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ABSTRACT There are two important issues in the construction of a radial basis function (RBF) neural
network. The first one is to select suitable RBF centers. The second one is that the resultant RBF network
should be with good fault tolerance. This paper proposes an algorithm that is able to select RBF centers
and to train fault tolerant RBF networks simultaneously. The proposed algorithm borrows the concept from
sparse approximation. In our formulation, we first define a fault tolerant objective function based on all input
vectors from the training samples. We then introduce the minimax concave penalty (MCP) function, which is
an approximation of £y-norm, into the objective function. The MCP term is able to force some unimportant
RBF weights to zero. Hence the RBF node selection process can be achieved during training. As the MCP
function is nondifferentiable and nonconvex, traditional gradient descent based algorithms are still unable to
minimize the modified objective function. Based on the alternating direction method of multipliers (ADMM)
framework, we develop an algorithm, called ADMM-MCP, to minimize the modified objective function. The
convergent proof of the proposed ADMM-MCP algorithm is also presented. Simulation results show that
the proposed ADMM-MCP algorithm is superior to many existing center selection algorithms under the

concurrent fault situation.

INDEX TERMS Failure tolerant, RBF, center selection, ADMM, £y-norm, global convergence.

I. INTRODUCTION

Constructing a radial basis function (RBF) network [1]-[3]
includes two key issues. The first issue is to select some
suitable RBF centers. The second issue is to determine the
RBF weights. There are many ways to perform RBF center
selection. We can select all the input vectors from the training
samples as RBF centers [4]. But this method may create a
network with unnecessarily complicated structure. Another
way is to randomly select a subset of the input vectors as
the RBF centers, but this simple method cannot ensure that
the constructed RBFs cover the input space well [5]. Other
advanced methods include clustering algorithms [6], orthog-
onal least squares (OLS) approach [7], [8], and support vector
regression (SVR) [9], [10]. However, many algorithms in this
area did not consider the fault tolerant issue.

The associate editor coordinating the review of this manuscript and

approving it for publication was Guiwu Wei

151902

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

Biological neural networks have the capability to toler-
ate fault or noise conditions [11]. For example, human can
recognize an object from a noisy image/video. In addition,
when a few neural cells or synapses malfunction, human brain
can still works properly. Since the concept of neural networks
comes from biological neural networks, researchers expected
that a trained neural network has a capability to tolerate
weight or neuron failure. However, many literatures reported
that when fault/noise tolerant procedures are not introduced
during training, the faulty version of a well trained network
may have a poor performance [12]-[15].

In realizing a neural network, we face some practical
issues [16]. When we use analog technology to realize a
dot-product operation, the accuracy is affected by the offset
voltage of operational amplifiers [17]. In addition, for analog
components, we usually define their accuracy in terms of
percentage of error [18]. In this case, we can use multi-
plicative noise to model the error. For digital technology
realization, when a weight is represented in the floating
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point format, the round-off errors happen and they can be
described by the multiplicative noise model [19]. Apart
from multiplicative noise, physical fault may happen [20].
It blocks the data/signal transmission between two connected
neurons. Besides, nowadays, the very large scale integration
(VLSI) implementation could be at nano-scale and transient
noise/failure may happen [21].

In the last twenty years, several fault tolerant algorithms
were proposed [13], [14], [22]-[24]. However, most of them
assume that a trained network is affected by one kind of fault
conditions only. For instance, in [13], [14], only the open node
fault model was considered. Recently, [25] first described
the concurrent fault situation in which a trained network is
affected by multiplicative weight noise and open weight fault
concurrently. However, the weight decay term in [25] is not
optimal for fault tolerance situation. Later, another approach
was proposed in [19]. It is based on regularization and OLS
center selection. The performances of this algorithm are bet-
ter than those of many existing methods. Due to the OLS
approach, it cannot select centers and train an RBF network
at the same time. To improve the performances of the network
and complete the two steps simultaneously, an £1-norm based
fault tolerant RBF center selection method [26] was proposed
recently.

As the ¢p-norm is a much better approach in compressive
sensing for retaining nonzero elements, this paper investi-
gates to use the £p-norm to replace the £1-norm for center
selection. Since the £p-norm is a noncontinuous function,
it is difficult to design an algorithm to minimize an £o-
norm based objective function. This paper introduces the
minimax concave penalty (MCP) function [27], [28], which
is an approximation of £y-norm, into the objective function.
Since the MCP function is able to limit the number of RBF
nodes used, minimizing the modified objective function can
remove some unimportant RBF nodes during training. How-
ever, the MCP function is still nondifferentiable and noncon-
vex, traditional gradient descent like algorithms are unable
to minimize the modified objective function. Based on the
alternating direction method of multipliers (ADMM) frame-
work [29], we develop an algorithm, called ADMM-MCP,
to minimize the modified objective function. The ADMM
framework breaks down the minimization problem into three
parts. Each part can be solved in a much easier way, even
though some of them contain nonconvex and nondifferen-
tiable terms. A theoretical analysis of the convergence of the
proposed ADMM-MCP algorithm is then provided. Simula-
tion results show that the proposed ADMM-MCP algorithm
is superior to many existing center selection algorithms under
the concurrent fault situation.

The contributions of this paper are as follows.

o Based on the MCP concept (an approximation of the
£p-norm), we derive a fault tolerant objective function
for training RBF networks and selecting RBF nodes
simultaneously.

« Based onthe ADMM framework, we derive the updating
equations to minimize the proposed objective function.
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« We show that the training weight vector converges to a
limit point. Besides, the limit point is a stationary point
of the Lagrangian function of the objective function.

« Simulation shows that the performances of the proposed
algorithm are better than those of many existing train-
ing algorithms. Besides, from the paired t-test result,
the improvement of using the proposed algorithm over
other algorithms is statistically significant.

The rest of this paper is organized as follows. The back-
grounds of the ADMM framework and RBF neural net-
works under the concurrent fault situation are presented in
Section II. In Section III, the proposed algorithm is devel-
oped. Its convergent property is presented in Section IV.
Simulation results are provided in the Section V. Finally,
the concluding remark is drawn in Section VI.

Il. BACKGROUND

A. NOTATION

We use a lower-case or upper-case letter to represent a scalar
while vectors and matrices are denoted by bold lower-case
and upper-case letters, respectively. The transpose opera-
tor is denoted as (.)T, and I represents the identity matrix
with appropriate dimensions. Other mathematical symbols
are defined in their first appearance.

