted as teub(X ,PDB(X)) and defined as:

teub(X ,PDB(X)) =
∑

PTj(X)∈PDB(X)

eub(X ,PTj(X)). (14)

For example, teub(f ,PDB(f)) is calculated as
eub(f ,NPT (f)). Since NPT (f) = {(f : 16)(c :

4)(d : 7)}, u(f ,NPT (f)), u(c,NPT (f)), and u(f ,NPT (f))
are obtained as 16, 12, and 56, respectively. Thus,
teub(f ,PDB(f)) = eub(f ,NPT (f)) = (56+ 16)/2 = 36.
Theorem 2: In the projected database of an itemset X (or on

the sub-tree of an itemset X based on the enumeration tree),
none of extensions of X has an average-utility greater than
teub(X ,PDB(X)).

Proof: The proof of Theorem 2 can be done as
Theorem 1 is proved, since the values of eub and teub of
itemsets are calculated in the same way. The difference is
that the initial database is taken into account for calculation
eub values while teub values are calculated by utilizing the
projected databases. �
Pruning Strategy 2 (Pruning the Search Space Based on

teub): Based on Theorem 2, if teub(X) < minUtil, then none
of extensions of an itemset X on the enumeration tree of the
search space can be aHAUI. Thus, there is no need to examine
them.

C. BI-DIRECTIONAL TIGHTER EXTENSION
UPPER-BOUND (BTEUB)
The projected database of an itemset can also be used to
figure out whether the extensions of its single-item exten-
sions contain any HAUI in the enumeration tree. There-
fore, we designed another upper-bound named bi-directional
tighter extension upper-bound (bteub) to determine each
itemset Y whose extensions do not promise to contain any
HAUI on the projected database of an itemset X , where Y is a
single-item extension of X based on the ≺. Details are given
below.
Definition 17 (Bi-Directional Tighter Extension Upper-

Bound of an Itemset): Let X and Y = {X ∪ α} be two
itemsets, where item α ∈ EIs(X). The bi-directional tighter
extension upper-bound of Y is denoted as bteub(Y ,PDB(X))
and defined as:

bteub(Y ,PDB(X)) =
∑

Y⊆PTj(X)∈PDB(X)

eub(Y ,PTj(X)). (15)

For example, let Y = {f , c} considering that X = {f } and
α = {c}. Therefore, bteub({f , c},PDB({f })) is calculated as
eub({f , c},NPT (f)) = (56+ 16+ 12)/3) = 28.
Theorem 3:None of the extensions of an itemset Y which is

obtained by extending an itemsetX with an item α ∈EIs(X) in

144250 VOLUME 7, 2019

I. Yildirim, M. Celik: Efficient Tree-Based Algorithm for Mining High Average-Utility Itemset

the enumeration tree of the search space has an average-utility
greater than bteub(Y ,PDB(X)).

Proof: Theorem 3 can be proved as the way that
Theorem 1 and Theorem 2 are proved. �
Pruning Strategy 3 (Pruning the Search Space Based on

bteub): Based on Theorem 3, on the projected database of
an itemset X , none of the extensions of Y = {X ∪ α},
where α ∈ EI (X), can be a HAUI if bteub(Y ,PDB(X)) <
minUtil. Thus, there is no need to examine them. In other
words, k-items extensions of X in the enumeration tree of the
search space, including an item α can be pruned by utilizing
bteub(Y ,PDB(X)), where k ≥ 2. Therefore, it can be said that
the proposed bteub have an ability to prune the search space,
bi-directionally. To clarify, let Y = {X , c} by assuming that
EIs(X) = {a, b, c, d, e} and α = c, where a≺ b≺ c≺ d ≺ e.
Therefore, if bteub({X , c}) < minUtil holds, then none of
{X , a, c}, {X , b, c}, {X , c, d}, and {X , c, e} and none of their
extensions can be a HAUI. Hence, the extensions of {X , c}
can be pruned bi-directionally, meaning both of backward
extensions ({X , a, c} and {X , b, c}) and forward extensions
({X , c, d}, {X , c, e}) of Y = {X , c} can be directly removed
from the enumeration tree of the search space.

D. MAXIMUM REMAINING K-ITEMS EXTENSION
UPPER-BOUND (MAX-REUBK)
The proposed bteub is useful to prune 2-item extensions
of itemsets. However, some of the 2-item extensions of an
itemset may still not be pruned by utilizing the bteub values
of its single-item extensions. Thus, an interesting question
arises as to whether the remaining k-items extensions of
an itemset (that cannot be pruned by utilizing the prun-
ing strategy of bteub (Pruning Strategy 3)) actually contain
HAUI, where k ≥ 2. To give an answer to this question,
another upper-bound named maximum remaining k-items
extension upper-bound (max-reubk) is proposed. Details are
given below.
Definition 18 (Utility Upper-Bounds of Itemset X and Item

α for the Supersets of the Itemset {X ∪ α}): Let X and α ∈
EIs(X) be an itemset and item, respectively. Let Es(X ∪ α)
be the set of the supersets of {X ∪ α}, i.e., both of the
backward and forward extensions of X containing α. The
utility upper-bounds of X and α for Es(X ∪α) can be denoted
as uub(X ,Es(X ∪ α)) and uub(α,Es(X ∪ α)), respectively.
They are defined as:

uub(X ,Es(X ∪ α))

=

∑
α∈PTj(X)∈PDB(X)∧|{X∪α}|<|PTj(X)|

u(X ,PTj(X)), (16)

uub(α,Es(X ∪ α))

=

∑
α∈PTj(X)∈PDB(X)∧|{X∪α}|<|PTj(X)|

u(α,PTj(X)). (17)

For example, let X = b. In the DB given in Table 1,
transactions T4 = ((b : 3) (c : 2) (d : 5) (e : 1) (f : 6))
and T6 = ((a : 1) (b : 1) (c : 1) (d : 1) (f : 3)) include b.
Therefore, PDB(b) is obtained as {PT4(b), PT6(b)} = {((b :

3) (e : 1) (f : 6) (c : 2) (d : 5)), ((b : 1) (a : 1) (f : 3) (c : 1)
(d : 1))}.
However, item α can be a, e, f , c or d since EIs(b) =
{a, e, f , c, d}. If α = a, then uub(b,Es({b, a})) is calculated
as u(b,T6(b)) = 10 and uub(a,Es({b, a})) is calculated as
u(a,T6(b)) = 5. If α = e, then uub(b,Es({b, e})) is calculated
as u(b,T4(b)) = 30 and uub(e,Es({b, e})) is calculated as
u(a,T4(b)) = 4. If α = f , then uub({b},Es({b, f })) is
calculated as u(b,T4(b)) + u(b,T6(b)) = 30 + 10 = 40 and
uub(f ,Es({b, f })) is calculated as u(f ,T4(b))+ u(f ,T6(b)) =
6 + 3 = 9. Similarly, if α = c, then uub(b,Es({b, c})) and
uub(c,Es({b, c})) are obtained as 40 and 9, respectively, and
if α = d , then uub(b,Es({b, d})) and uub(d,Es({b, d})) are
obtained as 40 and 48, respectively.
Definition 19 (Maximum Remaining k-Items Extension

Upper-Bound (max-reubk)): Let X be an itemset and REIs(X)
be the set of each item α, where α ∈EIs(X) and bteub({X∪α},
PDB(X))≥minUtil. Themaximum remaining k-items exten-
sion upper-bound of X is denoted as max-reubk (X), where
k ≥ 2. If REIs(X) does not contain more than one item, then
max-reubk (Y) = 0. Otherwise, max-reubk (X) is calculated
as max{reub2(X), reub3(X), . . . , reubn(X)}. Considering that
[uub(X : Es(X ∪ α))] and [uub(α : Es(X ∪ α))] be two
lists that store each uub(X ,Es(X ∪α)) and uub(α,Es(X ∪α))
values, respectively, where ∀α ∈ REIs(X), and are sorted
in descending order, each reubk (X) (k-remaining extension
upper-bound utility of X) is calculated as:

reubk (X) =
[uub(X : Es(X ∪ α))][k − 1]

|X | + k

+

∑
0≤j<k [uub(α : Es(X ∪ α))][j]

|X | + k
. (18)

For example, let X = b. Recall, minUtil = 26. Since
bteub({b, a}, PDB(b)), bteub({b, e}, PDB(b)), bteub({b, f },
PDB(b)), bteub({b, c}, PDB(b)), and bteub({b, d}, PDB(b))
are calculated as 7.67, 25.33, 33, 33, and 33, respec-
tively, REIs({b}) is obtained as {f , c, d}. On the
other hand, uub({b},Es({b, f })) = uub({b},Es({b, c})),
uub({b},Es({b, d})) = 40, uub({f }, Es({b, f })) = 9,
uub({c},Es({b, c})) = 9, and uub({d}, Es({b, d})) = 48.
Therefore, [uub(b : Es(b ∪ α))] = [40, 40, 40] and [uub(α :
Es(b ∪ α))] = [48, 9, 9].

By utilizing these two list, reub2(b) is calculated as (40 +
(48 + 9)) / (1 + 2) = 32.33 and reub3(b) is calculated as
(40 + (48 + 9 + 9)) / (1 + 3) = 26.5. As a result, max-
reubk ({b, e}) is obtained as max{reub2({b, e}), reub3({b, e})}
= {32.33, 26.5} = 32.33.
Theorem 4: Let X be an itemset and Ek = {e1, e2, . . . , ek}

be any set of k-unique items, such that k ≥ 2, Ek ⊆ REIs(X).
Therefore, none of the itemset obtained by extending X with
any Ek has an average-utility which is greater than max-
reubk (X).

Proof: Let DB({X ∪ Ek}) be a database that includes
the set of transactions containing {X ∪ Ek} in PDB(X). Thus,

au({X∪Ek}) =
u(X ,DB({X ∪ Ek}))

|X | + k
+
u(Ek ,DB({X ∪ Ek}))

|X | + k
.

