
SPECIAL SECTION ON ARTIFICIAL INTELLIGENCE IN CYBERSECURITY

Received September 13, 2019, accepted September 30, 2019, date of publication October 7, 2019, date of current version October 16, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2945777

A Rerouting Framework Against
Routing Interruption for Secure
Network Management
MENGMENG HE1, MINGCHUAN ZHANG 1,3,4, XIN WANG2, JUNLONG ZHU1,
RUXI PENG4, AND QINGTAO WU 1
1College of Information Engineering, Henan University of Science and Technology, Luoyang 471023, China
2Laboratory of Applied Brain and Cognitive Sciences, School of Business and Management, Postdoctoral Research Station, Shanghai International Studies
University, Shanghai 200083, China
3Henan Qunzhi Information Technology Company Ltd., Luoyang 471003, China
4Guangzhou Xiangxue Pharmaceutical Company Ltd., Guangzhou 510663, China

Corresponding authors: Mingchuan Zhang (zhang_mch@haust.edu.cn) and Xin Wang (wangxin@shisu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China (NSFC) under Grant U1604155, Grant 61602155,
and Grant 61871430, in part by the Scientific and Technological Innovation Team of Colleges and Universities in Henan Province under
Grant 20IRTSTHN018, in part by the basic research projects in the University of Henan Province under Grant 19zx010, and in part by the
Science and Technology Development Programs of Henan Province under Grant 192102210284.

ABSTRACT In this paper, we consider the problem of routing interruption, which has received significant
interest in recent years. To solve this problem, rerouting is an effective way. However, how to design an
effective secure and applicable rerouting algorithm remains a significant challenge. To this end, we propose a
fast rerouting framework for routing interruption. Our framework consists of two parts: (1) Diagnose routing
interruption. We determine the location of interruption by directly interrogating the control plane IPv6 stack.
(2) Implement fast rerouting. We propose the rerouting algorithm to make the router match and reroute all
prefixes affected by interruptions. This paper updates the path only by adding a forwarding rule, thus the
interruption recovery time is reduced. We conduct a comprehensive evaluation for our rerouting framework.
Experimental results show that our method is better than FCP, OSPF and DLF in speed and accuracy.

INDEX TERMS Internet reliability, rerouting, routing path, tag.

I. INTRODUCTION
As the Internet serves more and more applications
[1]–[5], various cybersecurity problems are constantly
exposed, which lead to a series of network failure [6], [7].
The most common problem in network failure is the routing
interruption problem [8]. The interruption may lead to a
large amount of finance or prestige loss. Reference [9] shows
that the average loss of downtime caused by interruption
is 8,000 dollars per minute. Whereas, this loss reaches to
100,000 dollars or more for e-business or search engine
sites. The routing interruptions are due to many reaso-
ns [10]–[13], such as interface failures [10], software
defects [11], and attacks [12], [13]. Reference [14] shows that
even in a well-maintained network, the interruptions cannot
be completely avoided, so it is more urgent to recover inter-
rupted services in a short period of time. The fundamental

The associate editor coordinating the review of this manuscript and
approving it for publication was Nan Cheng.

problem of interruption recovery is how to replace a damaged
path with a new path. One of the main methods used by the
current network is rerouting. Rerouting techniques [15]–[26]
are proposed to solve the interruption problem by enabling
routing protection.

IP routing protocols such as OSPF have slow routing con-
vergence processes against failures because they are global
and reactive. In this context, in order to make the routing
unaffected by the interruptions, a fast rerouting method is
proposed. The fast rerouting method does not have to wait
for the convergence of the routing protocol, but can quickly
switch traffic to the backup next hop or backup path. Some
previous rerouting works that do not require tags and choose
backup next hop by taking information from traditional IP
packet forwarding [17], [18]. Although the methods cited
above do not require tags, a high fault resilience cannot be
guaranteed. To improve the fault resilience, we use tags in
rerouting algorithms since the tag-based approach provides
better protection performance in rerouting techniques [19].

143620 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0002-2523-1089
https://orcid.org/0000-0003-1572-5293

M. He et al.: Rerouting Framework Against Routing Interruption for Secure Network Management

In [20], [21], these methods ensure that the routing of the
k-color tree cannot be affected by (k − 1) link failures.
However, complete protection is only provided when the net-
work topology is k-connected. The Failure-Carrying Packets
(FCP) [22] reduces the overhead of each packet by using tags
to indicate the set of faults in the packet. The tag is dedicated
to directional links and therefore FCP only makes sense
between adjacent nodes. However, k-connected or adjacent
nodes may be interrupted when multiple links fail simultane-
ously. For this reason, the design of the secure reroutingmeth-
ods is necessary. To the best of our knowledge, the effective
rerouting method, which employs tags and is independent of
network topology, has barely been investigated.

To fill this gap, we propose a fast rerouting framework to
locate the router interruption and rerouting quickly. Because
we only need to encode the first few positions of the path,
we do not make requirements on the topology. We imple-
ment rerouting by updating the pre-computed routing path,
and our method is no limit to the nodes and links, so the
applicability of ourmethod is better in the same network envi-
ronment. We extend a few disjoint failover paths to reduce
the number of paths affected by interruption and packet
loss rate for improving the protection performance of the
rerouting.

In our proposed framework, a diagnosing routing interrup-
tion method is presented in the first part. We use an active
probing technology that extracts IPv6 fragment identifiers
from routers efficiently, and then the router interruption is
inferred by the fragment identifier continuity. In this part,
the adaptive active probing technology is used to identify the
router interruption, and the IPv6 alias resolution technology is
used to reduce the router interfaces. The second part imple-
ments fast rerouting of packets affected by the interruption.
We pre-calculate the routing path of the packet and accelerate
data plane updates by a two-stage forwarding table. At the
same time, we propose a rerouting algorithm that is used to
make the router match and reroute all prefixes affected by
interruptions.

Our contributions are listed as follows:
• A fast rerouting framework for network interruption is
proposed. It includes a diagnosing routing interruption
method and a fast rerouting method.

