
Received September 2, 2019, accepted October 1, 2019, date of publication October 7, 2019, date of current version October 17, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2945858

Tackling Class Imbalance Problem in Software
Defect Prediction Through Cluster-Based
Over-Sampling With Filtering
LINA GONG 1,2,3, SHUJUAN JIANG 1,2, (Member, IEEE), AND LI JIANG 1,2
1School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China
2Mine Digitization Engineering Research Center of Ministry of Education, China University of Mining and Technology, Xuzhou 221116, China
3Department of Information Science and Engineering, Zaozhuang University, Zaozhuang 277160, China

Corresponding author: Shujuan Jiang (shjjiang@cumt.edu.cn)

This work was supported by the Fundamental Research Funds for the Central Universities under Grant 2019BSCX28.

ABSTRACT In practice, Software Defect Prediction (SDP) models often suffer from highly imbalanced
data, which makes classifiers difficult to identify defective instances. Recently, many techniques were
proposed to tackle this problem, over-sampling technique is one of the most well-known methods to
address class imbalance problem. This technique balances the number of defective and non-defective
instances by generating new defective instances. However, these approaches would generate non-diverse
synthetic instances, and many unnecessary noise instances at the same time. Motived by this, we propose a
Cluster-based Over-sampling with noise filtering (KMFOS) approach to tackle class imbalance problem in
SDP. KMFOS firstly divides defective instances into K clusters, and new defective instances are generated
by interpolation between instances of each two clusters. After this, these new defective instances would
diversely spread in the space of defective dataset. Then, we extend this cluster-based over-sampling through
the Closest List Noise Identification (CLNI) to clean the noise instances. We do extensive experiments
on 24 projects to compare KMFOS with some over-sampling approaches such as SMOTE, Borderline-
SMOTE, ADASYN, random over-sampling (ROS), K-means SMOTE, SMOTE + IPF, SMOTE + ENN
and SMOTE + Tomek Links using five prediction classifiers. At the same time, we also compare KMFOS
with other state-of-the-art class-imbalance methods including balancebaggingclassifier, RUSboostclassifier,
InstanceHardnessThreshold and cost-sensitive methods. Experimental results indicate our KMFOS can
obtain better Recall and bal values than other over-sampling methods and other compared class-imbalance
methods. Hence, KMFOS is an efficient approach to generate balanced data for SDP and improves the
performance of predicting models.

INDEX TERMS Software defect prediction, over-sampling, class imbalance, K-means, noise filtering.

I. INTRODUCTION
Software defect prediction (SDP) technologies can detect
the largest number of defective modules by machine
learning methods [1], [2], [30]. These machine learn-
ing methods may achieve good prediction performance
when these training datasets are balanced [3], [4], [29].
However, there are more non-defective instances than
defective instances in software projects, which leads
class-imbalanced problem in SDP. Machine learning algo-
rithms trained on these class-imbalanced datasets may be

The associate editor coordinating the review of this manuscript and

approving it for publication was Porfirio Tramontana .

biased towards non-defective instances and misclassify
defective instances [5], [28]. Thus, the class imbalance prob-
lem is considered as one of the main factors affecting the
performance of SDP, and more and more researchers have
been working to solve this problem in SDP [6]–[8].

The prevalent methods tackling class imbalance problem
are mainly sampling, cost-sensitive and ensemble learning
methods. Among them, over-sampling is a classifier indepen-
dent technique, which has been studied by many researchers.
Chawla et al. [9] proposed synthetic minority over-sampling
technique (SMOTE) using ROS as the core idea, whereby
new artificial minority instances are generated to strike
a balance in the number of minority and majority class.

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 145725

https://orcid.org/0000-0002-5272-6706
https://orcid.org/0000-0003-0643-0565
https://orcid.org/0000-0003-1314-4735
https://orcid.org/0000-0003-3264-185X

L. Gong et al.: Tackling Class Imbalance Problem in SDP Through Cluster-Based Over-Sampling With Filtering

FIGURE 1. The distribution diagram of instances using SMOTE on PC4 project.

Also, Barua et al. [10] evaluated the positive effect of
synthetic methods such as SMOTE and adaptive synthetic
sampling (ADASYN) [11].

These over-sampling methods can improve classifiers to
identify more instances in minority class, but at the same time
theymay lead tomisclassifymany instances inmajority class.
See figure 1, PC4 is the very class imbalance dataset from a
real project in NASA group, and the distribution of defective
instances is very sparsely. After using SMOTE, the areas
including many minority instances get more new minority
instances, on the contrary, sparse areas are still sparse. More-
over, the boundary of defective and non-defective class is
ambiguity, which make classifiers difficult to classify.

The reasons are that: i) new synthetic instances may be
non-diverse and distributed in small area, which leads clas-
sifiers easy to overfit. ii) the K-nearest neighbor instances
considered would belong to majority class, which lead the
boundary ambiguity problem between majority and minority
classes, and generate noise instances.

For the above disadvantages, we propose a cluster-based
over-sampling with filtering approach (KMFOS) that
improve the recognition rate of defective instances and reduce
the misclassified rate of non-defective instances for classi-
fiers simultaneously. In general, our work consists mainly of
the following contributions:

• To avoid the new defective instances non-diverse and
distributed in small area, KMFOS generates new defec-
tive instances by interpolation between instances of
each two clusters, and this makes these new defective
instances diversely spread in the space of defective
dataset.