VOLUME 7, 2019 144251

I. Yildirim, M. Celik: Efficient Tree-Based Algorithm for Mining High Average-Utility Itemset

It is clear that u(X ,DB({X ∪ Ek})) can be at most equal to
[uub(X : Es(X ∪ α))]. Besides, u(Ek ,DB({X ∪ Ek})) can be
at most equal to

∑
0≤j<k [uub(α : Es(X ∪ α))][j] is clear, too.

Combining these two facts, it can be said that au(X ∪ Ek)
≤ reubk (X) holds for each k ≥ 2. As a result, Theorem 4 is
correct since max-reubk (X) = {reub2(X), reub3(X), . . . ,
reubn(X)}. �
Pruning Strategy 4 (Pruning the Search Space With max−

reubk): Based on Theorem 4, none of the itemset obtained
by extending an itemset X with any k-items from REIs(X),
k ≥ 2, have average-utility value which is greater than max-
reubk (X). Thus, if max-reubk (X) is lower than minUtil, then
none of them is a HAUI. Therefore, there is no need to
examine them.

The Pruning Strategy 4 is very efficient to prune the search
space. However, an interesting question is arises that is how to
determine quickly whether each k-reub value of an itemset X
is lower than the minUtil. Therefore, for quickly determining
of whether {reub2(X), reub3(X), . . . , reubn(X)} contains of a
value greater than or equal tominUtil, an algorithm named as
Is-max-reubk -lower-than-MinUtil algorithm (Algorithm 1) is
developed based on the following lemmas (Lemmas 1 and 2).
Lemma 1: If reubk (X) ≥ reubk+1(X), then reubk (X) ≥

reubk+1(X)≥ reubk+2(X)≥≥ . . .≥ reubk+n(X) holds, where
k ≥ 2.
Lemma 2: If reubk (X) < minUtil and [uub(α : Es(X ∪

α))][k]<minUtil, then none of reubm(X) can be greater than
minUtil, where m ≥ k ≥ 2.
Rationale: Lemmas 1 and 2 are clear since values in

[uub(X : Es(X ∪ α))] and [uub(α : Es(X ∪ α))] are sorted
in descending order.

Algorithm 1 Is-max-reubk -Lower-Than-MinUtil
Input : minUtil, [uub(X : Es(X ∪ α))],

[uub(α : Es(X ∪ α))].
Output: A boolean value (true or false).

1 Calculate reub2(X);
2 if reub2(X) ≥ minUtil then
3 return false;
4 k = 3;
5 while k ≤ |[uub(α : Es(X ∪ α))]| do
6 if [uub(α : Es(X ∪ α))][k − 1] < minUtil then
7 return true; // Based on Lemma 2
8 Calculate reubk (X);
9 if reubk (X) ≥ minUtil then
10 return false;
11 else if reubk−1(X) ≥ reubk (X) then
12 return true; // Based on Lemma 1
13 k = k + 1;
14 return true;

Algorithm 1 gives the pseudo-code of Is-max-reubk -lower-
than-MinUtil algorithm. It takes two lists [uub(X : Es(X∪α))]
and [uub(α : Es(X∪α))] which are sorted in descending order,
where their size at least equal to 2. It returns a true or false

value. The algorithm starts by calculating reub2(X) (Line 1).
Then, it cheeks reub2(X) against tominUtil. If reub2(X) is not
lower minUtil (Line 2), it returns false (Line 3). Otherwise,
a while loop is performed by the algorithm (Lines 5-13), after
k is assigned to 3 (Line 4). In the while loop, the situation
mentioned by Lemma 2 is first controlled (Line 6). If the
situation of Lemma 2 occurs, then the algorithm returns true
(Line 7). Otherwise, the algorithm calculates reubk (X) (line
8) and checks it against tominUtil (Line 9). If reubk (X) is not
lower minUtil, it returns false (Line 10). Otherwise, the algo-
rithm controls the situationmentioned by Lemma 1 (Line 11).
If the situation of Lemma 1 occurs, then the algorithm returns
true (Line 12). If not, k is increased by 1 (Line 13). This while
loop is proceeded until a value is returned by itself or k �
|[uub(α : Es(X ∪ α))]|. If any value is not returned in the
while loop, the algorithm returns true (Line 14).

E. EVALUATION OF THE PROPOSED UPPER-BOUNDS BY
COMPARING THE EXISTING UPPER-BOUNDS
To enhance the efficiency of solving the problem of HAUIM,
several upper-bounds (UBs) have been proposed by the exist-
ing algorithms, such as auub [7], lubau and tubau [20],
mau [21], lub and rtub [9], mfuub and krtmuub [10], and
aub1, aub, iaub, and laub [22]. Readers who are interested in
details of the existing UBs are referred to the related papers.
In addition, four new UBs (eub, teub, bteub, and max-reubk)
have been proposed by this study.

The simple way to evaluate these UBs is comparing the
values they produce for itemsets. However, as mentioned
by [22], any pair of UBs UB1 and UB2 may be incomparable
ifUB1(X)≥UB2(X) andUB2(Y)≥UB1(Y) hold for different
two itemsets X and Y . The second way of comparing UBs is
to evaluate their stability [22]. For example, it can be said that
UB1 is more stable thanUB2 ifUB1 is tighter than auubwhile
UB2 and auub are incomparable. Another comparison can be
done by evaluating their pruning abilities (e.g. by determining
which UBs can prune the extensions of itemsets).

The evaluation of eub, teub, bteub, and max-reubk are
discussed as follows.

(i). The proposed eub and the existing UBs auub and aub1
are designed to prune items by utilizing the initial DB. From
this theoretical aspect, it is relevant to compare eubwith auub
and aub1.
Let 1-HEUBIs, 1-HAUUBIs, and 1-HAUB1Is be the sets

of items that are considered by eub, auub, and aub1 on exam-
ination of the k-itemsets (k ≥ 2), respectively. Therefore,
it can be said that |1-HEUBIs| ≤ |1-HAUUBIs| since eub(i)≤
auub(i) holds for each item i based on the fact that eub(i,Tj)≤
tmu(i,Tj) is clear for each transaction Tj, i ∈ Tj ∈ DB. On the
other hand, eub and aub1 are incomparable because of the
reason is that if two different items x and y exist, then it is
possible to obtain eub(x) ≤ aub1(x) and eub(y) ≥ aub1(y).
Thus, |1-HEUBIs|, and |1-HAUB1Is| are also incomparable.
However, since both auub and aub1 are UBs on average-

utility, items which are HAUIs cannot be pruned by them.
Hence, |1-HAUUBIs| and |1-HAUB1Is| can not be less than

144252 VOLUME 7, 2019

I. Yildirim, M. Celik: Efficient Tree-Based Algorithm for Mining High Average-Utility Itemset

|1-HAUIs|. On the other hand, |1-HEUBIs| may be less than
|1-HAUIs| since eub values of items may be lower than their
average-utilities.

(ii). The proposed teub and the existing UBs mau, lub,
rtub, mfuub, krtmuub, lubau, tubau, iaub, and laub are used
to prune the enumeration tree of the search space based on
a depth pruning strategy. In other words, for an itemset X ,
if any of these UBs produces a value that is lower than the
minUtil, it can be used to discard the extensions of X in the
enumeration tree of the search spacewithout examining them.
Therefore, it is relevant to compare the proposed teub with
these existing UBs.

However, the proposed teub cannot be directly compared
to these existing UBs, because the processing order of the
items used for calculation of teub values is different from the
processing order of the items used to calculate the values of
these existing UBs.

On the other hand, the proposed teub and the exist-
ing UBs mau, lub, rtub, mfuub, and krtmuub are UBs on
average-utility values of extensions of itemsets, meaning that
they have an ability to prune the extensions of HAUIs. But,
since the existing UBs lubau, tubau, iaub, and laub are UBs
on average-utility values of itemsets, lubau, tubau, iaub, and
laub cannot prune the extension of itemsets which are HAUIs.
In addition, the proposed teub, as well as the existing UBs

mau, mfuub, krtmuub, and iaub cannot produce a value that
is higher than auub value for any itemset. Conversely, it is
possible that the existing UBs lubau, tubau, lub, rtub, and
laub may produce higher values than auub values of some
itemset.

(iii). The proposed bteub and the existing UB aub have an
ability for bi-directionally pruning the extensions of itemsets
on the enumeration tree of the search space. In other words,
bteub and aub can prune all the two-items extensions of
an itemset X in the enumeration tree of the search space,
containing an item y based on the bteub and aub values of
the itemset {X ∪ y}, respectively. Therefore, it is relevant to
compare the proposed bteub with the existing UB aub.

However, the bteub and aub are incomparable. On the
other hand, the values produced by aub cannot be lower than
average-utilities of itemsets since aub an UB on average-
utility. Thus, aub cannot be used to prune the extensions
of HAUIs. Contrarily, the proposed bteub have an ability to
prune the extensions of HAUIs.

Moreover, to calculate bteub values of all single-item
extensions of an itemset X , only one scan of the projected
database of X is enough. On the other hand, in order to
calculate the aub value of each single item extension of X ,
the utility vector of each-single item extension of X must be
obtained, which is costly.

(iv). The proposedmax-reubk is used to determine whether
all the remaining k-items extensions of itemsets in the enu-
meration tree of the search space can be pruned, k ≥ 2.
However, there is no existing UB have the same pruning
ability that max-reubk has. This is one of the reasons why
the HAUL-Growth algorithm, that is proposed by this study,

prunes the search space more effectively than the existing
algorithms. In addition, max-reubk is tighter than auub.

V. PROPOSED DATA STRUCTURES
To effectively solve the HAUIM problem, it can be said
that the key issue is to use effective upper-bounds to reduce
the search space. On the other hand, proposing data struc-
tures that allow quick calculation of average-utility and
upper-bound values of itemsets is also very important. For
this reason, this sections introduces two new data struc-
tures which are named as High Average-Utility List Tree
(HAUL-Tree) and Information List (IL).