• A method for enabling an existing router to quickly
recover a connection in the event of an interruption. The
router accelerates data panel updates by a two-stage for-
warding table that containing traversal path information
and forwarding rules.

• An algorithm for fast rerouting is proposed. This algo-
rithm gives the router the flexibility to match and reroute
all prefixes affected by the interruption.

This paper is organized as follows. Section II pro-
vides related work for the study. The rerouting frame-
work is provided in detail in Section III. Section IV
introduces the rerouting algorithm. Section V presents the
experimental result. Finally, our conclusion is presented in
Section VI.

II. RELATED WORK
A meaningful previous work is to check the general net-
work resilience, especially the Internet interruption problem.
Trinocular [23] and ThunderPing [24] send data plane probes
continuously from measurement nodes to the edge of the
network to detect accessibility problems, while [25] puts
the BitTorrent node into crowdsourced measurement. These
methods demonstrate that accessibility is related to natural
disasters and political events. However, thesemethods require
a lot of detection traffic and can not identify specific routers
as the root cause of failures.

We can recover the routing by fast fault detection [26]
in a short time, so they are called routing protec-
tion or fast rerouting (FRR). Some FRR methods are based
on MPLS [27] or pure IP [28]. In [29], the IP Fast Rerouting
(IPFRR) method is designed. IPFRR has two principles of
precomputed detours and local rerouting. Local rerouting
means that only notify routers that are directly adjacent to
the fault, thus alleviating the time-consuming problem of the
global flooding step of the fault information on the Inte-
rior Gateway Protocols (IGP) recovery process. In addition,
the IPFRR mechanism is proactive, because detours are cal-
culated before any failure occurs, the router can immedi-
ately switch to the alternate path in the event of a failure.
Nelakuditi et al. [18], [30] use the packet’s ingress interface
to select the appropriate next hop to bypass the failures. These
studies focus on single-node and single-link failures. At the
same time, these methods can protect the routing from any
single link failure only when the network topology satisfies
certain conditions.

Equal cost multipathing (ECMP) [31] is a method asso-
ciated with fast rerouting. It computes multiple paths with
the same cost for each source/target pair and handles failures
on the path by sending packets on the alternate path. But
the same cost path does not always exist between any two
nodes [28]. In [17], a scheme for finding loop-free alternate
paths is proposed. The routing from source S to destinationD
is considered. If the neighbor node X of S satisfies d(X ,D) <

d(X , S) + d(S,D), X can be used as an alternate path, but
the node may not be able to find such a neighbor. So these
methods cannot ensure a high fault resilience.

Some rerouting methods have limited scope of applica-
tion. In [22], a new routing model is proposed. The goal
of this model is to completely eliminate the convergence
process rather than reducing the convergence time. For this
reason, [22] proposes a FCP technology that allows packets
to autonomously discover working paths without the latest
complete state of the router. The FCP reduces the overhead
of each packet by using tags to indicate the set of faults in
the packet. However, the tag is dedicated to directional links
and therefore FCP only makes sense between adjacent nodes.
In [21], an IP-based fast reroutingmechanism based on rooted
arc-disjoint spanning tree is developed, which guarantees the
recovery of (k − 1) link failure from a K -edge connected
network. This method provides excellent scalability because
it can construct disjoint spanning trees in the sub-quadratic

VOLUME 7, 2019 143621

M. He et al.: Rerouting Framework Against Routing Interruption for Secure Network Management

FIGURE 1. Rerouting framework workflow.

time of the size of the network. Reference [32] proposes a
method for separating multi-path routing and quick recovery
in an IP network. This method guarantees recovery from
any two link failures. Reference [32] develops three routing
methods that use trees to limit routing table entries to up to
four for per node, so the packet overhead is very small. The
path from source to destination in the tree is a link that does
not intersect. Packet routing is based on the input interface
and destination address of the received packet. Due to its
computational complexity, it is not practical to employ a
link-independent tree that recovers from a large number of
failures. Comparedwith thesemethods, ourmethod has better
performance in time and packet loss rate.

In order to determine whether the router is interrupted,
we use a method of directly interrogating the control plane
IPv6 stack on the router [33], which is more accurate than
the prior technology. We achieve faster failover and reduce
packet loss by pre-computing and spreading a few disjoint
failover paths. At the same time, the extended path reduces
the number of paths affected by the interruption, so the
protection performance of rerouting method is improved.
By inferring the interruption from a single point, the connec-
tion is restored in amatter of seconds, thus ourmethod ismore
flexible in terms of inference interruptions and input sources.

III. REROUTING FRAMEWORK
We propose a rerouting framework that consists of two
parts: i) Diagnosing routing interruption. ii) Fast rerouting.
As shown in Figure 1. First, we use prober to probe the
router for generating a large amount of sample data, then
Algorithm 1 is used to infer the interrupted router by ana-
lyzing these samples (part A). Next, we execute the rerouting
algorithm (Algorithm 2) to plan a new path when the interrupt
is detected (part B). We embed the packet tag that contains
pre-calculate the path of the prefix and the alternate next hop
in the incoming traffic to accelerate data plane updates.

A. INFERENCE ROUTER OUTAGE
We cite the method of diagnosing routing interruption in [31].
There are two main steps: probing and reboot inference.

In this method, we continuously probe each router to con-
struct a time series of IP identifier (IPID) values from seg-
mented IPv6 response packets. Finally, the discontinuities in
this series are used to infer the router restarted some time
during the polling interval. We define these restarted routes
as interruptions.

1) PROBING
We utilize the active probing technology [34] to detect router
interface state.We use an optimized prober. Firstly, the prober
periodically samples the interface and requests a single frag-
ment response on the interface of each monotonic sequence
response. Then we record the value of the IP identifier
(IPID) [35] field of prober received on the same interface.
If the value of this time is smaller than the previous one,
the prober determines router whether still assigning the IPID
value from the counter by performing six further probes.
If the interface that sends the monotonic sequence remains
silent, our prober will continue to request a single segmented
response that up to two hours. If the interface is still silent,
the prober schedules the interface for less frequent probes.
The prober is cycled that starts a new round of detection
immediately after the end of the previous round.