• At the same time, in order to clean the unnecessary noise
instances, KMFOS extends cluster-based over-sampling
through CLNI to clean noise instances.

• To illustrate the effectiveness of our KMFOS approach,
we conduct extensive experiments on 24 imbalanced
datasets from NASA, AEEEM, ReLink and SOFTLAB
groups in comparison to five over-sampling methods,
three over-sampling with filtering methods using five
classifiers, and four other class-imbalanced methods.

Experimental results indicate that our KMFOS signifi-
cantly improves the Recall and bal in SDP.

The organization of this work is as follows. The related
research works are discussed in section II. Section III
describes our KMFOS method in detail. The experimen-
tal object, methodology and evaluation measures are pre-
sented in section IV. Section V presents the experimental
results and analysis. The threats to our study are discussed
in section VI. Lastly, the summary and future works are
presented in section VII.

II. RELATED WORKS
Software defect prediction technology has been one of the
most concerned research topics in software engineering since
1970s [31]–[33]. In recent years, with the rapid development
of machine learning, various machine learning methods have
been widely applied to improve the performance of SDP.

Furthermore, in software projects, defective modules are
far less than non-defective modules, which is class imbalance
problem. This problem seriously affects the performance of
classifiers.

There have been some researches on class imbalance prob-
lem in SDP, which can be divided into sampling methods,
ensemble methods and cost-sensitive learning methods.
Sampling methods mainly adopt random over-sampling or
under-sampling techniques to balance dataset. Ensemble
learning methods combine multiple weak supervised classi-
fiers to get a better strong supervised classifier. The com-
monly used ensemble learningmethods are bagging, boosting
and stacking. Cost-sensitive learning methods assign differ-
ent misclassified cost to instances based on class label.

Over-sampling techniques is one of sampling methods by
duplicating existing minority instances or generating new
minority instances to balance the imbalanced data. Random
over-sampling (ROS) is to randomly sample instances from
minority class, and add these sampling instances into the
dataset. But the repeated sampling often leads sever overfit-
ting. SMOTE [9] generated new synthetic instances of minor-
ity class to balance imbalanced dataset. For each instance
in minority class, the euclidean distance was used to find K

145726 VOLUME 7, 2019

L. Gong et al.: Tackling Class Imbalance Problem in SDP Through Cluster-Based Over-Sampling With Filtering

FIGURE 2. The framework of our method.

nearest neighbors, and the new synthetic instance was created
along the line segment connecting any nearest neighbors.

However, SMOTE has some drawbacks related to the
creation of new minority instances. One weakness was to
randomly select one minority instance, which did not take
the issues of within-class imbalance into account. This made
minority instances non-diverse. Another weakness was that
noise instances were further amplified when linearly interpo-
lating one noise minority instance.

In order to eliminate these drawbacks, numerous exten-
sions of SMOTE have been proposed, and they can be divided
into two aspects:
• Improving the creation of new minority instances by
considering specific parts of minority instances. Such
as, Borderline-SMOTE [16] generated new minority
instances focusing on the boundary between minority
andmajority class. ADASYN [11] generated newminor-
ity instances focusing on minority instances around the
majority instances.

• Combing SMOTE with noise filtering techniques.
Such as, SMOTE + ENN [19] used Edited Nearest
Neighbor Rule (ENN) as a post-processing step after
SMOTE. SMOTE + TL [42] applied Tomek Links TL)
as a post-processing step after SMOTE. SMOTE +
IPF [41] applied Iterative-Partitioning Filter (IPF) [43]
a post-processing step after SMOTE.

Cluster-based SMOTE emphasized on within-class
regions, which used K-means to cluster the minority

instances or all instances before using SMOTE. Such as,
K-means SMOTE [40] firstly applied K-means to clus-
ter all instances, and then filtered out clusters with a
lower proportion of minority instances. Finally, SMOTE
was applied in each cluster. Cluster-based SMOTE
methods are different from the above SMOTE which
didn’t consider the class label. So motived by this,
we propose Cluster-based Over-sampling with filtering
approach.

III. PROPOSED METHOD
A. OVERVIEW
Our KMFOS method introduces K-Means clustering algo-
rithm and noise filtering into over-sampling technique to
balance imbalanced datasets. Not only is the imbalance
between classes considered, but also the imbalance between
internal defective class is considered. This can avoid the
non-diverse distribution of defective instances. Moreover,
using noise filtering can avoid the influence of noise
instances.

KMFOS includes three steps: clustering, over-sampling
and filtering. In clustering step, the defective instances are
clustered into k clusters by K-Means. In the over-sampling
step, the new minority instances are generated based
on two minority instances from two different clusters.
In the filtering step, we apply CLNI [25] algorithm to
detect and clean noisy instances. The framework is list
in figure 2.