A. HIGH AVERAGE-UTILITY LIST TREE (HAUL-TREE)
In this section, the definition of the proposed HAUL-Tree
structure is first given. Then, the construction process of a
HAUL-Tree is described and illustrated with an example.
Afterwards, the properties related to the HAUL-Tree data
structure is presented, such as extracting projected database
and calculating teub values by utilizing the HAUL-Tree data
structure.

1) DEFINITION OF THE HAUL-TREE
The proposed HAUL-Tree is a compact representation of
a transactional database with utility information. It stores
only required information of items having eub values not
lower than the user-defined utility threshold minUtil. Since
different transactions can have several common items, their
path overlaps in the HAUL-Tree based on the order of items
eub-descending order. The HAUL-Tree data structure can be
defined as follows:

• A HAUL-Tree is associated with a prefix itemset. Con-
sidering P is a prefix itemset, its HAUL-Tree is called as
HAUL-Tree(P). The HAUL-Tree(P) stores the related
information of (|P|+1)-EPIs which are single-item
extensions of P, where each single-item exists in EIs(P).
For the compactness, items having larger eub values are
placed closer to the root in a HAUL-Tree.

• A HAUL-Tree(P) consists of a header table (HAUL-
Tree(P).HT) and a root node (HAUL-Tree(P).Root)
labeled as ‘‘null’’ with a set of item-prefix subtrees as
its children.

• A HAUL-Tree(P).HT is a set of heads (or entries). Each
head H is related to an item appeared in the HAUL-
Tree(P), consisting of two fields which are called as
H .Item andH .Link . The fieldH .Item identifies the item
related to H while H .Link points a node associated with
H .Item.

• Each node N in the item-prefix subtrees has an item
name called as N .Item and is linked to its parent node,
child nodes, and another node carrying the same item
name. Besides, it stores the path utilities of items of P
and the items that appears on the N -to-Root path (or the
branch that starts with N and ends with the root node.)
in a list called as path utility list (PUL) of N (N .PUL).

VOLUME 7, 2019 144253

I. Yildirim, M. Celik: Efficient Tree-Based Algorithm for Mining High Average-Utility Itemset

• The length of the PUL of a node N in a HAUL-Tree(P)
is the sum of the number of items in P and the number
of nodes seen on the N -to-Root path. Let P = {p1, p2,
. . ., p|P|} and PNs = {PN1, PN2, . . .PNm} be the set
of parent nodes of N , such that PN1 is the parent node
of N , PN2 is the parent node of PN1, . . . , PNm is the
parent node of PNm−1, and the root node is the parent
node of PNm. Therefore, starting from the first element
of the N .PUL, N .PUL stores the utility values of p1, p2,
. . ., p|P|, N .Item, PN1.Item, PN2.Item, . . . , PNm−1.Item,
and PNm.Item, which are accumulated on the Root-to-N
path.

2) CONSTRUCTION OF THE HAUL-TREE
The Insert algorithm (Algorithm 2) gives the pseudo-code
of the process of inserting a transaction into the proposed
HAUL-Tree data structure. It takes a prefix itemset P and its
HAUL-Tree (HAUL-Tree(P), and a transaction T as inputs,
where P ∈ T and |T |> |P|+1. Note that, items of T must be
in their eub-ascending order, such as T = {p1, p2, . . . , p|P|,i1,
i2, . . . , in}, where {p1 ≺ p2 ≺ . . .≺ p|P| ≺ i1 ≺ i2 ≺ . . .≺ in}.
The Insert algorithm starts with assigning the root of the

HAUL-Tree(P) as the temporal root TempR (Line 1). After
that, each item itemj /∈ |P| in the input T is inserted into
the HAUL-Tree(P) one by one (Lines 2-24). Itemj (jth item
of T) is inserted into the HAUL-Tree(P) as follows. If the
TempR contains a child node C associated with itemj (line 4),
then the elements of C .PUL are updated (Lines 5-10). Then,
C is assigned as TempR (Line 11). The first |P| elements
of C .PUL are associated with the prefix itemset P. Thus,
each k th element of C .PUL is updated by adding the util-
ity value of itemk in T , where k < |P| (Lines 5-6). The
remaining elements of C .PUL are associated with items
represented by node C and its parent nodes. Thus, each
ith element of C .PUL, i ≥ |P|, is updated by adding the
utility value of associated itemk in T , k ≥ j (Lines 7-10).
Otherwise, a new node N for itemj is generated as a child
of TempR (Line 13) and each element of N .PUL is set to the
related item’s utility value in T (Lines 14-19). Then, if the
header table includes a head H for N .Item (Line 20), N is
linked to other nodes associated with N .Item by the help
of H (Line 21). Otherwise, it means that N .Item appears
for the first time in the HAUL-Tree(P). Therefore, a head
for N .Item is inserted into the header table of the HAUL-
Tree(P) (Line 23). Lastly, N is assigned as TempR (Line 24).
If itemj is not the last item in T , the algorithm continues to
proceed from Line 2 for the next item. Finally, it returns the
HAUL-Tree(P) (Line 25).
Now, we demonstrate the construction of the HAUL-

Tree(∅) based on the sample database (Table 1) and its exter-
nal utility table (Table 2) by considering as minUtil = 26.
Since P = ∅, the HAUL-Tree(∅) contains necessary
information of 1-EPIs. Above, we have already obtained
1-EPIs= {a, b, c, d , e, f } and the total processing order≺ as
(b ≺ a ≺ e ≺ f ≺ c ≺ d) when minUtil is set to 26.

Algorithm 2 Insert Algorithm
Input : P, a prefix itemset; HAUL-Tree(P),

the HAUL-Tree of P; T , a transaction that
contains P.

Output: HAUL-Tree(P), the HAUL-Tree of P.

1 TempR = HAUL-Tree(P).Root;
2 for (j = |T |−1, j ≥ |P|, j−−) do
3 itemj = jth item of T ;
4 if TempR has a child node C, where C .Item = itemj

then
5 for (k = 0, k < |P|, k++) do
6 C .PUL[k] + = u(itemk ,T);
7 i = |C .PUL| − 1;
8 for (k = |T |−1, k ≥ j, k−−) do
9 C .PUL[i] + = u(itemk ,T);

10 i = i− 1;
11 TempR = C ;
12 else
13 Generate a new node N as a child of TempR,

where N .Item = itemj;
14 for (k = 0, k < |P|, k++) do
15 N .PUL[k] = u(itemk ,T);
16 i = |N .PUL| − 1;
17 for (k = |T |−1, k ≥ j, k−−) do
18 N .PUL[k] = u(itemk ,T);
19 i = i− 1;
20 if HAUL-Tree(P).HT has a head H related to

N .Item then
21 Link N to other nodes associated with

N .Item;
22 else
23 HAUL-Tree(P).HT ← H (N .Item,N);
24 TempR = N ;
25 return HAUL-Tree(P);

Note that, from now on, we present each transaction Tj
in the form of {item1(u(item1,Tj)), item2(u(item2,Tj)), . . . ,
itemn(u(itemn,Tj))} for the simplicity.
First, we insert the first transaction T1 = {a(10), c(3), d(8),

f (7), h(30)}. However, item h is not a 1-EPI. Therefore, it is
removed from T1 and the remaining items are sorted based on
their eub-ascending order. After reorganization, T1 becomes
{a(10), f (7), c(3), d(8)}. The HAUL-Tree(∅) initially does
not have any path. Thus, the reorganized T1 is inserted in
to the HAUL-Tree(∅) as a new path. Besides, four heads are
added to the header table for items d , c, f , and a and linked
to corresponding nodes. The HAUL-Tree(∅) after T1 inserted
is shown in Fig. 2a.

In figures, the links are shown with dashed lines and
nodes are represented by circles with attached path util-
ity list PUL. In the rest of the paper, we use the notation
of (N .Item:N .PUL)) to mention a node N . For example,
the node (f :(7,3,8)) in Fig. 2a represents the item f , where

144254 VOLUME 7, 2019

I. Yildirim, M. Celik: Efficient Tree-Based Algorithm for Mining High Average-Utility Itemset

FIGURE 2. Construction of the HAUL-Tree(∅).

its PUL = (7, 3, 8). Therefore, we understand that the utility
values of items f , c, and d are 7, 3, and 8, respectively, in the
(f :(7,3,8))-to-Root path.

Next, the second transaction T2 = {d(8), e(16), g(14)}
will be inserted into the HAUL-Tree(∅) after it is reorga-
nized. Item g is not a 1-EPI, and so T2 is reorganized as
{e(16), d(8)}. Since the root node of the HAUL-Tree(∅) has
a child node (d :(8)) with item d , the node (d :(8)) becomes
the temporal root TempR. Then, its PUL is updated as (16) by
adding 8 to 8. Afterwards, we continue with item e. However,
(d :(16)) has not a child node assigned to item e. Thus, a new
node (e:(16,8)) is generated as a child of (d :(16)). There is
no head for item e in the header table. Therefore, a head is
inserted into the header table for item e and linked to the
node (e:(16,8)). TheHAUL-Tree(∅) after T2 inserted is shown
in Fig. 2b.

The next transaction to be inserted into the HAUL-Tree(∅)
is T3 = {a(5), g(14)}. Item g is not a 1-EPI. Thus, reorganized

T3 = {a(5)}. Since it has only one item, it is not inserted
into the HAUL-Tree(∅). The remaining transactions T4, T5,
are T6 will be inserted into the HAUL-Tree(∅) after they are
reorganized as {(b : 30), (e : 4), f (6), c(6), d(40) }, {(a : 5),
e(8), c(9), d(8)}, and {(b : 10), (a : 5), f (3), c(3), d(8)},
respectively. The completely constructed HAUL-Tree(∅) for
the running example is shown in Fig. 2c.