B. RBF NETWORKS UNDER CONCURRENT FAULT
SITUATION

In this paper, the training set is expressed as
D= {(xi,yi) xRNy eRi=1,- ,N} ,

where x; is the input vector of the i-th sample with dimension
K, and y; is the corresponding output. Similarly, the test set
is expressed as

D'={(.7) % eRE Y e R =1, N} @
In the RBF approach, the input-output relationship of the data

set is approximated by a weighted sum of the outputs of M
RBFs, given by

fx) = Zw,a,(x) Zw exp( [+ C’”2>, 3)

where aj(x) = exp (— ||x - q”i /s) is the output of the j-
th RBF node, wj is the corresponding weight, ¢; is the center
of the j-th RBF node, and s is a parameter which controls
the RBF width. Usually, the RBF centers are selected from
the training input vectors {x1, ...,xy}. If we use all train-
ing input vectors as centers, the resultant network will
have serious overfitting problem for faultless situation.
In addition, using all the training input vectors is waste
of resources. Therefore, center selection is a key step in
the training of an RBF network.
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For a fault-free network, the training set mean square error
(MSE) is given by
1 2
< lly —Awll3, “)

gtrain =

wherew = [wy, -+, wy]",y =y, -+, yv]T, Aisan N x
M matrix, and the (i, j) entry of A is given by

2
(Al = aj(x;) = exp (—M) . )

In the implementation of an RBF network, weight fail-
ure may happen. Multiplicative weight noise and open
weight fault are two common fault in the RBF network [18],
[22]-[24], [30]-[33]. When they occur concurrently [19],
[25], the implemented weights can be described by

In (6), B;’s are variables that describe whether the weights
are opened or not. When a weight f; is opened, §; is equal to
0. Otherwise, B; is equal to 1. This paper assumes that ;s are
independently identically distributed (i.i.d.) binary random
variables. The probability mass function of g;’s is given by

Pﬁ’ for ﬂ] = O, (7)
Prob(B)) =
rob(8;) { 1—Pg, forpi=1. (8)
The statistics of ;’s are then given by
(Bj) = (B)) =1— Py, (9a)

(BiBy) = (1 — Pp)*, Yj#j. (9b)

The term bjw; in (6) is the multiplicative noise. It can be
seen that the magnitude of the noise is proportional to that of
the weight. This paper assumes that b;’s are i.i.d. zero-mean
random variables with variance abz. With this assumption,
the statistics of b;’s are summarized as

(b7) =

Vi#T,

where (-) is the expectation operator.
Given a particular fault pattern, the training set MSE is

(b)) = 0,
(bjby) = O,

(10a)
(10b)

1 )
Erain = — Hy —AW||2
M
== P =2y ) Bwjaj(xi)
i=1 j=1
M M
21 D BBy (L + bibyaxiay (e
j=1j=j
M M
+ 3 (b + bp)BiBrwwyaixiay i)
J=1j=1
M
—2yi Y biBwiajx)) | - (11)
j=1
151904

From (10) and (9), the average training set MSE [19] over all
possible fault patterns is given by

Py & 1-P
Euvain = (Evain) = =2 ity Ly — Awl
=

1 —

fPyT [(Pﬁ + oP)diag (ATA) - PﬁATA] w

12)

In (12), the term 22 Z y is independent of the weight vector

w. Hence the tralmng ob]ectlve can be defined as

1
v ow) =y — Aw|3 +w'Rw, (13)

where R = (Py + of)diag (ATA) — FATA.

C. ADMM

The ADMM framework solves optimization problems by
breaking them into smaller pieces [29]. Suppose we have the
following objective function:

02) =v¥(@) + 8@ (14)

where z € R". The objective function can be separated into
two terms: ¥ (-) and g(-). If the term g(z) is nonconvex and
nondifferentiable, then it is difficult to minimize Q(z) directly.
The ADMM framework introduces a dummy vector y € R"
and reformulates the minimization problem as a constrained
optimization problem, given by

min : Y@+ g

s.t.z=Yy.

(15a)
(15b)
‘We then construct an augmented Lagrangian function:

V@ +g@ +alz—y)
+§ lz—yl2. (16)

L(z,y, @) =

where & € R? is the Lagrange multiplier vector, and p > 01is
a parameter that affects the convergent speed. The algorithm
consists of three steps, given by

Y = argmin L@, y, o), (17a)
y

T = argmin Lz, y* !, &), (17b)
z

= ok 4 p <Zk+1 _yk+1). (17¢)

It should be noticed that for many forms of g (y), we have
closed form solutions for (17a), even though g (y) is noncon-
vex and nondifferentiable.

lll. DEVELOPMENT OF ADMM-MCP

In (13), we discuss to use M RBF centers, {c{,---,cu},
to construct a network. However, we do not discuss the way
to create them yet. Suppose that we use all the training input
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vectors, {x1, - - - ,xn}, as the RBF centers. The expression of
the training objective does not change and is still given by

1
v w) =y — Awl|3 +wTRw. (18)

However, the definitions of w and R are changed to

w = [Wl7'.' 9WN]T7 (193)
2
aj(x;) = exp (—M) , (19b)

where i = 1,--- ,N,j =1,--- ,N,andAisan N X N
matrix.

In the rest of this section, we will develop the ADMM-
MCP algorithm, in which we pack an approximated
£o term, namely MCP term, into the objective function
stated in (18). The packed MCP term has an ability to
force some RBF weights to zero. Hence during training,
the center selection process is achieved automatically.

[A];

A. OBJECTIVE FUNCTION AND ADMM FORMULATION

We introduce an additional ¢y penalty term into (13), given
by

1
&Amlﬁ=ﬁw—AM6+wWM+Mwm, (20)

where ||w||o is the £g-norm of the weight vector and it repre-
sents the number of nonzero entries in the vector w. Parameter
A is a regularization parameter that controls the number of
RBF nodes in the resultant network. Strictly speaking, the £-
norm is not a norm. Due to the nature of the £p-norm term,
the problem stated in (20) is NP hard [34].

Inspired by [27], [28], the MCP function is a very attractive
approximation of the £yp-norm. Hence, we modify the objec-
tive function stated in (20) as

1
Qmwm=ﬁw—MM+WM+mww 1)

where P, (w) = Z?il P;.,(w)) (* > 0,y > 0) denotes the
MCP function, given by

2

Alwi| — 2—' if wil <y,
Py, (w) = 1 Y (22)

EVAZ, if lwil > yA.