VOLUME 7, 2019 145727

L. Gong et al.: Tackling Class Imbalance Problem in SDP Through Cluster-Based Over-Sampling With Filtering

B. PHASE 1: CLUSTERING
In our method, the K-Means clustering algorithm is applied
to cluster defective instances into k clusters. K-Means is a
unsupervised clustering algorithm. It divide instances into
k clusters according to the distance between instances. The
points within the cluster should be connected as closely as
possible, while the distance between the clusters should be as
large as possible.

It is noted that K-Means is iterative method and the hyper-
parameters k (the number of clusters) should be set firstly.
The purpose of K-Means is to find the best label Ct of each
instance to minimize the loss function, and then the center
µi of each cluster can be calculated directly. Finding the
appropriate k value is critical to the effectiveness of K-means
suppression, because it affects how many clusters can be
found in the over-sampling step. The loss function is defined
as followed:

Los =
k∑
i=1

n∑
t=1

(xt − µi)2|(ct = i)). (1)

where, n is the number of instances, Ct is the label of each
instance in jth iterative. µi is the center of each cluster.

C. PHASE 2: OVER-SAMPLING
After the clustering step, the over-sampling step determines
how the new minority instances are be generated and how
many new minority instances should be generated in each
cluster. The aim of this step is to balance the distribution of
instances between-class and within-class, which could gener-
ate more diverse and evenly distributed defective instances.

Let us suppose that the number of non-defective instances
is N− and the number of defective instances is N+. So the
number of new defective instances is N = N− − N+.
The defective instances in clustering step are divided into k
clusters, and the number of instances in ith cluster is ni.
The core of our oversampling is to generate new defective

instances between any two clusters. There are k×(k−1)
2 combi-

nations. For one combination of i and j cluster, we randomly
sample one defective instance p from i cluster, and sample one
defective instance q from j cluster. A new defective instance
m is determined by the interpolating p and q: m = α × p +
β × q. Where, α = nj

ni+nj
and β = ni

ni+nj
. The number of

new defective instances from this combination is calculate as
ni+nj

(k−1)×N+ × N .
From the formula of new defective instance, we can see

that if ni > nj, the coefficient β of instance q is bigger than
the coefficient α of instance p. So the new instances could
diversely spread in the space of defective space.

D. PHASE 3: NOISE FILTERING
As we see in figure 1, after generating new defective
instances, there are more noise instances (including defective
and non-defective instances) that influence the performance
of classifiers. In reference [44], they found that the misclas-
sification of classifiers often occurred the instances near the

boundaries of majority and minority class. In order to clean
noisy instances, CLNI method is applied. Since not only are
the non-defective noisy, but also some defective instances are
noisy. We clean noise instances in both non-defective and
defective class.

The core idea of CLNI is based on the number of
non-defective neighborhood and defective neighborhood
instances for each instance. Firstly, we applied euclidean
distance to get the nearest neighbors. Then, in the kn neigh-
borhood instances of one non-defective instance, if the num-
ber of defective neighborhood instances is bigger than that
of non-defective neighborhood instances, this means that
non-defective instance is a noise instance, and should be
removed. On the contrary, in the kn neighborhood instances
of one defective instance, if the number of non-defective
neighborhood instances is bigger than that of defective neigh-
borhood instances, this means that defective instance is a
noise instance, and should be removed.

Though these three phases of clustering, over-sampling
and filtering, the training dataset are constructed. The
pseudo-code of KMFOS is shown in algorithm 1. And based
on this training dataset, we train defect prediction classifiers
to predict the defect-prone of testing data. In order to avoid
the influence of classifiers, Naive Bayes (NB) [20], Random
Forests (RF) [21], Support Vector Machine (SVM) [22],
Logistic Regression (LR) [23] and Decision Tree (DT) [24]
are applied in our work.

IV. EXPERIMENTAL SETUP
As mentioned above, the aim of our study is to improve
synthetic methods to enhance the prediction perfor-
mance of classifiers trained on class-imbalanced dataset.
So we conduct experiments to answer the followed three
questions:

RQ1: How is the effect of our cluster-based over-sampling
for tackling class imbalance problem?

RQ2: How is the effect of noise filtering for tackling class
imbalance problem?

RQ3: Does KMFOS method obtain better performance
than other class imbalance methods?

For RQ1, we compare our cluster-based over-sampling
method (in step 2) with SMOTE, Borderline-SMOTE,
ADASYN, ROS, K-Means SMOTE and no over-sampling.
For RQ2, we compare our KMFOS method with only
using cluster-based over-sampling method (in step 2),
SMOTE + IPF, SMOTE + ENN and SMOTE + TL.
For RQ3, we compare our KMFOS with four other
class imbalanced methods including balancebaggingclas-
sifier, RUSboostclassifier, InstanceHardnessThreshold and
cost-sensitive learning methods whose misclassified cost
on the basis of the number of defective instances and
non-defective instances. It is noted that five classifiers are
trained after balanced training dataset obtained by these sam-
pling methods.

Next, we will report the experimental objects, the methods
under study, experiment design, model evaluation.

145728 VOLUME 7, 2019

L. Gong et al.: Tackling Class Imbalance Problem in SDP Through Cluster-Based Over-Sampling With Filtering

TABLE 1. Pseudo-code for cluster-based over-sampling with filtering.