3) PROPERTIES RELATED TO THE HAUL-TREE
Property 1: Let P be an itemset. The projected database of
any itemset X = {P ∪ y}, such that item y appears in the
header table of HAUL-Tree(P), can be easily obtained from
the HAUL-Tree(P).

Proof: In a HAUL-Tree(P), for a node N , the util-
ities of items of P and the items that appears on the
Root-to-N path are accumulated and stored in the N .PUL.
Therefore, if N .Item = y, then the N -to-Root path
represents a projected transaction using itemset X =

{P ∪ y}, PT ∗(X). Since we know that {p1 ≺ p2 ≺
. . ., p|P| ≺ N .Item = y ≺ PN1.Item ≺ PN2.Item ≺
. . . ≺ PNm.Item}, and N .PUL[0] = u(p1,PT ∗(X)),
N .PUL[1] = u(p2,PT ∗(X)), . . . , N .PUL[|P| − 1] =
u(p|p|,PT ∗(X)), N .PUL[|P|] = u(N .Item,PT ∗(X)),
N .PUL[|P| + 1] = u(PN1.Item,PT ∗(X)), N .PUL[|P| +
2] = u(PN2.Item,PT ∗(X)), . . . , and N .PUL[|P| + m] =
u(PNm.Item,PT ∗(X)). Thus, a projected transaction using
itemset X = {P ∪ y} can be derived by visiting the nodes
that appear on N -to-Root path and utilizing the PUL of N .
Therefore, the projected database of an itemset X = {P ∪ y}
can be easily obtained by examining the paths of the nodes
assigned for item y in the HAUL-Tree(P). �
For example, by utilizing the HAUL-Tree(∅) shown

in Fig. 2c, the projected database of {∅ ∪ e} = e can be
obtained as follows. From the head of e, we can reach to the
node (e : (4, 6, 6, 40)). It is understood that there are four
nodes on the (e : (4, 6, 6, 40))-to-Root path since P = ∅
and the PUL of (e : (40, 6, 6, 4)) consists of four values.
Starting from (e : (40, 6, 6, 4)), these nodes are registered
for items e, f , c, and d . Therefore, a projected transaction
using e is obtained from this path as {e(4), f (6), c(6), d(40)}.
The other nodes registered for item e in the HAUL-Tree(∅)
are (e : (8, 9, 8)) and (e : (16, 8)). We can easily reach
these two nodes by the help of link property of the pro-
posed HAUL-Tree data structure. Therefore, by utilizing (e :
(8, 9, 8))-to-Root and (e : (16, 8))-to-Root paths, two pro-
jected transactions using e are obtained as {e(8), c(9), d(8)}
and {e(16), d(8)}, respectively. Table 3 shows the projected
database of e obtained by utilizing the HAUL-Tree(∅).
Property 2 (Calculating teub Values of Itemset by Utilizing

the HAUL-Tree Data Structure): Let P be an itemset. Let y
be an item that appears in the header table of the HAUL-
Tree(P). Let Ns(y) = {N1, N2, . . ., Nn} be the sets of nodes in
the HAUL-Tree(P), such that Nj.Item = y. Let SLn(Nj.PUL)
be the sum of the largest n values in Nj.PUL. Therefore,
by utilizing the HAUL-Tree(P), teub(X ,PDB(X)), where

VOLUME 7, 2019 144255

I. Yildirim, M. Celik: Efficient Tree-Based Algorithm for Mining High Average-Utility Itemset

TABLE 3. The projected database of e, PDB(e).

X = {P ∪ y}, can be calculated as:

teub(X ,PDB(X)) =
∑

Nj∈Ns(y)∧Nj.PUL>|X |

SL|X |+1(Nj.PUL)
|X | + 1

.

(19)

Proof: Let N be a node that appears in a HAUL-Tree(P),
such that N .Item = y. Based on Property 1, we know that
the N -to-Root path represents a projected transaction using
the itemset X = {P ∪ y}. Besides, the PUL of N stores the
utility of each item that appears on the N -to-Root path, and
so it is clear that the length of PUL of N gives the number of
items that appears on this path. Thus, teub(X ,PDB(X)) can
be calculated as mentioned by Property 2. �.
For example, consider the HAUL-Tree(∅) shown in

Figure 2c. Let item y be e. Therefore, Ns(e) = {(e :
(4, 6, 6, 40)), (e : (8, 9, 8)) and (e : (16, 8))}. Since P = ∅,
X = {∅ ∪ e} = e. As mentioned above, these nodes are
easily traversed since they are linked to each other. Since the
length of PUL of each these nodes are greater than |X | = 1,
teub(e,PDB(e)) is calculated as ((40+ 6) / 2)+ ((9+ 8) / 2)
+ ((16 + 8) /2) = 43.5.
Property 2 is very useful to accelerate the mining pro-

cess since the teub value of each single-item extension of
P can be calculated directly from the HAUL-Tree(P), and
thus the projected databases of non-EPIs are not needed to
be obtained.

B. INFORMATION LIST (IL)
The Information List (IL) structure is designed to store related
information of the single-item extensions of itemsets. It is
utilized to determinewhich single-item extensions of itemsets
are HAUIs, and to prune the search space based on the bteub
and max-reubk upper-bounds.
Definition 20 (Information List (IL) Structure of an Item-

set): Considering X is an itemset, the Information List of
X is called as IL(X). The IL(X) is a set of entries, where
each entry E consists of five fields which are E .Item, E .au,
E .bteub, E .uub(X , S(X ∪E .Item)), and E .uub(E .Item, S(X ∪
E .Item)). E .Item ∈ EIs(X) represents the item that E is
related to. E .au and E .bteub store average-utility and bteub
values of {X∪E .item}, respectively. E .uub(X , S(X∪E .Item))
and E .uub(E .Item, S(X ∪ E .Item)) stand for the utility
upper-bound of X and E .item for the extensions of {X ∪
E .item}, respectively.
For example, the Information List of e, IL(e), can be con-

structed by utilizing the PDB(e) which is given by Table 3.
Let us take the first projected transaction PT1 = {e(4), f (6),

TABLE 4. Obtained IL(e) by utilizing PT1 of PDB(e).

TABLE 5. Obtained IL(e) by utilizing PT1 and PT2 of PDB(e).

TABLE 6. Obtained IL(e) by utilizing PDB(e).

c(6), d(40)} of PDB(e). In PT1, the average-utility of {e, f },
{e, c}, and {e, d} are calculated as 5 = (4 + 6) / 2, 5 = (4 +
6) / 2, and 22 = (4 + 40) / 2, respectively. Besides, the bteub
value of each single-item extension of e in PT1 are obtained
as divided the sum of 3 greatest values in (4,6,4,40) by 3.
Therefore, bteub values of {e, f }, {e, c}, and {e, d} in T1 is
17.33= (40+ 6+ 6) / 3.Moreover, inPT1, uub(e, S(e∪f)) =
uub(e, S(e∪c)) = uub(e, S(e∪d)) = 4 while uub(f , S(e∪f)),
uub(c, S(e∪c)), and uub(f , S(e∪ f)) are obtained as 6, 6, and
40, respectively. The IL(e) by utilizing of PT1 ∈ PDB(e) is
examined is shown in Table 4.

Now, we continue with the second projected transac-
tion of PDB(e), which is PT2 = {e(8), c(9), d(8)}. The
average-utility of {e, c} and {e, d} in PT2 are calculated as 8.5
= (8+ 9) / 2 and 8= (8+ 8) / 2, respectively. Besides, inPT2,
the bteub values of {e, c} and {e, d} are calculated as (9 + 8
+ 8) / 3 = 8.33, and uub(e, S(e∪ c)) = uub(e, S(e∪ d)) = 8
while uub(c, S(e ∪ c)) = 9 and uub(d, S(e ∪ d)) = 8. The
IL(e) is obtained as shown in Table 5 after Table 4 is updated
by the related values obtained from PT2 ∈ PDB(e).

The last projected transaction of PDB(e) is PT3 = {e(16),
d(8)}. The average-utility of {e, d} in PT3 is calculated as
12 = (16 + 8) / 2. However, length of PT3 is 2 ≯ |e| +
1 = 2. Thus, in PT3, bteub of {e, d}, uub(e, S(e ∪ d)), and
uub(d, S(e ∪ d)) equal to 0. The IL(e) after utilizing all the
transactions of PDB(e) is given in Table 6.

VI. PROPOSED HAUL-GROWTH ALGORITHM
This study proposes an algorithm named HAUL-Growth
algorithm for efficiently mining of HAUIs by utilizing
the proposed data structures HAUL-Tree and IL and

144256 VOLUME 7, 2019

I. Yildirim, M. Celik: Efficient Tree-Based Algorithm for Mining High Average-Utility Itemset

pruning the search space by proposed upper-bounds eub,
teub, bteub, and max-reubk . In this section, the overall pro-
cess of HAUL-Growth algorithm is first mentioned. Then, its
algorithmic description is given. Finally, an execution trace of
the HAUL-Growth algorithm is illustrated with an example.

A. OVERALL PROCESS OF HAUL-GROWTH
HAUL-Growth performs two database scans to construct
the initial HAUL-Tree(∅). In the first scan, it determines
1-HAUIs and 1-EPIs. In the second scan, it constructs the
initial HAUL-Tree(∅). After the HAUL-Tree(∅) has been
fully constructed, the high average-utility itemsets can then
be mined by HAUL-Growth by performing a pattern growth
approach utilizing the data stored in the HAUL-Tree(∅).
Therefore, HAUL-Growth algorithm starts with extracting
projected database and generating IL for each item in the
header table of HAUL-Tree(∅). Considering, there is an item i
in the header table. Since the initial prefix is ∅, the new prefix
becomes i. The projected database PDB(i) and Information
List IL(i) can easily be obtained by traversing the nodes
associated with item i using the link property. From the IL(i),
we can quickly calculate of average utilities of 2-itemsets
which are single-item extensions of item i. Besides, we can
easily determine which single-item extensions of item i
should be extended based on their bteub values stored in the
IL(i). Moreover, by utilizing the uub values stored in IL(i),
we can also determined whether remaining 2-items exten-
sions of i can be pruned. In addition, the HAUL-Tree(i) can
be easily constructed by utilizing the PDB(i). Then, the same
process is performed for all the items appeared in the header
table of the the HAUL-Tree(i). Consider that there is a head
associated with item j appeared in the header table of HAUL-
Tree(i). Selecting this head, the new prefix becomes {i, j}.
Then PDB({i, j}) and IL({i, j}) are obtained by traversing
the nodes associated with item j. Recursively, this process
is performed by HAUL-Growth until it is not possible to
construct any HAUL-Tree. Thus, the complete and the correct
set of HAUIs are discovered.