2) REBOOT INFERENCE
Our prober generates a large of IPID sample every day.
In order to perform range-based queries more efficiently,
we put all time series data (including IPID and router updates)
in the Apache Cassandra NoSQL database [36], and the target
and the timestamp are primary keys.

Algorithm 1 describes a method for inferring a router
restart based on IPID time series. To avoid false positives
because of the interface having a large natural IPID speed,
Algorithm 1 calculates an expected value E[spin] of the IPID
changes for a weighted moving average of given historical
IPID speed. If the sequence is not random and the disconti-
nuity is greater than an order of magnitude of the expected
change, we infer that it is a cyclic restart. The active probing
method can infer the interruption window - the period of time
when the router is restarted.

B. FAST REROUTE
After we execute the diagnosing routing interruption method,
we get that router 5 (Abbreviation R5, the same below) is
interrupted. Then the router 1 will perform the rerouting
method to infer the affected prefix and update the alternate
next hop to the primary next hop of the corresponding router.
Finally, we reroute the affected prefix. Because we embed the
path, forwarding rule and other information into each packet
by using the tag, we do not need to conduct path lookup
and other operations when the interruption occurs, and can
directly add a forwarding rule in the tag to quickly realize
rerouting. And we can achieve faster failover and reduce
packet loss by pre-computes and extending several disjoint
failover paths.

143622 VOLUME 7, 2019

M. He et al.: Rerouting Framework Against Routing Interruption for Secure Network Management

Algorithm 1 Findoutage(id[], tx[])
1: v← 0
2: min_id← 0
3: reboots←{}
4: for i ∈ |id | do
5: v′ = (id[i]− id[i− 1])/(tx[i]− tx[i− 1])
6: v = 0.8v+ 0.2v′

7: E[spin] = (tx[i]− tx[i− 1]) ∗ v
8: if id[i] < id[i− 1] then
9: if (|id[i]− min_id | < 216) ∧ (id[i] > 216) then
10: Cyclic
11: else if rand_seq(id[i, i+ 10]) then
12: Random
13: else
14: reboots← reboots ∪ tx
15: end if
16: else if id[i] > id[i− 1]+ E[spin] ∗ 10 then
17: if rand_seq(id[i, i+ 10]) then
18: Random
19: else
20: min_id ← id[i]
21: reboots← reboots ∪ tx
22: end if
23: end if
24: if id[i] < min_id then
25: min_id ← id[i]
26: end if
27: end for
28: return reboots

FIGURE 2. Router forwarding paths.

1) OVERVIEW
Firstly, we need to constantly pre-compute the backup next
hop of the router for using in the event of an interruption.
We perform this calculation for each prefix and take into
account any links on the corresponding router. We con-
sider the operator’s policies (for example, cost models and
peer types) and performance criteria (for example, we avoid
rerouting large amounts of traffic to low-bandwidth paths.)
to select alternate paths. And we extend disjoint failover
paths to achieve faster failover. For example, in Figure 2,
the R1 selects R3 or R4 as the alternate next hop for rerouting

the 10k prefix advertised by R7 and R8 when the R5 fails.
However, R4 can bypass R5 directly to the rear router, so we
choose R4 as a backup for R5.

When the router performs a rerouting operation, it updates
data plane rules based on each prefix. The router may need to
update forwarding rules with thousands of prefixes, so rerout-
ing operations are slow. And the forwarding rule is imple-
mented in the data plane. So we accelerate data panel updates
are helpful for accelerating rerouting. Our method accelerates
data plane updates by packet tags. We embed the tag of
the data plane into each incoming packet. The router acceler-
ates data plane updates by a two-phase forwarding table. For
each path depth, we have a primary next hop and an alternate
next hop. They are embedded in the incoming packet by tag
in the first phase of the two-stage forwarding table. Namely,
each tag contains a list of router paths that are traversed, and
the backup next hop that using if any of the router failed.

After we know that R5 is interrupted by Algorithm 1,
the R1 running rerouting algorithm that can quickly identify
a set of possible affected prefixes. Then, all affected traffic
pretreated redirect to the pre-calculated backup next hop.
We mainly use a single forwarding rule that matches the
data plane tag installed on the packet. This forwarding rule
is embedded in the incoming packet by tag in the second
phase of the two-stage forwarding table. When rerouting is
required, we only need to add a high priority forwarding
rule to the forwarding table. We prove that as long as the
inference is accurate enough, our method is safe. When the
interruption information is extracted completely and the new
routing information is installed in the routing forwarding
table, the router forwarding rules that we installed will be
deleted, meanwhile, the rule will back to the original router
forwarding rule.

2) FORWARDING RULES
Our rerouting method using packet tags. The router acceler-
ates data plane updates by a two-phase forwarding table. The
first phase contains rules that tagging packet of traversal. The
tag comeswith two pieces of information: (i) The routing path
they are currently forwarding; (ii) The next hop (the alternate
next hop to use when the router is interrupted, or the primary
next hop to use when the router is running.). The second stage
forms packet forwarding rules based on the first stage tags.
By matching the tag, the router gets the packets that pass
through the given router and reroutes them to the next hop
of pre-computation.

For example, we describe the rules in the router forwarding
table in R1. Figure 3 shows the tag returned by the rerouting.
The rules of adding tags in the first stage of the forwarding
table are consistent with the router paths used. The forward-
ing path of the prefix in R8 is (1, 2, 5, 6, 8). The rule is as
follows,

match(dst_prefix : in R8)� set(tag : 10011 11100).

The first part (red part) of the tag is used to identify the
routing path. It maps a specific subset of the routing path to

VOLUME 7, 2019 143623

M. He et al.: Rerouting Framework Against Routing Interruption for Secure Network Management

FIGURE 3. The tags structure for rerouting.

a given position. The first position indicates R1. As shown
in Figure 3, this bit is set to 1. Similarly, the second and third
bits indicate R2 and R5, and so on. The second part (green
part) of the tag is used to encode the primary and alternate
next hops. The first bit is used to identify the primary next
hop, and the second and third bit are used to mark the backup
next hop when R2 and R5 fail respectively. The second part of
the tag is designed to match the traffic that may be redirected
to a different next hop. Details are shown in Figure 3.