A. EXPERIMENTAL OBJECTS
In order to build and validate the effect of our KMFOS
on imbalanced dataset for SDP, we do experiments on
24 projects from NASA, AEEEM, ReLink and SOFTLAB
repositories that are often used in SDP researches. Table 2
lists the detail information of these experimental objects.
The first to seventh columns report the repository, the test-
ing project, the metric granularity, number of metrics,
number of total instances and the ratio of defective
instances.

From table 2, we can see: i) the development languages
of these projects include Java, C and C++; ii) the metrics
granularity coves function, class and file; iii) the number of
instances varies greatly and the ratio of instances for most
projects is well below 25%. So these projects can be used as
the experimental objects to evaluate these class-imbalanced
approaches.

B. THE METHODS UNDER STUDY
In order to validate the effect of KMFOS, we compare
KMFOS with some state-of-the-art class imbalanced tech-
niques, which will be explained below.

SMOTE [9] generated new synthetic instances of minority
class to balance imbalanced dataset. For each instance in
minority class, the euclidean distance was used to find K
nearest neighbors, and the new synthetic instance was created
along the line segment connecting any nearest neighbors.

ADASYN [11] was also by creating new synthetic
instances to balance imbalanced data. For each instance
in minority class, rather than using the same amount of
synthetic instances in SMOTE, the amount of synthetic
instances was determined automatically. If there were more
instances of majority class around an instance of minority
class, ADASYN would generate more synthetic instances for
this instance. That was to say these synthetic instances were

VOLUME 7, 2019 145729

L. Gong et al.: Tackling Class Imbalance Problem in SDP Through Cluster-Based Over-Sampling With Filtering

TABLE 2. The experimental datasets.

mostly from those instances of minority class that were closer
to the majority class.

Borderline-SMOTE [16] divided all instances in minority
class into three categories including noise, danger and safe,
and it only randomly selected instances in danger category
to create new instances by SMOTE. Because the instances
in danger category represented instances near the bound-
ary, and these instances were easy to be misclassified. That
was to say, Borderline-SMOTE only created new instances
for these instances in minority class near the boundary,
while SMOTE treated all instances in minority class in the
same way.

ROS was to randomly sample instances from minority
class, and added these sampling instances into the dataset.
But the repeated sampling often leaded sever overfitting.
SMOTE + ENN, SMOTE + TL and SMOTE + IPF were
the methods which also used the noise filtering. They applied
SMOTE algorithm to balance the dataset, and then used dif-
ferent noise filtering techniques to clean the noise instances.

Noted that all over-sampling approaches generated as
enough defective instances to meet the same number of
instances in defective and non-defective class.

BalancedBaggingClassifier and RUSBoostClassifier were
a combination of random under-sampling (RUS) and ensem-
ble learning. RUSBoostClassifier combined boosting and
RUS methods, while BalanceBaggingClassifier combined

bagging and RUS methods. InstancehardnessThreshold was
to exploit instance hardness during the learning process to
alleviate the effects of class overlap and instance hardness.

Cost-sensitive learning method assigned different misclas-
sified cost to instances based on class label. If the defective
instances were misclassified, the weight of these instances
would be assigned bigger cost. In our experiment, the pro-
portion of the cost in defective instances and non-defective is
based on the number of defective instances and non-defective
instances.

C. EXPERIMENT DESIGN
In order to prove the fairness of the experiment, we apply five
classifiers which have been used for SDP. These classifiers
include NB, RF, SVM, LR and DT. Noted that our experi-
mental environment is Python3.6 and Scikit-learn (0.19.2).
The Hyper-parameter configurations for the five classifiers
are used in the default parameters in Scikit-learn. For the
over-sampling methods, the parameters are set as fellow:

• SMOTE: kn ∈ {5, 15, 20}
• Borderline-SMOTE1: kn ∈ {5, 15, 20}
• K-Means SMOTE: kn ∈ {5, 15, 20} and k ∈

{3, 5, 20, 50}
• SMOTE + ENN: kn ∈ {5, 15, 20}
• SMOTE + TL: kn ∈ {5, 15, 20}

145730 VOLUME 7, 2019

L. Gong et al.: Tackling Class Imbalance Problem in SDP Through Cluster-Based Over-Sampling With Filtering

FIGURE 3. Box plot of compared sampling methods on five classifiers for Recall and bal over 24 imbalanced projects by 20 running.

• SMOTE + IPF: kn ∈ {5, 15, 20}
• KMFOS: kn ∈ {5, 15, 20} and k ∈ {3, 5, 20, 50}

For each testing project, we apply 10 × 10-fold cross-
validation method to reduce the impact of randomness.

D. MODEL EVALUATION
For a good class imbalance method in SDP, the defec-
tive instances should be correctly classified, while the
non-defective instances should not be misclassified. In order
to evaluate the effect of these imbalanced methods, we use
Recall and balance (bal) as the performance measures.
Recall is the ratio of the number of correctly predicted

defective instances to the total number of defective instances.
The bigger the Recall value is, the better the performance of
method is. It is defined as

Recall =
TP

TP+ FN
. (2)

bal is the balance between Recall and pf. The bigger the
bal value is, the better the performance of this method is. It is
defined as:

bal = 1−

√
(1− Recall)2 + pf 2

√
2

. (3)

where, pf is the ratio of the number of incorrectly predicted
non-defective instances to the total non-defective instances.