B. ALGORITHMIC DESCRIPTION OF HAUL-GROWTH
The pseudo-code of the HAUL-Growth algorithm is given
in Algorithm 3. The algorithm takes a database, DB, and a
minimum utility threshold percent δ (in %) as input. It starts
with collecting average-utility and eub values of items, and
the total utility of the input DB (tu(DB)) via a database scan
(Line 1). Then, the minUtil is obtained as δ% of tu(DB)
(Line 2). Next, items having au values not less than the
minUtil are outputted as HAUIs (Line 3) and items having
eub values not less than the minUtil are stored with their
eub values in a list named 1-EPIs (Line 4). Afterwards,
it initializes the HAUL-Tree(∅) with a root node labeled as
null (Line 5). In the second database scan (Lines 6-10), each
transaction Tj ∈ DB is inserted into the HAUL-Tree(∅) by
sorting remaining items in Tj based on their eub-ascending
order after discarding items having lower eub values than
the minUtil. Note that, if a transaction does not contain at

Algorithm 3 HAUL-Growth Algorithm
Input : DB, a database; δ, a minimum utility threshold

percent (in %).
Output: HAUIs, the complete set of discovered high

average-utility itemsets.

1 Scan DB to collect au(i) and eub(i) for each item i ∈ DB,
and tu(DB);

2 minUtil = tu(DB) × δ;
3 Output 1-HAUIs← {i|au(i) ≥ minUtil, ∀i ∈ DB};
4 Keep 1-EPIs← {i, eub(i)|eub(i) ≥ minUtil, ∀i ∈ DB};
5 Initialize the HAUL-Tree(∅);
6 foreach transaction Tj in DB do
7 Discard each item i from Tj if i /∈ 1-EPIs;
8 if |Tj| ≥ 2 then
9 Sort items in Tj based on their eub-ascending

order;
10 HAUL-Tree(∅)← Insert(HAUL-Tree(∅), Tj);
11 Sort items in HAUL-Tree(∅).HT based on their
eub-descending order;

12 Search(∅, HAUL-Tree(∅), minUtil));

least two items from 1-EPIs, it is not inserted into the HAUL-
Tree(∅) (Line 8) since it cannot be used to extend any itemset.
Once the second database scan is performed, items in the
header table of HAUL-Tree(∅) are sorted based on their eub-
descending order (Line 11). Finally, the Search algorithm
(Algorithm 4) is called (Line 12) to recursively examine the
extensions of itemsets in the enumeration tree of the search
space using the necessary information stored in the HAUL-
Tree(∅).

The pseudo-code of Search Algorithm is given in
Algorithm 4. Starting with the bottom-most head in the
header table of the input HAUL-Tree(P), it proceeds each
line for each head H . Let the ith header in the header table
of the input HAUL-Tree(P) be HAUL-Tree(P).HT [i]. The
Search algorithm performs the mining process for HAUL-
Tree(P).HT [i] in the following way. Firstly, the item repre-
sented by HAUL-Tree(P).HT [i] is added to the prefix P to
obtain the current prefix CP (Line 2) and the node N is linked
to HAUL-Tree(P).HT [i] is reached (Line 3). Afterwards,
by traversing the nodes associated with N .Item, teub(CP) is
calculated (Line 4). If teub(CP) is not lower than minUtil
(Line 5), then the remaining lines are executed to examine the
extensions of CP. Otherwise, the algorithm continues with
the next head of the input HAUL-Tree(P). To examine the
extensions of CP, projected database and Information List
of CP are first obtained (Line 6). After that, two empty lists
named as [uub(CP : Es(X ∪ α))], [uub(α : Es(CP ∪ α))],
and REIs(CP) are initialized as null (Line 7). The [uub(CP :
Es(X ∪ α))] and [uub(α : Es(CP ∪ α))] will be used to
store each uub(CP,Es(CP∪α)) and each uub(α,Es(CP∪α)),
respectively, such that bteub(CP ∪ α) ≥ minUtil for each α.
The REIs(CP) will be used to store the list of each α, where
bteub(CP ∪ α) ≥ minUtil.

VOLUME 7, 2019 144257

I. Yildirim, M. Celik: Efficient Tree-Based Algorithm for Mining High Average-Utility Itemset

Algorithm 4 Search Algorithm
Input : P, a prefix itemset; HAUL-Tree(P),

the HAUL-Tree of P; minUtil, a minimum
utility threshold.

Output: The set of high average-utility itemsets, HAUIs.

1 for (i = |HAUL-Tree(P).HT |-1, i > 0, i−−) do
2 CP = P HAUL-Tree(P).HT [i].Item;
3 N = HAUL-Tree(P).HT [i].Link;
4 Calculate teub(CP) via traversing the nodes

associated with N .Item;
5 if teub(CP) ≥ minUtil then
6 Obtain PDB(CP) and IL(CP) ;
7 [uub(CP : Es(CP ∪ α))], [uub(α : Es(CP ∪ α))],

REIs(CP) = null;
8 for (j = 0, j < |IL(CP)|, i++) do
9 Ej← IL(CP)[j];
10 if Ej.au ≥ minUtil then
11 Output {CP ∪ Ej.item} as a HAUI.
12 if Ej.bteub ≥ minUtil then
13 REIs(CP)← Ej.item;
14 [uub(CP : Es(CP ∪ α))]←

Ej.uub(CP, S(CP, α));
15 [uub(α : Es(CP ∪ α))]←

Ej.uub(α, S(CP, α));
16 if |REIs(CP)| > 1 then
17 Sort [uub(CP : Es(CP ∪ α))] and

[uub(α : Es(CP ∪ α))];
18 if ! Is-max-reubk -lower-than-minUtil(
2020 minUtil, [uub(CP : Es(CP ∪ α))],

[uub(α : Es(CP ∪ α))]) then
21 Initialize the HAUL-Tree(CP);
22 foreach Tj in PDB(CP) do
23 Discard each item i from Tj if i /∈

REIs(CP);
24 if |Tj| > CP+ 1 then
25 Insert(HAUL-Tree(CP), Tj);
26 Sort items in HAUL-Tree(CP).HT based

on eub-descending order;
27 Search(CP, HAUL-Tree(CP), minUtil);

Next, each element of IL(CP) is examined (Lines 8-15).
If an element Ej of IL(CP) having average-utility value not
lower than minUtil (Line 10), the itemset (CP ∪ Ej.Item)
is a HAUI (Line 11). If an element Ej of IL(CP) hav-
ing bteub value not lower than minUtil (Line 12), then
Ej.Item, uub(CP,Es(CP∪Ej.Item)), are uub(Ej.Item,Es(CP∪
Ej.Item)) are included in REIs(CP), [uub(CP : Es(X ∪ α))],
and [uub(α : Es(CP ∪ α))], respectively (Line 13-15).
After that, the algorithm controls that if REIs(CP) contain

at least two items (Line 16). If so, after sorting [uub(CP :
Es(X ∪ α))] and [uub(α : Es(CP ∪ α))] in descending
order (Line 18), Is-max-reubk -lower-than-minUtil algorithm
(Algorithm 1) is called to determine if max-reubk of CP
is lower than minUtil. If Algorithm 1 returns false (Line
19), Search Algorithm is called to search HAUIs with the

TABLE 7. Average-utility and eub values of items.

TABLE 8. The projected database of b, PDB(b).

current prefix itemsetCP (Line 26) after constructing HAUL-
Tree(CP) (Lines 20-25) based on the projected database of
CP. This process is operated in the recursive manner until
there is no HAUL-Tree will be constructed, i.e., all HAUIs
are discovered.

C. EXECUTION TRACE OF THE HAUL-GROWTH
In this section, the execution trace of the HAUL-Growth
algorithm is presented based on given database in Table 1 and
Table 2. Consider δ is set to 10%.

As mentioned above, HAUL-Growth starts with collecting
average-utility and eub values of items, and total utility of
the given database. Table 7 shows the average-utility and eub
values of items based on the Table 1 and Table 2. Besides,
tu(DB) is collected as 260. Thus, minUtil is calculated as
260 × 10 / 100 = 26.

Therefore, items b, d , e, g, and h are determined as HAUIs
since their average-utilities are not lower than 26. On the other
hand, a, b, c, d , e, and f are 1-EPIs since their eub values are
not lower than 26. Thus, the total processing order on 1-EPIs
is obtained as {b≺ a≺ e≺ f ≺ c≺ d}. The second database
scan is performed in order to construct the HAUL-Tree(∅).
Note that, for the running example, the HAUL-Tree(∅) have
already constructed and showed in Figure 2c.

To perform pattern growth process, the HAUL-Growth
algorithm starts with the bottom-most head in the header table
of the tree. Since the bottom-most head in the header table
of the HAUL-Tree(∅) is associated with item b, the current
prefix itemset CP becomes {∅ ∪ b} = b. There are two
nodes which associated with item b in HAUL-Tree(∅). These
nodes are (b:(10,5,3,3,8)) and (b:(30,4,6,6,40)). By utilizing
the PULs of this nodes, teub(b) is calculated as ((10 + 8) /
2) + ((40 + 30) / 2) = 44 ≥ 26. Therefore, the extensions of
b should be examined. The obtained PDB(b) by traversing the
paths of these nodes is given in Table 8. Based on the PDB(b),
the constructed IL(b) is shown in Table 9.
From the IL(b), itemset {b, d} is determined as HAUI since

au({b, d}) = 44 ≥ minUtil = 26. Besides, the exten-
sions of itemsets {b, a} and {b, e} will be pruned from the
search space since bteub({b, a}) = 7.67 and bteub({b, e}) =
25.33 are lower than 26. Therefore, REIs(b) is obtained as
{f ,c,d}. As a result, [uub(b : Es(b ∪ α))] = [40, 40, 40]

144258 VOLUME 7, 2019

I. Yildirim, M. Celik: Efficient Tree-Based Algorithm for Mining High Average-Utility Itemset

TABLE 9. Information List of b, IL(b).