Before the R5 failure, the second phase only involves
forwarding rules that are consistent with the routing path.
Especially,

match(tag : 1 ∗ ∗ ∗ ∗ 1 ∗ ∗ ∗ ∗)� fwd(1).

But when R5 fails, in the second phase, we will add a
separate high priority rule instead of modifying it completely
in the first phase.

match(tag : ∗ ∗ 0 ∗ ∗ ∗ ∗1 ∗ ∗)� fwd(4).

The added rule reroutes the affected 6k prefixes traffic by
using the tagged structure. The regular expression in the tag
matches all the packets. For example, R5 is the third position
in the routing path (i.e., the tag begins with **0**.); and its
backup next hop is R4 (i.e., **1** as the end of the tag.). This
includes traffic with the prefix of router 6, 7 and 8. Note that,
one rule is sufficient because R5 only appears in one location
before the failure in our example, so no other locations need
to be considered.

3) ENCODING SCHEME
In this paper, the tag in the first stage of the forwarding table
is divided into two parts: The first part is encoding the routing
path for passing the packet, and the second part is encoding
the next hop for all routing paths to make the packet arrive
the destination. As shown in Figure 4.

FIGURE 4. A router embeds a tag into incoming packets.

a: ENCODING ROUTING PATH
First, the tag encodes the routing path for each packet.
We consider the routing path associated with the optimum
routing and store the location of the router in this path for
each prefix. According to the requirement of users, different
routing protocol can be used to select the optimum routing.
The first hop in any routing path is indicated as the primary
next hop, so position 1 is not modeled. We have different
routing path identifier for each router neighbor. By observing
the routing path, many routing paths have very few prefixes,
so we allow each prefix to be updated. For longer paths,
we only need to encode the first few positions of the path,
because the intermediate node may know the alternate path
behind it.

For the rest of the paths, we encode the paths that tra-
verse their maximum number of prefixes. For this purpose,

143624 VOLUME 7, 2019

M. He et al.: Rerouting Framework Against Routing Interruption for Secure Network Management

we use adaptive bits for each route location. Each location is
achieved by a different set of bits, whose length is determined
by the number of routers in the position. We map all routers
in each location to a specific value of the corresponding bit
set respectively. Therefore, the number of bits required for all
values in this location is equal to the size of the set.

b: ENCODING BACKUP NEXT-HOPS
Figure 4 shows the path tag for the 5k prefix of R8 and the
1k prefix of R6. The second part of the tag is used to identify
the primary next hop and the alternate next hop for which
each routing path is encoded. For each prefix P, the first hop
in the routing path of P is extracted as the primary next hop.
For example, the primary next hop of the 5k prefix of R8 is
R1, and the routing path is (1, 2, 5, 6, 8). To prevent the
interruption of the R5, we can choose R4, because it does not
need to go through R5 to reach R6. When we update the path
due to interruption, if the same route appears in the path (i.e.,
P5 in Figure 4), we will directly merge the two hops. If two
adjacent hops are not connected, we will add one hop.

The bits are divided in two parts of the tag. There is a basic
trade-off between the amount of routing paths and the amount
of alternate next hops that any router can encode. We allocate
more bits to indicate the routing path, allowing the router to
cover more failures. At the same time, we allocate more bits
to indicate next-hop, allowing the router to reroute traffic to
a larger number of backup paths.

Assuming we use the 48-bit tag of destination MAC for
encoding, 30 bits are used to encode the backup next hop,
because our experiments show that the 18-bit are used to
encode route path is the most efficient. If our framework
supports failures to depth 3, then the allocated bits for backup
next hop need to be divided into 4 parts (1 primary + 3 backup
next hop). Each depth is reserved for 7 bits and the other two
bits can be assigned to code route path. And we converted to
27 = 128 possible next hops. If you want to account for a
failure of depth 4, the number of next hops is 26 = 64.

C. DEPLOYED
In Section V, we show that how to use the target MAC to
tag incoming packet similar to [37], [42]. The destination
MAC is a valid ‘‘tag carrier’’ and provides a large number
of bits (48). Just like any IP router, it can be easily removed
by rewriting to the actual next hopMAC address in the second
phase of the forwarding table. Namely, we can delete the
forwarding rules used by the previous rerouting. Our frame-
work deployed to the router only requires a software update,
becausemany router platforms support two-phase forwarding
table. We mainly deploy our framework by inserting the SDN
switch and controller between the router and its peers. This
deployment is similar to SDX flat [37], [42]. See part G of
Section V in detail.

We achieve a conservative approach to infer the router
interruption and choose the backup path. Nonetheless,
we cannot ensure complete accuracy of this method because
the inference is based on the IPID portion of the packet,

Algorithm 2 Rerouting Algorithm
1: input failRNum
2: router←[]
3: n←0
4: v←0
5: m←1
6:

Allpath =
{

path1 path2 · · ·

backuppath1 backuppath2 · · ·

}
7: path←[]
8: backuppath←[]
9: [h,l]=size(Allpath);
10: if failRNum ⊆ router then
11: for Allpath1m;m < l;m++ do
12: path = Allpath1m;
13: backuppath = Allpath2m;
14: for n; n < path.length(); n++ do
15: if failRNum = path[n] then
16: path[n] = backuppath[n];
17: v = v+ 1;
18: end if
19: end for
20: end for
21: if v = 0 then
22: Mark failRNum is an infrequent probe
23: end if
24: else
25: Delete router failRNum
26: end if
27: return Allpath

and network conditions (such as network congestion, etc.)
can cause inference errors. In these cases, the router will be
dropped when the router may reroute traffic to the interrupted
router, multiple routers may create interdomain loop or the
destination router is interrupted. However, our results show
that the router that is interrupted is rarely selected as the next
hop in the routing path.