In addition, to statistically evaluate these class imbalance
methods, we apply the non-parametric Friedman test with the
Nemenyi test at a confidence level of 95% by multiple runs
on 24 projects. This statistical method has been widely used
in SDP [14], [26]. Firstly, the Friedman test is used to decide
whether compared methods have statistically significant dif-
ference. Then, the post-hoc Nemenyi test is used to calculate

the difference, if these methods have statistically significant
difference.

In order to quantify the differences in the compared meth-
ods, Cliff’s Delta is applied to calculate the effect size. Cliff’s
Delta is a non-parametric effect size measure, which includes
four levels based on the value d . |d | < 0.147 (Negligible, N),
0.147 ≤ |d | < 0.333 (Small, S), 0.333 ≤ |d | < 0.474
(Medium, M) and |d | ≥ 0.474 (Large, L).

V. EXPERIMENTAL RESULTS
A. RQ1: HOW IS THE EFFECT OF OUR CLUSTER-BASED
OVER-SAMPLING FOR TACKLING CLASS
IMBALANCE PROBLEM?
1) OVERALL RESULTS
The experimental results of compared over-sampling meth-
ods on five classifiers over 24 projects are presented in
figure 3, which is a box plot. Box plot is a statistical plot
used to show the dispersion of experimental results. The little
square in each method represents the mean value in each
method. A good sampling method should achieve high Recall
and bal values. From figure 3, we can conclude that:

• For DT, LR and SVM classifiers, cluster-based method
obtains higher Recall and bal values than SMOTE,
ADASYN,Borderline-SMOTE,ROS,K-means SMOTE
methods. For NB and RF classifiers, cluster-based
method obtain the similar Recall and bal values.

• The mean values of Recall and bal by cluster-based
method on five classifiers are highest.

These experimental results indicate that our Cluster-based
method could improve the recognition rate of defective
instances and reduce the misclassified rate of non-defective
instances for compared classifiers. Possible reasons are
that (i) SMOTE, ADASYN and Borderline-SMOTE all

VOLUME 7, 2019 145731

L. Gong et al.: Tackling Class Imbalance Problem in SDP Through Cluster-Based Over-Sampling With Filtering

FIGURE 4. The ranks of compared sampling methods on DT classifier with post-hoc Nemenyi test. Methods connected by gray lines are not significantly
different.

FIGURE 5. The ranks of compared sampling methods on LR classifier with post-hoc Nemenyi test. Methods connected by gray lines are not significantly
different.

FIGURE 6. The ranks of compared sampling methods on NB classifier with post-hoc Nemenyi test. Methods connected by gray lines are not significantly
different.

FIGURE 7. The ranks of compared sampling methods on SVM classifier with post-hoc Nemenyi test. Methods connected by gray lines are not significantly
different.

use K-nearest neighbors to create new instances and new
instances are distributed in small area. (ii) ROS method only
simply copied defective instances. (iii) K-means SMOTE
divided all instances to k clusters, which was regardless of
the class label.

2) STATISTICAL ANALYSIS
In order to statistically investigate these results, the non-
parametric Friedman test with post-hocNemenyi test at a con-
fidence level of 95% is used to analyze compared sampling
methods on five classifiers over the 24 imbalanced projects.
Figures 4, 5, 6, 7 and 8 show the rank results in terms ofRecall
and bal.
From these figures, we can observe that:

• In terms of Recall, the performance of cluster-based
method always ranks first and superior to the compared

over-sampling methods on DT, LR, SVM and NB classi-
fiers. On RF classifier, the performance of cluster-based
method ranks the same as ADASYN and superior to
other five over-sampling methods. For the five classi-
fiers, ROS and no over-sampling methods always rank
the last two in terms of Recall.

• In terms of bal, the performance of cluster-basedmethod
ranks always the first and superior to other six com-
pared sampling methods on SVM, NB and DT clas-
sifiers. On LR and RF classifier, the performance of
cluster-based method ranks the same as ADASYN and
superior to other five over-sampling methods.

Further, we apply Cliff’s Delta to calculate the effect size
between cluster-based and compared over-sampling methods
on five classifiers over 24 projects. The results are shown in
table 3.

145732 VOLUME 7, 2019

L. Gong et al.: Tackling Class Imbalance Problem in SDP Through Cluster-Based Over-Sampling With Filtering

FIGURE 8. The ranks of compared sampling methods on RF classifier with post-hoc Nemenyi test. Methods connected by gray lines are not significantly
different.

TABLE 3. The effective size results of compared method in terms of bal and Recall.

FIGURE 9. Box plot of compared sampling methods with filtering on five classifiers for Recall and bal over 24 imbalanced projects by 20 running.

So we can observe that (i) For SVM classifier,
Cluster-basedmethod can improve Larger effect size compar-
ing other six over-sampling methods in terms of bal. That is
to say using Cluster-based method can improve large perfor-
mance of SVM classifier. (ii) For all classifiers, Cluster-based
method can improve Larger or Medium effect size comparing
no over-sampling method in terms of Recall and bal.