FIGURE 3. The HAUL-Tree(b).

TABLE 10. Information List of {b, f }, IL({b, f }).

and [uub(α : Es(b ∪ α))] = [48, 9, 9]. At this point, Is-
max-reubk -lower-than-MinUtil (Algorithm 1) algorithm is
called to determine whether max-reubk (b) is lower than the
minUtil. Is-max-reubk -lower-than-MinUtil algorithm returns
false since reub2(b) = (40 + (48 + 9)) / 3) = 32.33 ≥
26, meaning that there may be HAUI(s) in the extensions of
itemsets {b, f }, {b, c}, and {b, f }. Consequently, the mining
process continues by constructing the HAUL-Tree(b). Note
that each transaction of PDB(b) will be inserted into the
HAUL-Tree(b) if it has at least 3 = |b| + 2 remaining items
after ignoring items a and e. The constructed HAUL-Tree(b)
is shown in Fig. 3.

The bottom-most head of HAUL-Tree(b) is related to
item f . Therefore, CP becomes {b, f } and teub({b, f }) is cal-
culated as (48+ 40+ 9) / 3= 32.33≥ 26 by utilizing the node
(f :[40,9,9,48]). Since teub({b, f }) is not lower than minUtil,
PDB({b, f }) and IL({b, f }) will be obtained. PDB({b, f }) is
obtained as {(b : 40), (f : 9), (c : 9), (d : 48)}. IL({b, f }) is
shown in Table 10.

Therefore, itemset {b, f , d} is determined as a HAUI
and REIs({b, f }) is obtained as {d, c}. Thus, Algorithm Is-
max-reubk -lower-than-MinUtil is called with [uub({b, f } :
Es(b, f , α))] = [49, 49] and [α : Es(b, f , α))] = [48, 9] to
determinewhether 2-items extensions of {b, f } can be pruned.
Since reub2({b, f }) = (49 + (48 + 9))/3 = 32.33 ≥ 26, Is-
max-reubk -lower-than-MinUtil algorithm returns false. The
process continues to examine the search space with itemset
{b, f }. The constructed HAUL-Tree({b, f }) is shown in Fig. 4.

FIGURE 4. The HAUL-Tree({b, f }).

TABLE 11. Information List of {b, f , c}, IL({b, f , c}).

The bottom-most head HAUL-Tree({b, f }).HT is related
to item c. There is only a node c:[40,9,9,48] which is related
to item c in the HAUL-Tree({b, f }). By utilizing the node
(c:[40,9,9,48]), teub({b, f , c}) is calculated as (48 + 40 +
9+ 9) /4= 26.5≥ 26. Therefore, the algorithm continues by
extracting PDB({b, f , c}) and constructing IL({b, f , c}). The
obtained PDB({b, f , c}) = {(b : 40), (f : 9), (c : 9), (d : 48)}.
IL({b, f , c}) is shown in Table 11. {b, f , c, d} is a HAUI

since au({b, f , c, d}) = (48+40+9+9)/4 = 26.5. However,
bteub({b, f , c, d}) = 0, and so the examination of the search
space with {b, f , c} is finished. The next head is related to
item d , which is the top-most head, and thus the examination
of the search space with itemset {b, f } is also finished.

The next head in the HAUL-Tree(b).HT is related to
item c. Thus, CP = {b, c}. From the node (c:(40,9,48)),
teub({b, c},PDB(b)) = (48 + 40 + 9) / 3 =32.33 ≥ 26.
However, bteub({b, c, d}) = 0 since the length of the PUL of
the node (c:[40,9,48]) is not greater than 3 = |{b, c, d}|), and
so uub({b, c}, S({b, c, d}))=uub({d}, S({b, c, d}))=0. On the
other hand, au({b, c, d})) is calculated as (40+ 9+ 48) / 3)=
32.33, and thus itemset {b, c, d} is determined as a HAUI.
Since REIs({b, c}) = ∅, the examination of the search space
with itemset {b, c} is finished. Since the next head is the
top-most head in the HAUL-Tree({b}).HT , the examination
of the search space with b is also finished.

The algorithm continues for the next head in the header
table of HAUL-Tree(∅), which is related to item a. CP = a.
There are two nodes associated with item a in the HAUL-
Tree(∅). These nodes are (a:(15,10,6,16)) and (a:(5,8,9,8)).
Hence, teub(a) = ((16 + 15) / 2) + ((9 + 8) / 2) = 24 � 26.
As a result, none of the extensions of a can be a HAUI.
The next head n the header table of HAUL-Tree(∅) is

related to item e, CP = e. The nodes (e:(4,6,6,40)),
(e:(8,9,8)), and (e:(16,8)) are related to item e. Therefore,
teub(e) = ((40 + 6) / 2) + ((9 + 8) / 2) + ((16 + 8) / 2)
= 43.5 ≥ 26. Recall, IL(e) have been already obtained and
given in Table 6. By utilizing IL(e), {e, d} is determined as
a HAUI. Besides, REIs(e) = ∅ since bteub({e, d}) = 25.67,
bteub({e, c}) = 25.67, and bteub({e, f }) = 17.33 are lower
than 26. Thus, the mining process with e is finished.

VOLUME 7, 2019 144259

I. Yildirim, M. Celik: Efficient Tree-Based Algorithm for Mining High Average-Utility Itemset

TABLE 12. Parameters of the used datasets.

TABLE 13. Characteristics of the used datasets.

The pattern growth operations for remaining heads which
are related to items f , c, and d in the HAUL-Tree(∅).HT
are also performed in the same manner, and itemsets {f , d},
{f , c, d}, and {c, d} are also determined as HAUIs.

VII. EXPERIMENTAL RESULTS
In this section, the performance of the proposed HAUL-
Growth algorithm is compared with two state-of-the-art
HAUIM algorithms which are TUB-HAUPM and dHAUIM
algorithms. The reason is that dHAUIM outperforms all
existing HAUIM algorithms as stated in [22], except
the TUB-HAUPM algorithm. In addition, dHAUIM and
TUB-HAUPM algorithms have not yet been compared.

All the algorithms were implemented using the Java pro-
gramming language. The experiments were performed on
the same computer equipped with an i5-5200U 2.2 GHz
processor and 8 GBs of RAM.

Experiments were conducted on different types of
datasets, including five real-life datasets (Accident, BMS,
Mushroom, Chess, and Pumsb) and a synthetic dataset
(T20I10N50D200K). The real-life datasets were obtained
from the SPMF open source data mining library [32]. The
synthetic dataset is generated using the the IBM Quest Syn-
thetic Data Generator (obtained from [32]). Since the syn-
thetic dataset does not contain internal and external values of
items, we generated these values randomly based on the sim-
ulation model described in [6], [9], [22]. Therefore, external
utilities of items are generated in the [1, 1000] interval by
using a log-normal distribution and internal utilities of items
are generated in the [1, 10] interval. The parameters of these
datasets and their characteristics are presented in Table 12 and
Table 13, respectively.

To evaluate the performance of each algorithm, the run-
time, number of join operations, maximum memory usage,
and the scalability tests were performed. The results are
presented below.

FIGURE 5. Runtimes for various minUtil values.

A. RUNTIME
In this subsection, the runtime performances of the algorithms
are compared. Experiments are conducted on each dataset
under various minUtil values.

Note that, for TUB-HAUPM on BMS dataset when
minUtil ≤ 0.13%, we could not present the experimental
results since TUB-HAUPM requires a very long runtime
(more than 104 seconds) to handle BMS dataset under above
mentioned minUtil setting.

Fig. 5 shows the results of the algorithms for each dataset.
It can be seen that the runtime performances of the algorithms
are getting worse when the minUtil is decreased. The reason
is that the number of discovered HAUIs and performed join
operations is increased when minUtil is reduced (see Fig. 6).
However, it can be seen that the proposed HAUL-Growth
algorithm provides a significant performance enhancement
comparing to the other algorithms for all datasets for all
consideredminUtil values, especially for lowminUtil values.

It is observed that based on the experiments con-
ducted on Chess, Mushroom, Accidents, Pumsb, BMS, and
T20I9N50D100K, the proposed HAUL-Growth algorithm is
respectively up to 98, 27, 22, 196, 1193, and 51 times faster
than dHAUIM and up to 49, 28, 24, 222, more than 7142, and
19 times faster than TUB-HAUPM.

Why the proposed HAUL-Growth performs so well can be
explained as follows. An important reason is that proposed

144260 VOLUME 7, 2019

I. Yildirim, M. Celik: Efficient Tree-Based Algorithm for Mining High Average-Utility Itemset

FIGURE 6. Number of join operations for various minUtils.

pruning strategies based on the proposed eub, teub, bteub, and
max-reubk upper bounds are very efficient to prune the search
space of HAUL-Growth. Thus, the number of join operations
performed by HAUL-Growth is much less than the previous
algorithms(see Fig. 6). Besides, HAUL-Growth compresses
the necessary information of the given dataset by utilizing
the HAUL-Tree data structure. Moreover, Information Lists
of itemsets are quickly obtained by utilizing the link property
of the HAUL-Tree data structure. All these proposed upper
bounds and data structures allow HAUL-Growth algorithm
to achieve better runtime performance.