The shape of the MCP penalty function with various settings
is shown in Figure 1. Although the form of Q. has better
property, we do not have a closed form solution for minimiz-
ing Omep(w, ) directly.

We use the ADMM framework to minimize the objective
function Qpcp(w, ). Firstly, we introduce a dummy variable
vector u = [u, ...,uy]T and transform the unconstrained
problem, stated in (21), into the standard ADMM form, given
by

min y(w) + Py, (w), (23a)
St.u=w, (23b)
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FIGURE 1. The shapes of MCP penalty function under various parameter
settings.

where
1 2 T
Y(w) = NHy —Aw|5 +w Rw. (24)
We then construct the augmented Lagrangian as

o
LMJJD=QWAMXHﬂmﬂ—M+§WW—M§

=YW + P, @)+ v w—w)
+§ w — ull?. 25)

B. UPDATING EQUATIONS
« According to (17a), the ADMM iteration of wkt! s

W = argmin LW, u, v0),
u
T 2
= arg min P;L,y(u)—i—vk (u— wk)—i—g Hwk — qu
u
P 1
= argmin P ,(u) + = wh —u— —oF (26)
u 2 P 2
where u*t! = [ulﬁl, e uﬁ,“]T.

— For (26), when py > 1, the closed form solu-
tion [27], [28] is given by

o+

S (whk—vk/p,2)

1

. if Wk — v /pl <y,

= 1-1/y
wi = uf/p, if (Wi — v /ol >yA,
27
for i = 1,---,N, where S denotes the soft-

threshold operator [35],
S(z, A) = sign(z) max{|z| — X, 0}. (28)

It is worth noting that when y — oo, S(-, -) is a
soft-threshold function. When y — 1, S(-,-) is a
hard-threshold function.

— When py = 1, the closed form solution of (26) is

given by
k1|0, if [Wf — vf /p| < ¥,
Ui =Y ko k ek ok
wi —vui/p, i Wi —uf/pl > yA.
(29)
151905
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— When py < 1, the closed form solution of (26) is

given by
g _ )0 if Wi —uf/pl < Vv /o,
: wi—uf/p, if Wi —uf/pl >y /ph.
(30)
o According to (17b), the ADMM iteration of whtl s
given by
k+1

Wt = argmin Liw, u* !, v%)

w

. T
= argmin Y (w) + P;\,y(ukH) + v¥ (uk+1 —w)
w

o
+2 w—u )
P 1P
= argmin y(w) + — Hw — gk
w 2 P 2

2 “Ira
= | =ATA+2R+pl| | =ATy+ put! + vk .
N N
3D
« From (17¢), v¥*! is updated as

Y 0 (uk+1 _ wk—i—l) . (32)

IV. ANALYSIS OF CONVERGENCE
This section presents the convergent properties of the
ADMM-MCP algorithm. We use the general convergence
result of nonconvex ADMM given by [36]. When we use the
general convergence proof of nonconvex ADMM, we need
to show that our algorithm satisfies three conditions. The
general convergence result is given by Theorem 1 [36].

Theorem 1: If an ADMM based algorithm satisfies the
following three conditions stated below, then the sequence
Wk, u*, v*} has at least a limit point {w*,u*, v*} and
any limit point {w*,u*, v*} is a stationary point of the
Lagrangian function.

C1 (Sufficient decrease condition) For each k, there exists
a 11 > 0 such that

Lt oM — Lok i 08 < —o Wt W,
(33)

C2 (Boundness condition) The sequence (wh, uk, vk} is
bounded and its Lagrangian function is lower bounded.

C3 (Subgradient bound condition) For each k € N, there
exists ad* T € QLWF L, k1 vkt and v > 0 such that

k+1 2 e+l 2
13 < W — w3 (34)

Proof: The proof of the theorem is in Proposition 2 in
[36] and Theorem 2.9 in [37]. [ |
In the rest of this section, we will show that the proposed
algorithm satisfies the three conditions of Theorem 1.
Proposition 1: If p is greater than a certain value,
the ADMM-MCP algorithm satisfies the sufficient decrease
condition in C1.

151906

Proof: The Lagrangian function can be rewritten as

2
Lw,u,v) =vw)+ g Hw—u— —-v

2
! 2
+Pyy () — Z”UHQ- (35)

Note that ¥ (w) = zlv ly —Awll% + wTRw.

Since ¥ (w) is strongly convex, we can deduce that (35) is
also strongly convex with respect to w. Hence, based on the
definition of strongly convex function, we have the relation-
ship between L(w ! wf+1 vk) and L(wX, k!, v5), given
by

LTk k) — Lawk ukt ok
2

=-3 W —whi3,  (36)

where a > 0.
Since L(w, u, v) is a strictly convex function with respect
to w, we have

From (32) and (37), we can deduce that
S B S 1/p (vk+l _ vk) ' (39)
Thus we have the relationship between L(wKT!, wk+1 ph+l)
and LwK 1 wkt1 vk, given by
LWk a1 gk tly Z Lokt gkt gk
T
_ <vk+1 _ vk) (uk—H _wk-H)

1
k1l k2
= — " — 3

1
;uvwwk“) — VywhH3
2

i ”wk-l—l
P

IA

—wh3, (40)

where [y, is a Lipschitz constant of function v/ (w), and the last
inequality is from the fact that ¢ (w) has Lipschitz continuous
gradient.

Since uF*! (as stated in (27), (29) and (30)) is the optimal
solution of (26), we have

LwE, uF 1 vk — LawF, u, vF) < 0. (41)
Combining (36), (40) and (41), we have

Lowk+L gkt k) pank ko pb)
o B S I O e R S R
L R P P S
+LWE, uF T Ry — LowF, Wk, v

2 4
< (;“’ - 5) W+t — wh3. (42)

VOLUME 7, 2019



H. Wang et al.: £o-Norm Based Centers Selection for Failure Tolerant RBF Networks

IEEE Access

To ensure l?p/p —a/2 < 0,weneed p > 2li/a. Hence the
11 =a/2— lfb/p in C1. The proof for C1 is completed. W

Now, we show that the proposed algorithm satisfies C2 in
Theorem 1.

Proposition 2: If p > ly , then L(wk, uk, vk) is bounded
for all k, and L(wk, uk, vk) converges, as k — oo. In addi-
tion, the sequence {wk, uk, vk} is bounded.

Proof: The proof consists of two parts. The first one
is that L(wX, u*, v*) is bounded. The second one is that the
sequence {wk ,uk, vk } is bounded.