B. RQ2: HOW IS THE EFFECT OF NOISE FILTERING FOR
TACKLING CLASS IMBALANCE PROBLEM?
1) OVERALL RESULTS
The experimental results of compared over-sample with
filtering methods on five classifiers over 24 projects are
presented in figure 9. The little square in each method

represents the mean value in each method. From figure 9,
we can discover that: (i) For DT and RF classifiers, KMFOS
method obtains higher Recall and bal values than compared
over-sampling with filtering methods. That is to say, KMFOS
method improves the recognition rate of defective instances,
while it doesn’t increase the error rate of non-defective
instances. CLNI method is more suitable for SDP to tack-
ling noise data. (ii) For LR, NB and RF classifiers, through
SMOTE + ENN achieves similar Recall values to KMFOS
values, the bal values are lower than KMFOS method. That
is to say, SMOTE + ENN method gets good recognition rate
of defective instances, while it increases the error rate of
non-defective instances. (iii) For the five classifiers, KMFOS
method can get better bal andRecall values than cluster-based
method. SMOTE+ ENN, SMOTE+ TL and SMOTE+ IPF

VOLUME 7, 2019 145733

L. Gong et al.: Tackling Class Imbalance Problem in SDP Through Cluster-Based Over-Sampling With Filtering

FIGURE 10. The ranks of compared sampling with filering methods on DT classifier with post-hoc Nemenyi test. Methods connected by gray lines are not
significantly different.

FIGURE 11. The ranks of compared sampling with filtering methods on LR classifier with post-hoc Nemenyi test. Methods connected by gray lines are not
significantly different.

FIGURE 12. The ranks of compared sampling with filtering methods on NB classifier with post-hoc Nemenyi test. Methods connected by gray lines are
not significantly different.

FIGURE 13. The ranks of compared sampling with filtering methods on SVM classifier with post-hoc Nemenyi test. Methods connected by gray lines are
not significantly different.

FIGURE 14. The ranks of compared sampling with filtering methods on RF classifier with post-hoc Nemenyi test. Methods connected by gray lines are
not significantly different.

methods can get better bal and Recall values than SMOTE
method. That is to say, noise filtering is effect on tackling the
class imbalance problem.

2) STATISTICAL ANALYSIS
In order to statistically investigate these results, the non-
parametric Friedman test with post-hocNemenyi test at a con-
fidence level of 95% is used to analyze compared sampling
with filtering methods on five classifiers over the 24 imbal-
anced projects. Figures 10, 11,12, 13 and 14 show the rank
results in terms of Recall and bal. Further, we apply Cliff’s

Delta to calculate the effect size between cluster-based and
compared over-sampling methods on five classifiers over
24 projects. The results are shown in table 4.

From these figures and table 4, we can discover that
(i) KMFOS always ranks the first on five classifiers
in terms of bal and recall. For DT and RF classifiers,
KMFOS improves Large on bal ad Recall compared with
Cluster-based method. That is to say, noise filtering is use-
ful for over-sampling method o DT and RF classifiers.
(ii) For DT, LR and RF classifiers, SMOTE + ENN,
SMOTE + TL and SMOTE + IPF are in the better rank

145734 VOLUME 7, 2019

L. Gong et al.: Tackling Class Imbalance Problem in SDP Through Cluster-Based Over-Sampling With Filtering

TABLE 4. The effective size results of compared over-sampling with filtering method in terms of bal and Recall.

FIGURE 15. The violin plot of the compared methods in terms of Recall and bal.

FIGURE 16. The ranks of other state-of-the-art class imbalance methods with post-hoc Nemenyi test. Methods connected by gray lines are not
significantly different.

than SMOTE method. (iii) For DT, RF and SVM clas-
sifiers, KMFOS improves Large effect size on bal and
Recall compared with SMOTE + IPF, SMOTE + ENN and
SMOTE + TL methods.

So we can observe that using noise filtering can improve
the performance of over-sampling methods.

C. RQ3: DOES OUR KMFOS OBTAIN BETTER
PERFORMANCE THAN OTHER STATE-OF-THE-ART
CLASS IMBALANCE METHODS?
In order to answer the RQ3, we compare our KMFOS
with four class imbalance methods including balancebag-
gingclassifier [45], RUSboostclassifier [46], InstanceHard-
nessThreshold [47] and cost-sensitive methods with DT as
the basic classifier, and report the violin plots of the results
on 24 projects with 20 running for each compared methods
in figure 15. The violin plot combines the characteristics of
box plot and density of results. In addition, we apply the
non-parametric Friedman test with post-hoc Nemeyi test to

statistically analyze the compared methods. Figure 16 lists
the rank results in terms of Recall and bal.

From these figures, we can observe that (i) our KMFOS
can get better Recall and bal than four compared methods,
and always ranks the first level. (ii) The values of Recall
and bal centrally distributed in KMFOS are higher than four
compared methods.

In general, our KMFOS method could improve the pre-
dicting performance of classifiers by balancing the dataset
in term of bal and Recall. That is to say, KMFOS method
could generate good new instances to identify more defective
instances without misclassifying non-defective instances.

VI. THREATS TO VALIDITY
In this section, we describe the threats to validity of our study
in construct validity, internal validity and external validity.