IV. REROUTING ALGORITHM
This section introduces the theme of the rerouting. As shown
inAlgorithm 2. After we detect the interrupted router, we start
running the rerouting algorithm. The rerouting algorithm is
used to identify the path affected by the interruption and
update it for rerouting.

If the interrupted router is not in the router set of all routing
paths, we will remove this router from the interrupt set tem-
porarily. We need to traverse all routing paths to determine
whether the path contains the interrupted router. We replace
the primary next hop at this location with the alternate next
hop if the path contains interrupt router, otherwise reduce the
detection frequency of this router in the detection phase, even
remove this router from the interrupt list.

VOLUME 7, 2019 143625

M. He et al.: Rerouting Framework Against Routing Interruption for Secure Network Management

Our rerouting algorithm quickly identifies all affected
prefixes and updates their paths. The path traversed and
the alternate next hop in the algorithm corresponds to the
information stored in the tag. For each prefix, we traverse
its path to determine if it has been interrupted. We add a
forwarding rule with higher priority in the second stage of the
forwarding table if the path needs updating. The newly added
rule makes the alternate next hop of the interrupt routing
the primary hop. Such as 11-16 lines of algorithm 2. After
the packet forwarding rules are changed, the router forwards
directly without waiting for other prefixes. When the added
forwarding rule is executed, we will delete this rule and
switch back to the original forwarding rule. If the interrupted
router does not affect the forwarding of all current prefixes,
we want to reduce its detection frequency to save network
traffic consumption.

V. EVALUATION
We evaluate the rerouting framework implemented in Python
that combines active probing technique with rerouting
method. First, we describe the data set used. Then, we eval-
uate the active detection technology and the efficiency of
rerouting framework data plane coding. Next, we compare
the time, packet loss rate with FCP [22], Distributed Least
Flow (DLF) [38] and OSPF [39]. Finally, we compare the
path stretch performance with FCP, IT [32] and ADST [21].

A. DATASETS
In this work, we use a macro Caida IPv6 traceroute topology
data [40] to make a set of larger IPv6 router interface as probe
target, which requires a more adaptive detection method. The
IP topologies of IPv6 Internet are included in the IPv6 topo-
logical data set.

B. ACTIVE PROBING
The active probing method can infer the interruption
window - the period of time when the router is restarted.
The results show that 749,451 restarts were inferred from
January 18, 2015 to May 30, 2017, involving 59,175 (40%)
of the 149,560 response routers. Most detect router breaks
are less than 2 hours (Figure 5) and restart less than twice
(Figure 6). Figure 5 shows the maximum and minimum
interrupt window lengths for each address. At least half of
the maximum interrupt windows are less than 31 minutes,
while another 22% have at least two hours and only 4%
more than 24 hours. Figure 6 shows that the number of router
interruption inferred each router. We conclude that 71% have
less than ten interruptions, 53% have four interruptions, and
24% have one interruption in our probing.

Then in these single-point failure routers, we can locate
the ::1 addresses of the prefixes of these routers to 90 dif-
ferent countries via Maxmind [20]. The results show that
interruptions in any given country are no more common than
in another country.

FIGURE 5. CDF of minimum and maximum outage window lengths
measured.

FIGURE 6. CDF outages per router for the routers that experienced an
outage.

FIGURE 7. Only 18 bits are available for routing path encoding.

C. ENCODING EFFECTIVENESS
We evaluate the encoding scheme by performing a match on
pre-configured tags to count the number of prefixes that can
be effectively rerouted in the data plane. For each interruption
burst, the coding performance is reflected by the score of the
predicted prefixes, and the prefixes can be re-routed by the
encoding scheme. The number of bits assigned by the partial
route path of the tag determines performance.

The 18 bits of the tag is assigned to the route path portion to
reroute the predicted prefix (about 98.7%). Figure 7 shows the

143626 VOLUME 7, 2019

M. He et al.: Rerouting Framework Against Routing Interruption for Secure Network Management

FIGURE 8. Our algorithm completes the update within 300 milliseconds.

encoding performance (on all bursts), which is represented
by a function of the number of bits of the routing path
reserved by the tag. In the figure, each box shows the quartile
range of encoding performance: the whisker represents the
5th and 95th percentiles, the red line in the box indicates
the median value and the point represents the average value.
The experimental results show that the encoding performance
increases with the increase of bits allocated to routing path
coding. These results indicate that the compression of the
encoding scheme is valid, and we encode most of the relevant
routing links successfully. Figure 7 shows that large bursts
with at least 10k withdrawals, the encoding performance is
better. We encode the router links with the biggest prefixes
with the highest priority and traverse them (And in the event
of a failure, it can lead to a big burst).

In addition, if routing devices are connected to a large
external We can increase the number of alternate next hops
by decreasing the number of router hops encoded neighbor
(such as IXP [41]), our method still works. (for example, up
to depth 4 instead of 5).

D. REROUTING SPEED
In this section, we evaluate the runtime of the rerouting
algorithm. In this test, we use 200 paths to test the time of
our rerouting algorithm. Meanwhile, we make a comparison
with FCP, OSPF and DLF. Figure 8 shows the CDF function
of the time for these methods.

It is observed from the figure that the FCP time is slightly
smaller than RA. The FCP is measured on a 2GB RAM with
3GHz Intel Pentium processor, and its recalculation time for
all topologies is less than 100 millisecond. But the rerouting
time of FCP is the time to update one link, the rerouting time
of RA is the time to update all prefix paths, so for the whole,
our algorithm takes less time.

We mainly record the time of recalculating path after a
link failure. In this paper, we perform a rerouting algorithm
(abbreviated as RA) to update the path when we detect the
interrupt. According to the test, our algorithm completes the
update within 300 milliseconds. Figure 8 shows that the RA
method also takes less time than DLF and OSPF.

FIGURE 9. The relationship between time and loss rate.

Because our method only needs to add a high-priority rule
that can directly modify the routing path after an interruption,
and we can directly forward affected packets after adding
rules, thus our method reducing the time of rerouting after
interruption occurs. We reroute all predicted prefixes with
little data plane update, and the number of data plane updates
depends on the number of failed routing links reported by the
interrupt detection method. Each backup hop requires a data
plane update for each reported link.