The proof for L(wk uk, vk) being bounded:
First, we prove that Lw*, u¥, v¥) is lower bounded for all k.
From (38), Vi (w*) = v*. Thus

Lo ub vh) = ywh) + Py, ) + ok @k — wh)

L w -,
= YWY Py )+ Vi W)k —wh)
8-

From Lemma 3.1 in [37] and the Lipschitz continuous
gradient of (w),
T l
Y W)+ Vi wh) (u"—w’f)zw(u’w—%nu" —wh3.
(44)
Hence, we have

LW b oY) > w @) + Py, )

Py k k2
+ (2 > ) lu® —wol3.  (45)
Obviously, if p > Iy, then the right hand side of (45) is greater
than —oo. Hence L(wk, uk, vk) is lower bounded. According
to the proof of Proposition 1, we know that L(w*, u*, v¥) is
sufficient descent. Hence L(w*, u*, v¥) is upper bounded by
L(wo, ul, vo).

The proof for {wk L uk, vk} being bounded:
Next, we prove that the sequence {wk, uk, vk} is bounded.
From (42), we have

LW uk Lok Lok, vf) <—o W —wh |3, (46)

where 7; > 0. Hence, we have

1
Wkt ”% < _(L(wk’ b vF)— Lk k] vk+1)) '
71

47)
Then we can deduce that
I

Z Wk = wk 2
k=1

< 1 (L(wo’ W0, 00y — Lw' L ul vz+1)>

T1
< 0. (48)
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Even ! — oo, we still have > 22 | [wh™! —wK||3 < oo. Thus
{wX} is bounded.
From (40), we know

k+1 k2 2 k+1 k2
1o — kI3 < 22wk — w3

Therefore, we can deduce that

o0
DI — vk < oo (49)
i=1

That means, {vk } is bounded.
In addition, according to (32), we have

k+1 k2
lu" ™" —u®5
1 1
IS B S (7 S O DL (WCS DA
P p :

2
2 ,02 2

2 _
—l—?llvk vk (50)

Thus, we have

o
Dt — k)3 < oo (51)
i=1
That means, {#*} is also bounded. To sum up, the sequence
{wk , uk , vk } is bounded. The proof is completed. [ |
Proposition 3: The proposed ADMM-MCP algorithm sat-
isfies the subgradient bound condition given by C3.

Proof: The proof involves the derivations of three gra-
dients. They are the gradient L /0w of L with respect to w,
the limiting subgradient d,L of L with respect to u, and the
subgradient 9, L of L with respect to v.

For 0L /0w, we have

aL
ow (WhH1 ggk+1 yk+1y
= VW +p (wk“ - u"“) — vkt (52)

k

Since w1 is the optimal solution of L(w, u**!, v¥), we have

wa(wk-&-l) 0 (wk-H _uk+l) _ vk =0, (53)

From (52) and (53), we have
oL

= vk — pFFL, (54)
ow

(wk+1)uk+l,vk+l)

For the limiting subgradient d,L, we have

OuL| (1 k1 gkt
— auP)L’y(uk-’rl) + Uk+l —p (wk+l _uk-‘rl) , (55)

k+1 is the optimal solution of L(wk u, vk ), we have

Since u
0 € 8uPs, @) + vk — p (wk - u"“) . (56)
From (55) and (56), we have

P (Wk — Wk+1) +oft — k¢ auL|(wk+1)uk+1,vk+l) &)

151907
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TABLE 1. Properties of the eight data sets.

Dataset Number of Si;e of Size of R_BF
features training set | testset | width
Abalone 7 2000 2177 0.1
ASN 5 751 752 0.5
Housing 13 400 106 2
Concrete 9 500 530 0.5
Energy 7 600 168 0.5
WQW 12 2000 2898 1
MG 6 700 685 1
Space-ga 6 1600 1507 0.1

For 9, L, from (25) and (39), we have

1
By Llguit1 it ity = 0 H WA= = (05— o) (s8)

o
Define
vk — pktl
d = | p (W =Wk okt ok | (59)
% (Uk—H _ vk)
Hence, from (54), (57), and (58),
dH e oL (Wk+1’uk+l7 vk+1) ' (60)
From the inequality stated in (40), we can deduce that
I3 < ralw T — w3, (61)
where 1 > 0. The proof is completed. ]

Since the ADMM-MCP algorithm satisfies the three
conditions of Theorem 1, the sequence {w*, u*, v¥} has
at least one limit point {w*, u*, v*} and any limit point
{w*, u*, v*} is a stationary point. In other words, at least,
the ADMM-MCP algorithm has the local convergent
property.

V. SIMULATION RESULT
A. SETTINGS
This paper considers eight datasets. Six of them are from the
University of California Irvine (UCI) machine learning repos-
itory [38]. They are respectively Abalone [39], [40], Airfoil
Self-Noise (ASN) [41], Boston Housing (Housing) [39], [41],
Concrete [42], Energy Efficiency (Energy) [41], and Wine
Quality White (WQW) [43], [44]. The other two datasets
are the Space-ga [45] and Mackey-Glass (MG) system [46]
datasets. For each dataset, its RBF width is selected between
0.1to 10. Table 1 summarizes the properties of these datasets.
The performances of the resultant networks are evaluated
by the average test set MSE, given by

N 1—P 2
Erest = Fﬂ/ Z}y% + Tﬁ Hy, _A/WHZ
=

1—P
+— BT [(Pﬂ + of)diag (A/TA/) — PgA”" ] w,

/

(62)
where {(x,,y)),i’ = 1,---, N’} is the test set, N’ is the
number of samples in the test set,y’ = [y/{,...,Y 1, A’ is

151908
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FIGURE 2. lllustration of using 1 to control the number of RBF nodes in
the resultant network. (a) MSE versus X. (b) number of nodes versus A.
(c) Combining (a) and (b), we obtain MSE versus the number of RBF
nodes.

an N’ x M matrix, and its element in i’th row and jth column
is given by

N

/./ p— . 2
[A]y, = exp <——”x ] ”2) : (63)

The two parameters, Pg and abz, describe the failure levels
for open weight fault and multiplicative weight noise, respec-
tively. We consider three fault scenarios: {Pg = sz = 0.005},
{Psg = o} = 001}, and {Pg = o} = 0.05}. For the
ADMM-MCP algorithm, we set y = 1.001 and p = 0.1.
The parameter A is used to control the number of nodes.