A. THREATS TO CONSTRUCT VALIDITY
These datasets used in our study were collected from bina-
ries rather than source code files, whose defect matching

VOLUME 7, 2019 145735

L. Gong et al.: Tackling Class Imbalance Problem in SDP Through Cluster-Based Over-Sampling With Filtering

was relied on SZZ algorithm. In SZZ algorithm, the discov-
ered defective modules may be incomplete. However, these
projects were widely used in SDP research, we also have the
hypothesis that defect matching criteria in SZZ are the best
extent possible.

B. THREATS TO INTERNAL VALIDITY
In our study, we use Recall and bal to present the prediction
performance. Other measures, such asG-Means andMCC are
not presented.

Also, we executed the compared methods with the default
setting which may lead to possible bias of results.

C. THREATS TO EXTERNAL VALIDITY
The 24 experimental objects are from four groups which
have been widely used in SDP. But these finds would not be
generalizable to commercial software projects. In the future,
we will employ our KMFOS to some commercial projects to
evaluate the performance.

VII. CONCLUSION
In real software development, defect datasets have more
non-defective instances than defective instances, which hin-
ders classifiers performance. Many sampling methods have
been used to reduce the impact of imbalanced datasets. These
methods used resampling or generated new instances to bal-
ance the imbalanced datasets. So these sampling methods
would have randomness and new synthetic instances were
non-diverse and distributed in a small area. At the same
time, they didn’t consider noise instances. Although theymay
improve classifiers to identify more defective instances, they
also may make classifiers misclassify more non-defective
instances. Exploiting these challenges, we present a KMFOS
method to generate new instances diversely spread in the
space of defective space. KMFOS firstly applies K-means
method to divide defective instances into K clusters. Then,
it generates new instances by interpolation between instances
of each two clusters. Lastly, it clean noise instances by CLNI
filtering.

We conduct extensive experiments to evaluate KMFOS
by comparing to (i) five over-sampling methods (SMOTE,
ADASYN,Borderline-SMOTE,ROS, andK-means SMOTE)
through five classifiers including RF, SVM, NB, LR and
DT (ii) three over-sampling with filtering methods
(SMOTE + IPF, SMOTE + ENN and SMOTE + TL)
(iii) four other class imbalanced methods (balancebagging-
classifier, RUSboostclassifier, InstanceHardnessThreshold
and cost-sensitive methods) on 24 software projects. The
experimental results make clear that our KMFOS is superior
to compared methods.

In the further works, we will employ KMFOS method to
other software defect prediction models and some commer-
cial projects to evaluate the performance. We also compare it
to some other class imbalanced methods.

ACKNOWLEDGMENT
The authors are grateful to editors and reviewers for their
valuable comments and useful suggestions. Special thanks
to all the individuals who participated and contributed to
improve the quality and readability of this paper.

REFERENCES
[1] T. Menzies, J. Greenwald, and A. Frank, ‘‘Data mining static code

attributes to learn defect predictors,’’ IEEE Trans. Softw. Eng., vol. 33,
no. 1, pp. 2–13, Jan. 2007.

[2] S. Wang and X. Yao, ‘‘Using class imbalance learning for software defect
prediction,’’ IEEE Trans. Rel., vol. 62, no. 2, pp. 434–443, Jun. 2013.

[3] G. M. Weiss and F. Provost, The Effect of Class Distribution on Classifier
Learning: An Empirical Study. Camden, NJ, USA: Rutgers Univ., 2001.

[4] K. Yoon and S. Kwek, A Data Reduction Approach for Resolving
the Imbalanced Data Issue in Functional Genomics. Berlin, Germany:
Springer-Verlag, 2007.

[5] F. Provost, ‘‘Machine learning from imbalanced data sets 101,’’ in Proc.
AAAI Workshop Imbalanced Datasets, Jul. 2000, pp. 1–3.

[6] Z. Sun, Q. Song, and X. Zhu, ‘‘Using coding-based ensemble learning to
improve software defect prediction,’’ IEEE Trans. Syst., Man, Cybern. C,
Appl. Rev., vol. 42, no. 6, pp. 1806–1817, Nov. 2012.

[7] Y. Kamei, A. Monden, S. Matsumoto, T. Kakimoto, and K.-I. Matsumoto,
‘‘The effects of over and under sampling on fault-prone module detection,’’
in Proc. 1st Int. Symp. Empirical Softw. Eng. Meas. (ESEM), Sep. 2007,
pp. 196–204.

[8] L. Pelayo and S. Dick, ‘‘Applying novel resampling strategies to software
defect prediction,’’ in Proc. Annu. Meeting North Amer. Fuzzy Inf. Process.
Soc., San Diego, CA, USA, Jun. 2007, pp. 69–72.

[9] N. V. Chawla, K. W. Bowyer, L. O. Hall, andW. P. Kegelmeyer, ‘‘SMOTE:
Synthetic minority over-sampling technique,’’ J. Artif. Intell. Res., vol. 16,
no. 1, pp. 321–357, 2002.

[10] S. Barua, M. M. Islam, X. Yao, and K. Murase, ‘‘MWMOTE–Majority
weighted minority oversampling technique for imbalanced data set learn-
ing,’’ IEEE Trans. Knowl. Data Eng., vol. 26, no. 2, pp. 405–425,
Feb. 2014.