On the other hand, when the dHAUIM and TUB-HAUPM
algorithms are compared among themselves, it is hard to
say which one is always better. The reason is that different
datasets have different characteristics. Consequently, it can
be said that different types of datasets has different effects
on the runtime performances of dHAUIM and TUB-HAUPM
algorithms.

B. EVALUATION OF THE NUMBER OF JOIN OPERATIONS
In this experiment, we will examine the number of joins
operations performed by the compared algorithms to fur-
ther understand their runtime performances. A join operation
means the examination of a single-item extension of an item-
set in the search space. Fig. 6 shows the experimental results
of number of join operations tests.

FIGURE 7. Memory usages for various minUtils.

As it can be seen in Fig. 6, for each experiment, the
number of joins performed by HAUL-Growth is much less
than dHAUIM and TUB-HAUPM thanks to the proposed
upper-bounds and their pruning strategies. In particular, as it
can be seen in Fig. 6e and Fig. 6d, whenminUtil is reduced for
BMS and Pumsb datasets, the number of joins performed by
HAUL-Growth does not increase much while the number of
joins performed by the others increased enormously. To sum
up, the search space of HAUL-Growth is much tighter than
the search space of dHAUIM and TUB-HAUPM.

C. EVALUATION OF THE MEMORY USAGE
In this experiment, the peak memory usage of the algorithms
is compared. The results are shown in Fig. 7.

As it can be seen in Fig. 7, the memory usage of the algo-
rithm increases by the minUtil decreases. This is reasonable,
since as theminUtil is set lower, the search space is increased,
as well as the memory usage of the algorithms.

It can be observed that the proposed HAUL-Growth
requires the lowest memory usage for each experiments
thanks to data structures it uses. In particular, for Chess (see
Fig. 7a) and BMS (see Fig. 7e), it consumes very small mem-
ory space compared the other algorithms. This is because the
transactions of Chess dataset have many items in common,
meaning it is a very dense dataset. Thus, the HAUL-Tree
data structure compresses the required information of Chess

VOLUME 7, 2019 144261

I. Yildirim, M. Celik: Efficient Tree-Based Algorithm for Mining High Average-Utility Itemset

FIGURE 8. Scalability when the size of dataset is varied.

dataset very efficiently. On the other hand, for BMS dataset,
it is observed that the proposed HAUL-Growth generated
a small number of conditional HAUL-Trees to handle the
experiments.

D. SCALABILITY
In this section, we evaluate the scalability performances of
the algorithms. For this reason, we generated several datasets
by resizing the each experimental dataset as containing the
first X% transactions, where X% was varied from 40% to
100%. The experiments on Chess, Mushrooms, Accidents,
Pumsb, BMS, and T20I9N50D100K were performed using
fixedminUtil values of 7×104, 7×103, 6×106, 18×105, 105,
and 12×106, respectively.
Fig. 8 presents the results of scalability tests of the algo-

rithms in terms of runtime. It is observed that when dataset
size increased, the runtime requirement for all the com-
pared algorithm increases. This is reasonable since utilities
of the itemsets get larger naturally when the size of dataset
increases, as well as the discovered HAUIs. However, it can
be seen that HAUL-Growth has the best performance for each
experiment and the runtime gaps betweenHAUL-Growth and
the other compared algorithms greatly increases when dataset
size gets larger.

It is also observed that when database size increases
HAUL-Growth has a very good scalability while the others

faced with a scalability problem. It is because a larger dataset
contains more transactions. Therefore, with a larger dataset,
dHAUIM and TUB-HAUPM perform more computations in
the join operations. On the other hand, increasing the size of
the dataset does not effect much the computation time of the
join operations performed byHAUL-Growth since the dataset
is compressed by the HAUL-Tree data structure with overlap-
ping of common parts of transactions over the related paths.
Consequently, this experiment also shows that the proposed
HAUL-Tree data structure has a significant contribution to
the mining process.

VIII. CONCLUSION AND FUTURE WORKS
High-utility itemset mining (HUIM), which is an extension
of well-known frequent itemset mining (FIM), takes into
account utilities (such as, unit quantities and unit profits)
of the itemsets. However HUIM is computationally complex
due to the generation of huge number of itemsets with long
lengths. To address this problem and extract more mean-
ingful results, the problem of high average-utility itemset
mining (HAUIM) was introduced. To improve the efficiency
of mining HAUIs, several algorithms have been proposed.

For efficiently mining of HAUIs, this paper proposes a
pattern growth approach which is called HAUL-Growth algo-
rithm with introducing four novel upper-bounds (eub, teub,
bteub, and max-reubk) and two data-structures (HAUL-Tree
and IL). The performance of the proposed HAUL-Growth
is compared with the performances of the state-of-the-
art dHAUIM and TUB-HAUPM algorithms. Experimental
results show that the proposed HAUL-Growth outperforms
dHAUIM and TUB-HAUPM algorithms in terms of run-
time, number of join operations, memory consumption, and
scalability.

As a future work, improving the efficiency of HAUL-
Growth by proposing more tighter upper-bounds can be
studied. Another future work can be seeking efficient strate-
gies for incremental and interactive mining of HAUIs. Note
that, the proposed HAUL-Tree data structure can be eas-
ily maintained when new transactions are inserted and
existing transactions are deleted (or updated). Therefore,
modifying the proposed HAUL-Growth in order to handle
efficiently updating the discovered HAUIs with transaction
insertion and deletion (or updating) can be seen as a good
topic.

REFERENCES
[1] R. Agrawal, T. Imieliński, and A. Swami, ‘‘Mining association rules

between sets of items in large databases,’’ ACM SIGMOD Rec., vol. 22,
no. 2, pp. 207–216, Jun. 1993. doi: 10.1145/170036.170072.

[2] J. Han, J. Pei, and Y. Yin, ‘‘Mining frequent patterns without candi-
date generation,’’ ACM SIGMOD Rec., vol. 29, no. 2, pp. 1–12, 2000.
doi: 10.1145/335191.335372.

[3] Z.-H. Deng and S.-L. Lv, ‘‘Fast mining frequent itemsets using node-
sets,’’ Expert Syst. Appl., vol. 41, no. 10, pp. 4505–4512, 2014.
doi: 10.1016/j.eswa.2014.01.025.

[4] Z.-H. Deng, ‘‘DiffNodesets: An efficient structure for fast mining fre-
quent itemsets,’’ Appl. Soft Comput., vol. 41, pp. 214–223, Apr. 2016.
doi: 10.1016/j.asoc.2016.01.010.

144262 VOLUME 7, 2019

http://dx.doi.org/10.1145/170036.170072
http://dx.doi.org/10.1145/335191.335372
http://dx.doi.org/10.1016/j.eswa.2014.01.025
http://dx.doi.org/10.1016/j.asoc.2016.01.010

I. Yildirim, M. Celik: Efficient Tree-Based Algorithm for Mining High Average-Utility Itemset

[5] H. Yao, H. J. Hamilton, and C. J. Butz, ‘‘A foundational approach tomining
itemset utilities from databases,’’ in Proc. SIAM Int. Conf. Data Mining,
Apr. 2004, pp. 482–486. doi: 10.1137/1.9781611972740.51.

[6] Y. Liu, W.-k. Liao, and A. Choudhary, ‘‘A two-phase algorithm for fast
discovery of high utility itemsets,’’ in Advances in Knowledge Discov-
ery and Data Mining. Berlin, Germany: Springer, 2005, pp. 689–695.
doi: 10.1007/11430919_79.

[7] T.-P. Hong, C. H. Lee, and S. L. Wang, ‘‘Effective utility mining with
the measure of average utility,’’ Expert Syst. With Appl., vol. 38, no. 7,
pp. 8259–8265, 2011. doi: 10.1016/j.eswa.2011.01.006.

[8] V. S. Tseng, B.-E. Shie, C.-W. Wu, and P. S. Yu, ‘‘Efficient algorithms
for mining high utility itemsets from transactional databases,’’ IEEE
Trans. Knowl. Data Eng., vol. 25, no. 8, pp. 1772–1786, Aug. 2013.
doi: 10.1109/tkde.2012.59.

[9] J. C.-W. Lin, S. Ren, P. Fournier-Viger, and T.-P. Hong,
‘‘EHAUPM: Efficient high average-utility pattern mining with
tighter upper bounds,’’ IEEE Access, vol. 5, pp. 12927–12940, 2017.
doi: 10.1109/access.2017.2717438.

[10] J. M.-T. Wu, J. C.-W. Lin, M. Pirouz, and P. Fournier-Viger,
‘‘TUB-HAUPM: Tighter upper bound for mining high average-
utility patterns,’’ IEEE Access, vol. 6, pp. 18655–18669, 2018.
doi: 10.1109/access.2018.2820740.

[11] M. Zihayat, H. Davoudi, and A. An, ‘‘Mining significant high utility gene
regulation sequential patterns,’’ BMC Syst. Biol., vol. 11, no. 6, p. 109,
2017. doi: 10.1186/s12918-017-0475-4.

[12] U. Yun, D. Kim, E. Yoon, and H. Fujita, ‘‘Damped window based high
average utility pattern mining over data streams,’’ Knowl.-Based Syst.,
vol. 144, pp. 188–205, Mar. 2018. doi: 10.1016/j.knosys.2017.12.029.

[13] H. Ryang and U. Yun, ‘‘High utility pattern mining over data streams
with sliding window technique,’’ Expert Syst. Appl., vol. 57, pp. 214–231,
Sep. 2016. doi: 10.1016/j.eswa.2016.03.001.

[14] D. Kim and U. Yun, ‘‘Efficient algorithm for mining high average-utility
itemsets in incremental transaction databases,’’ Appl. Intell., vol. 47, no. 1,
pp. 114–131, 2017. doi: 10.1007/s10489-016-0890-z.

[15] I. Yildirim and M. Celik, ‘‘FIMHAUI: Fast incremental mining of high
average-utility itemsets,’’ in Proc. Int. Conf. Artif. Intell. Data Process.
(IDAP), Sep. 2018, pp. 1–9. doi: 10.1109/idap.2018.8620819.