B. MSE VERSUS THE NUMBER OF HIDDEN NODES

We use the ASN data set to illustrate the way to control
the number of nodes. We can vary the value of A to control
the number of RBF nodes. Figure 2(a)-(b) show test set
MSE versus A and number of nodes versus A. Combining
Figure 2(a) and (b), we obtain MSE versus the number of
hidden nodes, as shown in Figure 2(c). Unlike the com-
mon algorithms that provide U-shaped test set MSE curves,
the proposed algorithm provides MSE curves with nearly
monotonic decreasing behaviour respect to the test set MSE
of faulty networks. We can observe that increasing the num-
ber of RBF nodes leads to the decrease of test set MSE of
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FIGURE 3. Convergent behaviors of the proposed method.

faulty networks. This is because the additional term, wTRw
where R = (Pg +abz)diag (ﬁATA) - I:V—’SATA, not only makes
the trained network to tolerate the multiplicative noise and
node failure, but also has the ability to avoid overfitting. For
other datasets and settings, their MSE curves have the similar
behaviour.

C. CONVERGENCE

Here we use the ASN dataset with {Pg = of = 0.01}
as an example to intuitively demonstrate the convergence.
The result is shown in Figure 3 which shows the objective
value ¥ (w) = ziv lly —Aw||§ + wIRw versus the number
of iterations. We can see that within 100 to 200 iterations,
the training objective value nearly settles down. If we increase
the value of A, then the algorithm converges to a larger
objective value. It is because increasing A leads to a restriction
on the approximation ability of the resultant networks and the
resultant networks have larger objective value ¢ (w). For all
other datasets and other settings, they have similar properties
of convergence.

D. COMPARISON ALGORITHMS

We compare our proposed algorithm with six other algo-
rithms. They are, respectively, the fault tolerant OLS algo-
rithm (OLS) [19], the fault tolerant [/j-norm approach
(ADMM-[y) [26], the [;-norm regularization approach
(l1-reg.) [39], the support vector regression algorithm
SVR [39], the orthogonal forward regression algorithm
(OFR) [47] and the Homotopy method (HOM) [48]. Our aim
is to show that our proposed algorithm has better RBF
center selection capability. We will show that when we do
not use all the training input vectors as the RBF centers,
the performances of our proposed algorithm are better
than those of the six comparison algorithms.

The fault tolerant OLS algorithm and the fault tolerant
ADMM-/i-norm algorithm have fault tolerant ability. The
fault tolerant OLS algorithm includes two stages. In the first
one, it uses the OLS method to generate a sorted list of
RBF nodes. In the second stage, it constructs a fault tolerant
RBF network with desired number of nodes. The fault tol-
erant ADMM-/; approach is our previous work based on an
l1-norm regularizer.

VOLUME 7, 2019

TABLE 2. Settings of the tuning parameters in the SVR algorithm.

Dataset Parameters
Abalone C = {0.01,0.03,0.06,0.1,0.3,0.6,1},
e={1,15,2,2.5,3,3.5,4,4.5,5,5.5,6}
ASN C = {0.005,0.01, 0.03,0.05,0.1,0.3,0.5},
€ = {0.01,0.05,0.1,0.15,0.175,0.2,0.25,0.3,0.35, 0.4}
Housing C ={0.01,0.02,0.04,0.08,0.2,0.4, 0.8},
¢ = {0.01,0.02,0.04,0.08,0.2,0.4,0.8}
Concrete C =1{0.01,0.03,0.06,0.1,0.3,0.6,1},
e = {0.01,0.03,0.06,0.1,0.3,0.6, 1}
Energy C = {0.005,0.01, 0.05,0.1,0.3,0.5},
e = {0.01,0.05,0.1,0.125,0.15,0.2,0.25,0.3,0.35,0.4}
— C = {0.001,0.005,0.01, 0.05,0.1, 0.2},
e = {0.005, 0.0075,0.01, 0.025, 0.05,0.075,0.1, 0.2}
MG C = {0.002,0.003,0.02, 0.03, 0.04, 0.05, 0.06},
¢ ={0.2,0.3,0.4,0.5,0.6,0.7}
Soace-g: C =1{0.01,0.02,0.03,0.04,0.05,0.3,0.47,
pace-ga e={0.2,0.3,0.4,0.5,0.6,0.7,0.8}
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FIGURE 4. Performances of various algorithms under the fault-free
situation.

The [1-norm regularization approach [39] considers the
original MSE training objective and uses an /j-norm regu-
larizer to control the number of RBF nodes. Its fault tolerant
ability is inadequate. Especially, when the fault level is high.
The SVR algorithm [39] is able to train the RBF network and
to select the centers simultaneously. It uses two parameters C
and € to control the training process. Table 2 shows the
parameter settings for different datasets. The SVR algorithm
has certain fault tolerant ability. It is because the parameter C
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TABLE 3. Average test MSE over 20 trials under the fault-free situation.

Dataset ADMM-MCP ADMM-{; OLS l1-reg. SVR HOM OFR
§ AVG AVG no. AVG AVG no. AVG AVG no. AVG AVG no. AVG AVG no. AVG AVG no. AVG AVG no.
MSE of nodes MSE of nodes MSE of nodes MSE of nodes MSE of nodes MSE of nodes MSE of nodes
Abalone 4.5789 730.2 4.5697 726.4 4.6405 40.8 4.5697 726.4 4.7486 7774 4.5920 95.6 5.2282 673.7
ASN 0.01100 409.4 0.01096 401.0 0.00736 401.0 0.01096 401.0 0.01020 418.1 0.00667 200.2 0.01275 319.1
Housing 0.00745 135.3 0.00746 1342 0.00688 129.7 0.00746 1342 0.00782 141.4 0.00567 104.9 0.01248 55.1
Concrete | 0.00848 327.0 0.00860 351.6 0.00660 203.4 0.00860 351.6 0.00719 364.5 0.00632 179.6 0.01329 250.7
Energy 0.00453 328.5 0.00459 324.5 0.00356 324.5 0.00459 324.5 0.00340 339.7 0.00293 380.3 0.00549 190.2
WwWQW 0.01473 1490.0 0.01476 1460.0 0.01424 338.0 0.01480 1468.0 0.01471 1514.3 0.01417 146.8 0.01505 563.5
MG 0.01762 54.9 0.01933 57.2 0.01576 78.2 0.01933 572 0.02138 62.0 0.01523 110.5 0.01838 345.2
Space-ga | 0.02103 103.5 0.01947 249.6 0.01593 308.1 0.01947 249.6 0.01975 110.6 0.01713 307.1 0.02831 946.4
ASN: p=0.005 and 62=0.005 ASN: p,=0.01 and 62=0.01 ASN: p;=0.05 and 07=0.05
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FIGURE 5. Performances of various algorithms under the faulty situation.

is capable to limit the magnitudes of the trained weights.
The parameter € is used to control its approximation ability.
However, the main drawback of SVR algorithm is that there
is no simple way to find an appropriate pair of C and €. In our
experiment, we use trial-and-error method to determine them.