E. PACKET LOSS
In this paper, the packet will be dropped when the router
reroutes to the interrupted router or multiple routers form an
inter-domain loop. We test the relationship between rerouting
time and loss rate and we compare it with FCP and OSPF.
Figure 9 shows the comparison of the packet loss rate for FCP,
OSPF, and RA.

By changing the rate of OSPF sends packets to neigh-
bors, and measuring the impact on the score of the delivered
packets. The figure shows that the OSPF packet loss rate is
greater than the FCP and RA. For FCP, with the detection
rate increases, the routing time decreases and the number of
lost packets decreases because the FCP reacts more quickly
to failures. In our method, when the destination route is
interrupted, the packet will be dropped because it cannot be
delivered. The time of our method has little effect on the
packet loss rate, because our packet loss is mainly caused
by the interruption of the destination node, and our method
responds faster to the interruption.

F. PATH STRETCH
After a failure, the path that we rerouted is not necessarily the
shortest path, which will result in a tensile loss. And stretch is
defined as the value of the traversal hop count divided by the
shortest working path hop count. Figure 10 shows the CDF
of path stretch under several different rerouting schemes.
We compare the path stretch of FCP, ADST, IT and RA.

For the ADST and IT methods, we choose a better perfor-
mance for them: in the absence of a failure, the default route

VOLUME 7, 2019 143627

M. He et al.: Rerouting Framework Against Routing Interruption for Secure Network Management

FIGURE 10. CDF for path stretch of different reroute schemes.

FIGURE 11. Alternative deployment scenario.

is located on the shortest path first tree (SPF) rooted in the
target. The results show that the path stretch performance of
our method is not lower than other methods.

G. CASE ANALYSIS
Because our method only has one hardware requirement,
the two-stage forwarding table, it can be easily deployed on
the current router by a simple software update. In this section,
we show the benefits of deploying the framework of this
paper. In our alternative deployment scenario, we insert an
SDN switch and a controller (red box) between the router
and its peers at the control plane and data plane levels.
As shown in Figure 11. The setup is similar to the SDX plat-
form [37], [42], which allows the deployment of this frame-
work on any router that supports ARP and BGP, i.e., almost
any router.

After receiving the rule updated from the router peer,
the controller allocates a 48-bit tag according to the encoding
method. The controller writes router program to embed the
data plane tags into the target MAC field in the incoming
packet header, using the same technique (OSPF and ARP) as
in SDX [42]. It routes traffic according to the tag and rewrites
the target MAC address with the actual next hop by program-
ming the SDN switch. The two-phase forwarding table in
the framework spans two devices: the router (first phase) and

the SDN switch (second phase). When an outage is detected,
the controller runs the rerouting algorithm and provides the
data plane rule that has been updated to the SDN switch for
rerouting traffic.

Although the active detection technique used in this paper
applies only to IPv6 control plane router, the advantages
of IPv4/IPv6 infrastructure sharing, so the restart events
we detected are often manifested as IPv4 interrupts and
exits [43]. This paper periodically probes the router and adds
the forwarding rules in each input packet, so we can quickly
change the routing path once a route interruption is detected.
At the same time, because we only need to add one forward-
ing rule when rerouting, so the speed is improved. However,
since our work requires planning the path for the prefix in
advance, the cost is increased. In this paper, we use the active
detection method to locate the interrupt, but our diagnosing
routing interruption method can be replaced according to user
requirements. For our rerouting method, we only need to
detect the interrupt result.

VI. CONCLUSION
This paper has designed a fast rerouting framework. Firstly,
we used the macro traceroute data to identify the IPv6 router
interface, and used a new adaptive active probing technology
to identify the router interruption. Then rerouting is imple-
mented by adding a high-priority forwarding rule to the two-
stage forwarding table. We have conducted a comprehensive
evaluation using full-featured implementation and real router
data. Our results have proved that our method is efficient in
practice: coding efficiency and good packet loss rate and short
running time.

REFERENCES
[1] P. Kantharaju S. Ontañón, and C. W. Geib, ‘‘Extracting CCGs for plan

recognition in RTS games,’’ in Proc. 2nd Workshop Knowl. Extraction
Games Co-Located 33rd AAAI Conf. Artif. Intell., Jan. 2019, pp. 9–16.

[2] K. Peng, R. Lin, B. Huang, H. Zou, and F. Yang, ‘‘Link importance
evaluation of data center network based on maximum flow,’’ J. Internet
Technol., vol. 18, no. 1, pp. 23–31, Jan. 2017.

[3] N. Cheng, F. Lyu, J. Chen, W. Xu, H. Zhou, S. Zhang, and X. Shen, ‘‘Big
data driven vehicular networks,’’ IEEE Netw., vol. 32, no. 6, pp. 160–167,
Nov./Dec. 2018.

[4] M. Zhang, M. Yang, Q. Wu, R. Zheng, and J. Zhu, ‘‘Smart perception and
autonomic optimization: A novel bio-inspired hybrid routing protocol for
MANETs,’’ Future Gener. Comput. Syst., vol. 81, pp. 505–513, Apr. 2018.

[5] F. Song, Y.-Z. Zhou, Y. Wang, T.-M. Zhao, I. You, and H. Zhang,
‘‘Smart collaborative distribution for privacy enhancement in moving tar-
get defense,’’ Inf. Sci., vol. 479, pp. 593–606, Apr. 2019.

[6] J. Kleinberg, ‘‘Detecting a network failure,’’ in Proc. 41st Annu. Symp.
Found. Comput. Sci., Nov. 2000, pp. 231–239.

[7] P. Gill, N. Jain, and N. Nagappan, ‘‘Understanding network failures in data
centers: Measurement, analysis, and implications,’’ in Proc. ACM SIG-
COMMConf. Appl., Technol., Architectures, Protocols Comput. Commun.,
Aug. 2011, pp. 350–361.

[8] A. Bletsas, H. Shin, and M. Z. Win, ‘‘Outage optimality of opportunis-
tic amplify-and-forward relaying,’’ IEEE Commun. Lett., vol. 11, no. 3,
pp. 261–263, Mar. 2007.