[16] G. C. Lan, T.-P. Hong, and V. S. Tseng, ‘‘Efficiently mining high average-
utility itemsets with an improved upper-bound strategy,’’ Int. J. Inf.
Technol. Decision Making, vol. 11, no. 5, pp. 1009–1030, 2012.
doi: 10.1142/s0219622012500307.

[17] C.-W. Lin, T.-P. Hong, and W.-H. Lu, ‘‘Efficiently mining high average
utility itemsets with a tree structure,’’ in Proc. Asian Conf. Intell. Inf.
Database Syst., Berlin, Germany, Springer-Verlag, 2010, pp. 131–139.
doi: 10.1007/978-3-642-12145-6_14.

[18] T. Lu, B. Vo, H. T. Nguyen, and T.-P. Hong, ‘‘A new method for min-
ing high average utility itemsets,’’ in Computer Information Systems
and Industrial Management. Berlin, Germany, Springer, 2014, pp. 33–42.
doi: 10.1007/978-3-662-45237-0_5.

[19] J. C.-W. Lin, T. Li, P. Fournier-Viger, T.-P. Hong, J. Zhan, and
M. Voznak, ‘‘An efficient algorithm to mine high average-utility item-
sets,’’ Adv. Eng. Informat., vol. 30, no. 2, pp. 233–243, 2016. doi:
10.1016/j.aei.2016.04.002.

[20] J. C.-W. Lin, S. Ren, P. Fournier-Viger, T.-P. Hong, J.-H. Su, and B. Vo,
‘‘A fast algorithm for mining high average-utility itemsets,’’ Appl. Intell.,
vol. 47, no. 2, pp. 331–346, 2017. doi: 10.1007/s10489-017-0896-1.

[21] U. Yun and D. Kim, ‘‘Mining of high average-utility itemsets using novel
list structure and pruning strategy,’’ Future Gener. Comput. Syst., vol. 68,
pp. 346–360, Mar. 2017. doi: 10.1016/j.future.2016.10.027.

[22] T. Truong, H. Duong, B. Le, and P. Fournier-Viger, ‘‘Efficient vertical
mining of high average-utility itemsets based on novel upper-bounds,’’
IEEE Trans. Knowl. Data Eng., vol. 31, no. 2, pp. 301–314, Feb. 2019.
doi: 10.1109/tkde.2018.2833478.

[23] C.-W. Lin, T.-P. Hong, and W.-H. Lu, ‘‘An effective tree structure for
mining high utility itemsets,’’ Expert Syst. With Appl., vol. 38, no. 6,
pp. 7419–7424, Jun. 2011. doi: 10.1016/j.eswa.2010.12.082.

[24] V. S. Tseng, C.-W.Wu, B.-E. Shie, and P. S. Yu, ‘‘UP-Growth: An efficient
algorithm for high utility itemsetmining,’’ inProc. 16th SIGKDD Int. Conf.
Knowl. Discovery Data Mining, New York, NY, USA, 2010, pp. 253–262.
doi: 10.1145/1835804.1835839.

[25] M. Liu and J. Qu, ‘‘Mining high utility itemsets without candidate genera-
tion,’’ in Proc. 21st Int. Conf. Inf. Knowl. Manage., New York, NY, USA,
2012, pp. 55–64. doi: 10.1145/2396761.2396773.

[26] P. Fournier-Viger, C.-W.Wu, S. Zida, and V. S. Tseng, ‘‘FHM: Faster high-
utility itemset mining using estimated utility co-occurrence pruning,’’ in
Foundations of Intelligent Systems (Lecture Notes in Computer Science).
Cham, Switzerland: Springer, 2014, pp. 83–92. doi: 10.1007/978-3-319-
08326-1_9.

[27] J. Liu, K.Wang, and B. C. Fung, ‘‘Mining high utility patterns in one phase
without generating candidates,’’ IEEE Trans. Knowl. Data Eng., vol. 28,
no. 5, pp. 1245–1257, May 2016. doi: 10.1109/tkde.2015.2510012.

[28] S. Krishnamoorthy, ‘‘Pruning strategies for mining high utility item-
sets,’’ Expert Syst. Appl., vol. 42, no. 5, pp. 2371–2381, 2015.
doi: 10.1016/j.eswa.2014.11.001.

[29] S. Zida, P. Fournier–Viger, J. C.-W. Lin, C.-W. Wu, and V. S. Tseng,
‘‘EFIM: A fast and memory efficient algorithm for high-utility item-
set mining,’’ Knowl. Inf. Syst., vol. 51, no. 2, pp. 595–625, Sep. 2016.
doi: 10.1007/s10115-016-0986-0.

[30] H. Ryang and U. Yun, ‘‘Indexed list-based high utility pattern min-
ing with utility upper-bound reduction and pattern combination tech-
niques,’’ Knowl. Inf. Syst., vol. 51, no. 2, pp. 627–659, Sep. 2016.
doi: 10.1007/s10115-016-0989-x.

[31] A. Y. Peng, Y. S. Koh, and P. Riddle, ‘‘MHUIMiner: A fast high
utility Itemset mining algorithm for sparse datasets,’’ in Advances in
Knowledge Discovery and Data Mining. Springer, 2017, pp. 196–207.
doi: 10.1007/978-3-319-57529-2_16.

[32] P. Fournier-Viger, A. Gomariz, T. Gueniche, A. Soltani, C.-W. Wu, and
V. S. Tseng, ‘‘SPMF: A java open-source pattern mining library,’’ J. Mach.
Learn. Res., vol. 15, no. 1, pp. 3389–3393, 2014.

IRFAN YILDIRIM received the B.Sc. degree in
computer engineering from Kocaeli University,
Kocaeli, Turkey, in 2009, and the M.Sc. degree
in computer science from the City College of
New York, New York, NY, USA, in 2014. He is
currently pursuing the Ph.D. degree in com-
puter engineering with Erciyes University, Kay-
seri, Turkey. His research interests include pattern
mining, big data, and spatio-temporal data mining.

METE CELIK received the B.Sc. degree in control
and computer engineering and the M.Sc. degree
in electrical engineering from Erciyes University,
Kayseri, Turkey, in 1999 and 2001, respectively,
and the Ph.D. degree in computer science from
the University of Minnesota, Minneapolis, MN,
USA, in 2008. He is currently a FacultyMember of
the Department of Computer Engineering, Erciyes
University, Turkey. His research interests include
data analysis, big data, spatial databases, spatial

data mining, spatio-temporal data mining, and location-based services. He is
a member of the ACM.

VOLUME 7, 2019 144263

http://dx.doi.org/10.1137/1.9781611972740.51
http://dx.doi.org/10.1007/11430919_79
http://dx.doi.org/10.1016/j.eswa.2011.01.006
http://dx.doi.org/10.1109/tkde.2012.5
http://dx.doi.org/10.1109/access.2017.2717438
http://dx.doi.org/10.1109/access.2018.2820740
http://dx.doi.org/10.1186/s12918-017-0475-4
http://dx.doi.org/10.1016/j.knosys.2017.12.029
http://dx.doi.org/10.1016/j.eswa.2016.03.001
http://dx.doi.org/10.1007/s10489-016-0890-z
http://dx.doi.org/10.1109/idap.2018.8620819
http://dx.doi.org/10.1142/s0219622012500307
http://dx.doi.org/10.1007/978-3-642-12145-6_14
http://dx.doi.org/10.1007/978-3-662-45237-0_5
http://dx.doi.org/10.1016/j.aei.2016.04.002
http://dx.doi.org/10.1007/s10489-017-0896-1
http://dx.doi.org/10.1016/j.future.2016.10.027
http://dx.doi.org/10.1109/tkde.2018.2833478
http://dx.doi.org/10.1016/j.eswa.2010.12.082
http://dx.doi.org/10.1145/1835804.1835839
http://dx.doi.org/10.1145/2396761.2396773
http://dx.doi.org/10.1007/978-3-319-08326-1_9
http://dx.doi.org/10.1007/978-3-319-08326-1_9
http://dx.doi.org/10.1109/tkde.2015.2510012
http://dx.doi.org/10.1016/j.eswa.2014.11.001
http://dx.doi.org/10.1007/s10115-016-0986-0
http://dx.doi.org/10.1007/s10115-016-0989-x
http://dx.doi.org/10.1007/978-3-319-57529-2_16

	INTRODUCTION
	RELATED WORK
	BASIC CONCEPT
	PROPOSED UPPER-BOUNDS
	EXTENSION UPPER-BOUND (EUB)
	TIGHTER EXTENSION UPPER-BOUND (TEUB)
	BI-DIRECTIONAL TIGHTER EXTENSION UPPER-BOUND (BTEUB)
	MAXIMUM REMAINING K-ITEMS EXTENSION UPPER-BOUND (MAX-REUBK)
	EVALUATION OF THE PROPOSED UPPER-BOUNDS BY COMPARING THE EXISTING UPPER-BOUNDS

	PROPOSED DATA STRUCTURES
	HIGH AVERAGE-UTILITY LIST TREE (HAUL-TREE)
	DEFINITION OF THE HAUL-TREE
	CONSTRUCTION OF THE HAUL-TREE
	PROPERTIES RELATED TO THE HAUL-TREE

	INFORMATION LIST (IL)

	PROPOSED HAUL-GROWTH ALGORITHM
	OVERALL PROCESS OF HAUL-GROWTH
	ALGORITHMIC DESCRIPTION OF HAUL-GROWTH
	EXECUTION TRACE OF THE HAUL-GROWTH

	EXPERIMENTAL RESULTS
	RUNTIME
	EVALUATION OF THE NUMBER OF JOIN OPERATIONS
	EVALUATION OF THE MEMORY USAGE
	SCALABILITY

	CONCLUSION AND FUTURE WORKS
	REFERENCES
	Biographies
	IRFAN YILDIRIM
	METE CELIK