The Homotopy method [48] is an incremental learn-
ing method. It has an /;-norm regularization term, and
it can tune its regularization parameter automatically. The
OFR algorithm [47] is an incremental learning method too.
It chooses one RBF center at a time with the orthogonal
forward regression procedure. For OFR, an l-norm regu-
larization term is used. It can also tune the regularization
parameter automatically during training process.

In the following two experiments, the simulation was
ran 20 times. In each trial, the samples of dataset were
randomly split for training and testing set.

E. COMPARISON:FAULT FREE CASE

This subsection investigates the performances of various
algorithms under the fault-free situation. It gives us a base-
line of the performances under the fault-free situation. Some
typical examples are given by Figure 4. In the fault-free case,
the performances of the fault tolerant /;-norm approach and
the /1-norm regularization approach are substantially same
with each other. For OLS, HOM, OFR and SVR, we select
their minimum MSE and the corresponding number of nodes
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to represent their performances. For other algorithms, we use
the points where the number of nodes is close to the best result
of SVR to represent their performances.

Table 3 shows the average test set error over the 20 trials.
From the table and Figure 4, it can be observed that, under the
fault-free environment, the performances of OLS and HOM
are better than other algorithms.

F. COMPARISON:FAULTY CASE

This subsection compares the proposed algorithm with
the aforementioned algorithms under the concurrent
fault situation. We show that when we do not use all the
training input vectors as the RBF centers, the performances
of our proposed algorithm are better than those of the six
comparison algorithms. Three fault levels are considered.
They are {Pg = of = 0.005}, {Pg = of = 0.01} and
{Pg = of = 0.05}.

The typical result of one of the 20 trials of the ASN dataset
under different fault levels is given by Figure 5. In the figure,
the first, second and third columns show the test MSE results
of faulty networks for {Pg = a}? = 0.005}, {Pg = 6}3 =
0.01} and {Pg = ‘71;2 = 0.05}, respectively. Here we use the
first column in Figure 5 to discuss the result.

o The performances of the HOM and OFR algorithms are
very poor. Their minimum test set MSE values are equal
to 0.13265 and 521.8148, respectively. They are much
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TABLE 4. Average test MSE over 20 trials under the concurrent fault situation.

Dataset Fault level ADMM-MCP ADMM-[; OLS l1-reg. SVR HOM OFR
AVG AVG no. AVG AVG no. AVG AVG no. AVG AVG no. AVG AVG no. AVG AVG no. AVG AVG no.
MSE of nodes MSE of nodes MSE of nodes MSE of nodes MSE of nodes MSE of nodes MSE of nodes
Pg = o'g =0.005 | 5.1617 140.9 5.3611 156.2 5.3269 156.2 5.5938 28.3 5.388 767.0 51.3834 7.5 580584 3.1
Abalone Pg =op =0.01 5.2587 174.8 5.5254 202.2 5.4416 202.2 5.9977 25.1 5.5537 748.0 56.2897 54 1155290 3.1
Pg =o0p =0.05 5.6169 313.8 6.2372 356.8 5.8697 356.8 8.4599 19.2 6.2801 854.6 62.6329 3.9 5542897 3.1
Pg = af =0.005 | 0.01512 142.4 0.01617 154.6 0.01810 154.6 0.01672 165.2 0.01641 467.2 0.08730 33 569.2 2.8
ASN Pg =o0; =0.01 | 0.01596 193.9 0.01711 209.1 0.01928 209.1 0.02054 572 0.01731 609.3 0.09517 3.1 1132.7 2.8
Pg =07 =0.05 | 0.02006 3234 0.02086 347.2 0.02262 347.2 0.03078 20.0 0.02105 621.4 0.11130 3.0 5434.4 2.8
Pg = Ug =0.005 | 0.01527 56.8 0.01583 61.9 0.01654 61.9 0.01798 12.9 0.01716 88.2 0.05489 4.7 3.721 2.4
Housing Pg =0 =0.01 0.01656 53.6 0.01743 60.9 0.01832 60.9 0.02053 10.6 0.01883 75.5 0.06362 4.0 7.362 2.4
Pg =07 =0.05 | 0.02135 55.9 0.02343 62.0 0.02476 62.0 0.02999 6.9 0.02476 87.9 0.07864 3.4 35.160 2.4
Pg = (rg = 0.005 | 0.01218 1242 0.01334 131.5 0.01756 131.5 0.01258 138.5 0.01376 278.5 0.04479 13.1 89.61 4.1
Concrete Pg =07 =0.01 | 0.01387 114.7 0.01489 122.6 0.01978 122.6 0.01483 94.1 0.01514 271.8 0.05112 11.3 178.25 4.1
Pg =07 =0.05 | 0.01724 133.1 0.01910 140.0 0.02515 140.0 0.02358 323 0.01942 284.9 0.06605 8.9 855.10 4.1
Pg = rrg = 0.005 | 0.00518 150.2 0.00560 161.1 0.00568 161.1 0.00542 155.0 0.00566 293.1 0.02966 26.5 0.05854 9.3
Energy Pg =07 =0.01 | 0.00560 156.1 0.00610 167.0 0.00632 167.0 0.00591 159.0 0.00619 363.8 0.03859 21.8 0.06895 8.4
Pg = o; =0.05 | 0.00761 2222 0.00856 2333 0.00849 2333 0.01026 1234 0.00870 211.1 0.06420 143 0.10650 4.8
Pg = o'g = 0.005 | 0.01641 106.6 0.01678 119.6 0.01732 119.6 0.01702 39.6 0.01685 1346.1 0.03350 52 535.7 2.2
WQW Pg =o; =0.01 | 0.01660 142.6 0.01701 169.2 0.01753 169.2 0.01788 29.6 0.01710 1461.0 0.03970 5.0 1065.9 2.2
Pg =o0p =0.05 | 0.01729 355.8 0.01763 385.6 0.01807 385.6 0.02419 22.6 0.01811 697.8 0.06621 4.4 5114.1 2.2
Pg = ai =0.005 | 0.01924 151.7 0.02145 168.6 0.02041 168.6 0.02069 75.4 0.02160 62.0 0.05536 27.9 4636.1 5.4
MG Pg =o0; =0.01 | 0.01974 209.3 0.02168 226.8 0.02107 226.8 0.02252 60.1 0.02181 62.4 0.07124 259 9225.5 5.4
Pg =07 =0.05 | 0.02218 381.9 0.02338 397.5 0.02345 397.5 0.03300 47.8 0.02345 63.3 0.13866 18.8 44262.7 54
Pg = Ug =0.005 | 0.01948 396.6 0.02081 433.8 0.01999 433.8 0.02018 257.2 0.02098 110.3 0.16969 37.1 1.6789 3.8
Space-ga | Pg = o; = 0.01 0.01996 415.8 0.02158 4475 0.02055 4475 0.02121 233.6 0.02198 111.5 0.18764 31.1 3.1215 3.6
Pg =07 =0.05 | 0.02171 849.6 0.02311 884.9 0.02221 884.9 0.02724 213.6 0.02334 121.8 0.23805 17.9 14.098 3.3