[9] Ponemon Institute. Cost of Data Center Outages. (2016). [Online]. Avail-
able: http://datacenterfrontier.com/white-paper/cost-data-center-outages/

[10] E. Katz-Bassett, C. Scott, D. R. Choffnes, Í. Cunha, V. Valancius,
N. Feamster, H. V. Madhyastha, T. Anderson, and A. Krishnamurthy,
‘‘LIFEGUARD: Practical repair of persistent route failures,’’ in Proc.
ACM SIGCOMM Conf. Appl., Technol., Architectures, Protocols Comput.
Commun., Aug. 2012, pp. 395–406.

143628 VOLUME 7, 2019

M. He et al.: Rerouting Framework Against Routing Interruption for Secure Network Management

[11] A. Feldmann, O. Maennel, Z. M. Mao, A. Berger, and B. Maggs,
‘‘Locating Internet routing instabilities,’’ in Proc. ACM SIGCOMM Conf.
Appl., Technol., Architectures, Protocols Comput. Commun., Sep. 2004,
pp. 205–218.

[12] Y. Zhang, Z. M. Mao, and M. Zhang, ‘‘Effective diagnosis of routing
disruptions from end systems,’’ in Proc. 5th USENIX Symp. Netw. Syst.
Design Implement., Apr. 2008, pp. 219–232.

[13] J. N. Goel and B. M. Mehtre, ‘‘Dynamic IPv6 activation based defense for
IPv6 router advertisement flooding (DoS) attack,’’ in Proc. IEEE Int. Conf.
Comput. Intell. Comput. Res., Dec. 2015, pp. 1–5.

[14] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah,
Y. Ganjali, and C. Diot, ‘‘Characterization of failures in an operational IP
backbone network,’’ IEEE/ACMTrans. Netw., vol. 16, no. 4, pp. 762–2749,
Aug. 2008.

[15] J. Wang and S. Nelakuditi, ‘‘IP fast reroute with failure inferencing,’’ in
Proc. SIGCOMM Workshop Internet Netw. Manage., 2007, pp. 268–273.

[16] A. Gopalan and S. Ramasubramanian, ‘‘IP fast rerouting and disjoint mul-
tipath routing with three edge-independent spanning trees,’’ IEEE/ACM
Trans. Netw., vol. 24, no. 3, pp. 1336–1349, Jul. 2015.

[17] A. Atlas and A. Zinin, Basic Specification for IP Fast Reroute: Loop-Free
Alternates, document RFC 5286, 2008.

[18] S. Nelakuditi, S. Lee, Y. Yu, and Z.-L. Zhang, ‘‘Failure insensitive routing
for ensuring service availability,’’ in Proc. 11th Int. Conf. Qual. Service,
Jun. 2003, pp. 287–304.

[19] Y. Yang, M. Xu, and Q. Li, ‘‘Fast rerouting against multi-link failures
without topology constraint,’’ IEEE/ACM Trans. Netw., vol. 26, no. 1,
pp. 384–397, Feb. 2018.

[20] T. Elhourani, A. Gopalan, and S. Ramasubramanian, ‘‘IP fast rerout-
ing for multi-link failures,’’ in Proc. IEEE Conf. Comput. Commun.,
Apr./May 2014, pp. 2148–2156.

[21] T. Elhourani, A. Gopalan, and S. Ramasubramanian, ‘‘IP fast rerout-
ing for multi-link failures,’’ IEEE/ACM Trans. Netw., vol. 24, no. 5,
pp. 3014–3025, Oct. 2016.

[22] K. Lakshminarayanan, M. Caesar, M. Rangan, T. Anderson, S. Shenker,
and I. Stoica, ‘‘Achieving convergence-free routing using failure-carrying
packets,’’ in Proc. ACM SIGCOMM Conf. Appl., Technol., Architectures,
Protocols Comput. Commun., Aug. 2007, pp. 241–252.

[23] L. Quan, J. Heidemann, and Y. Pradkin, ‘‘Trinocular: Understanding Inter-
net reliability through adaptive probing,’’ in Proc. ACM SIGCOMM Conf.,
Aug. 2013, pp. 255–266.

[24] A. Schulman and N. Spring, ‘‘Pingin’ in the rain,’’ in Proc. 11th ACM
SIGCOMM Conf. Internet Meas. Conf., Nov. 2011, pp. 19–28.

[25] D. R. Choffnes, F. E. Bustamante, and Z. Ge, ‘‘Crowdsourcing service-
level network event monitoring,’’ in Proc. ACM SIGCOMM Conf.
Appl., Technol., Architectures, Protocols Comput. Commun., Aug. 2010,
pp. 387–398.

[26] D. Katz and D. Ward, Bidirectional Forwarding Detection (BFD) for IPv4
and IPv6 (Single Hop), document RFC 5881, 2010.

[27] P. Pan, G. Swallow, and A. Atlas, Fast Reroute Extensions to RSVPTE for
LSP Tunnels, document RFC 4090, 2005.

[28] M. Shand and S. Bryant, IP Fast Reroute Framework, document RFC 5714,
2010.

[29] G. Rétvári, J. Tapolcai, G. Enyedi, and A. Császár, ‘‘IP fast ReRoute: Loop
free alternates revisited,’’ in Proc. 30th IEEE Int. Conf. Comput. Commun.,
Apr. 2011, pp. 2948–2956.

[30] S. Nelakuditi, S. Lee, Y. Yu, Z. L. Zhang, and C. N. Chuah, ‘‘Fast local
rerouting for handling transient link failures,’’ IEEE/ACM Trans. Netw.,
vol. 15, no. 2, pp. 359–372, Apr. 2007.

[31] A. Iselt, A. Kirstadter, A. Pardigon, and T. Schwabe, ‘‘Resilient routing
using MPLS and ECMP,’’ in Proc. Workshop High Perform. Switching
Routing, Apr. 2004, pp. 345–349.