TABLE 5. The paired t-test between ADMM-MCP and OLS. For the one-tailed test with 95% level of confidence and 20 trials, the critical t-value is 1.729.

Dataset Fault OLS ADMM-MCP ) AVG Standard tvalue p-value Conﬁde_nce interval
level AVG MSE AVG MSE improvement error of AVG improvement
Pg =02 =0.005 5.3269 5.1617 0.1652 0.0198 8.3 4.54 x 10798 [0.12376,0.20676]
Abalone P =07 =0.01 5.4416 5.2587 0.1829 0.0159 11.7 1.99 x 10~ 10 [0.14757,0.21831]
Pg =0; =0.05 5.8697 5.6169 0.2528 0.0109 23.2 1.04 x 10~ 1° [0.22816,0.27743]
Pg =02 =0.005 | 0.01810 0.01512 0.00298 0.00023 [ 128 | 444 x 10~ [ [0.00249,0.00347]
ASN P3 =07 =0.01 0.01928 0.01596 0.00332 0.00017 19.0 3.93x 10 [0.00295,0.00368]
Pg =0; =0.05 0.02262 0.02006 0.00256 0.00015 16.7 3.97 x 10~ 13 [0.00224,0.00288]
Pg =02 =0.005 0.01654 0.01527 0.00127 0.00016 79 1.12 x 10797 [0.00093,0.00161]
Housing P =0; =0.01 0.01832 0.01656 0.00176 0.00016 10.9 6.54 x 10~ 10 [0.00142,0.00210]
P3 =0; =0.05 0.02476 0.02135 0.00341 0.00024 14.2 6.82 x 10~ 12 [0.00290,0.00392]
Pg = Ug = 0.005 0.01756 0.01219 0.00538 0.00097 5.6 1.17 x 10705 [0.00335,0.00741]
Concrete | Pg = o7 = 0.01 0.01978 0.01387 0.00591 0.00109 5.4 1.49 x 10~ 0° [0.00364,0.00818]
Pg =0, =0.05 0.02515 0.01724 0.00791 0.00136 5.8 6.70 x 1077 [0.00506,0.01076]
Pg =02 =0.005 0.00568 0.00518 0.00050 0.00005 9.9 3.14 x 10799 [0.00040,0.00061]
Energy P =07 =0.01 0.00632 0.00560 0.00072 0.00006 12.3 8.96 x 10~ ! [0.00060,0.00085]
P3 =0, =0.05 0.00849 0.00761 0.00088 0.00006 15.8 1.06 x 10~ 12 [0.00076,0.00100]
Pg =02 =0.005 0.01732 0.01641 0.00091 0.00006 14.2 7.35 x 10~ 12 [0.00077,0.00104]
WQW P =0; =0.01 0.01753 0.01660 0.00093 0.00006 15.5 1.53 x 10~ 12 [0.00081,0.00106]
P3 =0; =0.05 0.01807 0.01729 0.00078 0.00004 30.1 8.50 x 10~ 18 [0.00641,0.00740]
Pg = Ug = 0.005 0.02041 0.01924 0.00118 0.00011 10.9 6.54 x 10~ 10 [0.00095,0.00141]
MG P3 =07 =0.01 0.02107 0.01974 0.00133 0.00007 19.0 3.87 x 10~ 1% [0.00118,0.00147]
Pg =0; =0.05 0.02345 0.02218 0.00127 0.00010 12.3 7.99 x 10~ 11 [0.00106,0.00149]
Pg =02 =0.005 0.01999 0.01948 0.00050 0.00006 8.5 3.21 x 1078 [0.00038,0.00063]
Space-ga | Pg =07 =0.01 0.02055 0.01996 0.00059 0.00005 12.9 3.76 x 10~ 11 [0.00049,0.00068]
P3 =07 =0.05 0.02221 0.02171 0.00051 0.00005 10.9 6.28 x 10~V [0.00041,0.00060]

higher than the test set MSE values obtained from the
other algorithms. In the figure, the red colored marker
shows the minimum test set MSE of the SVR algo-
rithm. The minimum value is equal to 0.0015838 and the
number of used nodes is 694. When the ADMM-MCP,
ADMM-I;, and OLS algorithms uses around 694 nodes,
their MSE values are lower than that of the SVR algo-
rithms. From Figure 5, the MSE curve of the pro-
posed ADMM-MCP is lower than those of the other
algorithms. That means, in terms of the number of
nodes and the test set MSE, the performances of
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the ADMM-MCP are better than those of the other
algorithms.

o To further discuss the result, we can use the SVR

and ADMM-¢; algorithms as anchors. As mentioned
in the above, for SVR, the minimum value is equal
to 0.0015838 and the number of used nodes is 694.
The ADMM-¢; algorithm is able to use 157 nodes to
achieve a similar test set MSE value, i.e., 0.015672. For
the OLS algorithm, when around 150 nodes are used,
the MSE value is 0.016552 which is higher than that of
the ADMM-{;. For the ¢; algorithm, the minimum test
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TABLE 6. The paired t-test between ADMM-MCP and ADMM-/,. For the one-tailed test with 95% level of confidence and 20 trials, the critical t-value is

1.729.
Dataset Fault ADMM-[; ADMM-MCP AVG Standard tvalue p-value Confidence interval
) level AVG MSE AVG MSE improvement error of AVG improvement