[32] A. Gopalan and S. Ramasubramanian, ‘‘Multipath routing and dual link
failure recovery in IP networks using three link-independent trees,’’ in
Proc. 5th IEEE Int. Conf. Adv. Telecommun. Syst. Netw., Dec. 2011,
pp. 1–6.

[33] R. Beverly, M. Luckie, L. Mosley, and K. Claffy, ‘‘Measuring and char-
acterizing IPv6 router availability,’’ in Proc. 16th Int. Conf. Passive Act.
Netw. Meas., Mar. 2015, pp. 123–135.

[34] M. Luckie and R. Beverly, ‘‘The impact of router outages on the AS-
level Internet,’’ in Proc. Conf. ACM Special Interest Group Data Commun.,
Aug. 2017, pp. 488–501.

[35] A. Bender, R. Sherwood, and N. Spring, ‘‘Fixing ally’s growing pains with
velocity modeling,’’ in Proc. 8th ACM SIGCOMM Conf. Internet Meas.,
Oct. 2008, pp. 337–342.

[36] A. Lakshman. Cassandra. (2008). [Online]. Available: http://cassandra.
apache.org/

[37] A. Gupta, R. MacDavid, R. Birkner, M. Canini, N. Feamster, J. Rexford,
and L. Vanbever, ‘‘An industrial-scale software defined Internet exchange
point,’’ in Proc. 13th USENIX Conf. Netw. Syst. Design Implement.,
Mar. 2016, pp. 1–14.

[38] A. P. Bianzino, L. Chiaraviglio, and M. Mellia, ‘‘Distributed algorithms
for green IP networks,’’ in Proc. IEEE INFOCOM Workshops, Mar. 2012,
pp. 121–126.

[39] OSPF Version 2, document RFC 2328, 1998. [Online]. Available:
http://www.ietf.org/rfc/rfc2328.txt.

[40] CAIDA. (2016). The CAIDA UCSD IPv6 Topology Dataset.
[Online]. Available: http://www.caida.org/data/active/ipv6_allpref_
topology_dataset.xml

[41] P. Mao, R. Birkner, T. Holterbach, and L. Vanbever, ‘‘Boosting the BGP
convergence in SDXes with SWIFT,’’ in Proc. SIGCOMM Posters Demos,
Aug. 2017, pp. 1–2.

[42] A. Gupta, L. Vanbever, M. Shahbaz, S. P. Donovan, B. Schlinker,
N. Feamster, J. Rexford, S. Shenker, R. J. Clark, and E. Katz-Bassett,
‘‘SDX: A software defined Internet exchange,’’ in Proc. ACM Conf. SIG-
COMM, Aug. 2014, pp. 551–562.

[43] A. Dhamdhere, M. Luckie, B. Huffaker, K. Claffy, A. Elmokashf, and
E. Aben, ‘‘Measuring the deployment of IPv6: Topology, routing and
performance,’’ in Proc. 12th ACM SIGCOMM Internet Meas. Conf.,
Nov. 2012, pp. 537–550.

MENGMENG HE was born in Henan, China,
in February 1994. She received the bachelor’s
degree in software engineering from the Henan
University of Science and Technology, in 2017,
where she is currently pursuing the graduate
degree in software engineering with the School
of Information Engineering. Her research interest
includes network security.

MINGCHUAN ZHANG was born in Henan,
China, in May 1977. He received the Ph.D. degree
in communication and information system from
the Beijing University of Posts and Telecommu-
nications, Beijing, China, in 2014. He is currently
an Associate Professor with the Henan University
of Science and Technology. He is also the CIO of
Henan Qunzhi Information Technology Company
Ltd., and Guangzhou Xiangxue Pharmaceutical
Company Ltd. His research interests include bio-

inspired networks, future Internet, and optimization.

XIN WANG received the Ph.D. degree in manage-
ment science and engineering from the University
of Posts and Telecommunications, China, in 2017.
She is currently anAssistant Professor with Shang-
hai International Studies University. Her research
interests include neuroscience, artificial intelli-
gence, information systems, and networks.

VOLUME 7, 2019 143629

M. He et al.: Rerouting Framework Against Routing Interruption for Secure Network Management

JUNLONG ZHU received the Ph.D. degree in
computer science and technology from the Beijing
University of Posts and Telecommunications,
Beijing, China, in 2018. In 2018, he joined the
Henan University of Science and Technology,
Luoyang, China, where he is currently a Lecturer
with the Information Engineering College. His
research interests include large-scale optimiza-
tion, distributedmulti-agent optimization, stochas-
tic optimization, and their applications to machine

learning, signal processing, communications, and networking.

RUXI PENG was born in Hunan, China,
in July 1979. He received the master’s degree
in pharmaceutical engineering from Jinan Uni-
versity, in 2018. He currently holds the position
of General Manager Assistant at the Tradi-
tional Chinese Medicine Resources Division,
Guangzhou Xiangxue Pharmaceutical Company
Ltd. His research interests include artificial
intelligence for Chinese medicine and process
optimization.

QINGTAO WU was born in Jiangsu, China,
in March 1975. He received the Ph.D. degree in
computer application from the East China Univer-
sity of Science and Technology, Shanghai, China,
in 2006. He is currently a Professor with the
Henan University of Science and Technology. His
research interests include computer security, future
Internet security, machine learning, and cloud
computing.

143630 VOLUME 7, 2019

	INTRODUCTION
	RELATED WORK
	REROUTING FRAMEWORK
	INFERENCE ROUTER OUTAGE
	PROBING
	REBOOT INFERENCE

	FAST REROUTE
	OVERVIEW
	FORWARDING RULES
	ENCODING SCHEME

	DEPLOYED

	REROUTING ALGORITHM
	EVALUATION
	DATASETS
	ACTIVE PROBING
	ENCODING EFFECTIVENESS
	REROUTING SPEED
	PACKET LOSS
	PATH STRETCH
	CASE ANALYSIS

	CONCLUSION
	REFERENCES
	Biographies
	MENGMENG HE
	MINGCHUAN ZHANG
	XIN WANG
	JUNLONG ZHU
	RUXI PENG
	QINGTAO WU