Pg =02 =0.005 | 53611 5.1617 0.1994 0.0146 137 1 1.33 x 10~ T | 10.16900,0.22989]

Abalone [ Pg = o7 = 0.01 5.5254 5.2587 0.2667 0.0206 129 | 355 x 10~ T | [0.22012,0.31331]
Ps =07 =0.05 6.2372 5.6169 0.6203 0.0243 250 | 2.68 x 10~ '® | [0.56413,0.67641]

Pg =07 =0.005 | 0.01617 0.01512 0.00105 0.00007 [ 143 ] 6.51 x 10~ % | [0.00090,0.00121]

ASN Pg=0Z=001 | 00I711 0.01596 0.00115 0.00008 | 145 [ 483 x 10 ' | [0.00099,0.00132]
Ps =07 =10.05 | 0.02086 0.02006 0.00080 0.00009 85 [ 329 x 10~ | 10.00060,0.00100]

Pg =07 =0.005 [ 0.01583 0.01527 0.00056 0.00010 | 57 [ 8.50x 10-9¢ | 10.00035,0.00076]

Housing | Pg =07 =0.01 | 001743 0.01656 0.00086 0.00011 77 [ 159 x 1097 | [0.00063,0.00110]
Pg=07=0.05 | 0.02343 0.02135 0.00208 0.00019 | 11.0 [ 539 x 101U | [0.00169,0.00248]

Pg =07 =0.005 | 0.01334 0.01218 0.00116 0.00009 [ 128 [ 4.50 x 10~ T [ [0.00097,0.00136]

Concrete | Pg =07 =0.01 | 0.01489 0.01387 0.00102 0.00009 | 11.0 [ 5.21x 10— '” | [0.00082,0.00121]
Pg =07 =0.05 | 0.01910 0.01724 0.00186 0.00014 | 133 [ 2.23x 10 '' [ [0.00156,0.00215]

Pg =07 =0.005 | 0.00560 0.00518 0.00042 0.00005 82 | 6.00x 10798 | [0.00031,0.00053]

Energy [ Pg =02 =0.01 | 0.00610 0.00560 0.00050 0.00006 87 [ 239 x 10 Y% | [0.00038,0.00062]
Ps =07 =0.05 | 0.00856 0.00761 0.00095 0.00009 | 10.I [ 212x 10~ | [0.00076,0.00115]

Pg =07 =0.005 | 0.01678 0.01641 0.00037 0.00003 [ 125 ] 6.30 x 10~ [ [0.00031,0.00043]

WQW [ P3=07=0.01 | 0.01701 0.01660 0.00041 0.00003 | 120 [ 1.21x 10 ' [ [0.00034,0.00048]
Ps =07 =0.05 | 001763 0.01729 0.00034 0.00002 | 140 [ 9.45x 10 ™ | 10.00029,0.00039]

Pg =07 =0.005 [ 0.02145 0.01924 0.00222 0.00021 | 108 [ 8.14 x 10-10 | 10.00179,0.00265]

MG Pg=0Z=0.01 | 002168 0.01974 0.00194 0.00019 | 102 | 1.96 x 10 Y [0.00154,0.00234]
Pg =072 =0.05 | 0.02338 0.02218 0.00121 0.00015 8.1 754 x10°8 [0.00089,0.00152]

Pg =02 =0.005 | 0.02081 0.01948 0.00133 0.00026 | 5.1 3.26 x 10~° [0.00078,0.00187]

Space-ga | Pg =07 =0.01 | 0.02158 0.01996 0.00162 0.00025 6.6 1.39 x 10°° [0.00110,0.00214]
Pg=07=10.05 | 002311 0.02171 0.00140 0.00022 | 65 15210 ° [0.00095,0.00185]

set MSE is 0.016419 and the number of the used nodes
is 169. For the proposed ADMM-MCP algorithm, it is
able to use 139 nodes only to lower the test set MSE
to 0.015281. Clearly, the performances of the proposed
ADMM-MCP are better than those of the comparison
algorithms.

For each fault level and each dataset, we repeated the
experiment 20 trials. In each trail, the samples of dataset
were randomly split for training and testing set. The results
are summarized in Table 4. From the table, it can be seen
that under the concurrent fault situation, even we select the
best MSE values of SVR, [i-reg., HOM, and OFR, their
performance are still unacceptable. Especially, when the fault
level is high, their test MSE values are much higher than those
of the remaining algorithms. The ADMM-MCP, ADMM-[;
and OLS algorithms can effectively reduce the influence of
the concurrent fault. Among them, the ADMM-MCP is the
best which has smaller average MSE values and uses fewer
number of nodes.

G. PAIRED T-TEST

This subsection uses the paired t-test to illustrate that the
improvement of our proposed algorithm is statistically sig-
nificant. From Table 4, The ADMM-¢; and OLS algorithm
are the second best and the third best. Hence we perform
the paired tests between ADMM-MCP and ADMM-/¢, and
between ADMM-MCP and OLS. The paired test results
are summarized in Tables 5 and 6. For the one-tailed test
with 95% level of confidence and 20 trials, the critical t-value
is 1.729.

151912

From the tables, we can see that all the test t-values are
greater than 1.729 and all p-values are smaller than 0.05. In
other words, we have enough confidence to say that on aver-
age the proposed ADMM-MCP is better than the ADMM-[;
and OLS algorithm. Besides, all confidence intervals in the
two tables do not include zero. Therefore, we can further
confirm that the improvement of the proposed ADMM-MCP
is statistically significant.

VI. CONCLUSION

In the paper, the fault tolerant RBF neural network and its cen-
ter selection problem are studied. Based on ADMM frame-
work and £p-norm, this paper proposes the ADMM-MCP
algorithm. First we introduce an £p-norm term, which has
an ability to remove some unimportant RBF nodes during
training, into the fault tolerant objective function. Since £¢-
norm is noncontinuous, we cannot use traditional gradient
descent like algorithms to minimize the modified objective
function. We then approximate the £op-norm term with the
MCP function. However, the MCP-based objective function
is still nonconvex and nonsmooth, traditional gradient descent
like algorithms cannot handle it. This paper then applies
the ADMM framework to construct an algorithm, namely
ADMM-MCEP, to train an RBF network and to select RBF
nodes simultaneously. The ADMM framework breaks down
the update into three parts. Each part can be effectively
solved, even though some parts contain nonconvex and non-
differentiable terms. In addition, we prove that the algorithm
converges. From the experimental results, our ADMM-MCP
algorithm is superior to many other existing algorithms.
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