[11] H. He, Y. Bai, E. A. Garcia, and S. Li, ‘‘ADASYN: Adaptive synthetic
sampling approach for imbalanced learning,’’ inProc. IEEE Int. Joint Conf.
Neural Netw. (IEEE World Congr. Comput. Intell., Hong Kong, Jun. 2008,
pp. 1322–1328.

[12] G. Blanchard and R. Loubere, ‘‘High-Order Conservative Remapping with
a PosterioriMOOD stabilization on polygonal meshes,’’ J. Comput. Phys.,
2016, pp. 1–43.

[13] M. Shepperd, Q. Song, Z. Sun, and C. Mair, ‘‘Data quality: Some com-
ments on the NASA software defect datasets,’’ IEEE Trans. Softw. Eng.,
vol. 39, no. 9, pp. 1208–1215, Sep. 2013.

[14] M. D’Ambros, M. Lanza, and R. Robbes, ‘‘Evaluating defect prediction
approaches: A benchmark and an extensive comparison,’’ Empir. Softw.
Eng., vol. 17, nos. 4–5, pp. 531–577, 2011.

[15] R. Wu, H. Zhang, S. Kim, and S.-C. Cheung, ‘‘ReLink: Recovering links
between bugs and changes,’’ in Proc. 19th ACM SIGSOFT Symp. 13th Eur.
Conf. Found. Softw. Eng., Szeged, Hungary, Sep. 2011, pp. 15–25.

[16] H. Han, W.-Y. Wang, and B.-H. Mao, ‘‘Borderline-SMOTE: A new over-
sampling method in imbalanced data sets learning,’’ in Proc. Int. Conf.
Intell. Comput. Berlin, Germany: Springer, 2005, pp. 878–887.

[17] X. Zhang, Q. Song, G.Wang, K. Zhang, L. He, andX. Jia, ‘‘A dissimilarity-
based imbalance data classification algorithm,’’ Appl. Intell., vol. 42, no. 3,
pp. 544–565, Apr. 2015.

[18] S. Herbold, A. Trautsch, and J. Grabowski, ‘‘Global vs. Local models
for cross-project defect prediction,’’ Empirical Softw. Eng., vol. 22, no. 4,
pp. 1866–1902, Aug. 2017.

[19] H. Li, P. Zou, X. Wang, and R. Z. Xia, ‘‘A new combination sampling
method for imbalanced data,’’ in Proc. Chin. Intell. Automat. Conf., in
Lecture Notes in Electrical Engineering, vol. 256, 2013, pp. 547–554.

[20] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano, ‘‘On the relative
value of cross-company and within-company data for defect prediction,’’
Empirical Softw. Eng., vol. 14, no. 5, pp. 540–578, 2009.

[21] L. Hribar and D. Duka, ‘‘Software component quality prediction using
KNN and Fuzzy logic,’’ Inf. Softw. Technol., vol. 58, no. 2, pp. 388–402,
2010.

145736 VOLUME 7, 2019

L. Gong et al.: Tackling Class Imbalance Problem in SDP Through Cluster-Based Over-Sampling With Filtering

[22] L. Miao, M. Liu, and D. Zhang, ‘‘Cost-sensitive feature selection with
application in software defect prediction,’’ in Proc. Int. Conf. Pattern
Recognit., Tsukuba, Japan, Nov. 2012, pp. 967–970.

[23] R. Malhotra, ‘‘A systematic review of machine learning techniques for
software fault prediction,’’ Inf. Softw. Technol., vol. 27, pp. 504–518,
Feb. 2015.

[24] J. Wang, B. Shen, and Y. Chen, ‘‘Compressed C4.5 models for software
defect prediction,’’ in Proc. 12th Int. Conf. Qual. Softw. Xi’an, Shaanxi,
China, Aug. 2012, pp. 13–16.

[25] S. Kim, H. Zhang, and R. L. Wu, and Gong, ‘‘Dealing with noise in
defect prediction,’’ in Proc. 33rd Int. Conf. Softw. Eng.Honolulu, HI, USA,
May 2011, pp. 481–490.

[26] S. Herbold, A. Trautsch, and J. Grabowski, ‘‘A comparative study to bench-
mark cross-project defect prediction approaches,’’ IEEE Trans. Softw.
Eng., vol. 44, no. 9, pp. 811–833, Sep. 2018.

[27] K. E. Bennin, J. Keung, P. Phannachitta, A. Monden, and S. Mensah,
‘‘MAHAKIL: Diversity based oversampling approach to alleviate the class
imbalance issue in software defect prediction,’’ IEEE Trans. Softw. Eng.,
vol. 44, no. 6, pp. 534–550, Jun. 2018.

[28] P. Cholmyong, W. T. Tian, and S. X. Hong, ‘‘An empirical study on
software defect prediction using over-sampling by SMOTE,’’ Int. J. Softw.
Eng. Knowl. Eng., vol. 28, no. 6, pp. 811–830, Jun. 2018.

[29] C. Tantithamthavorn, A. E. Hassan, and K. Matsumoto, ‘‘The impact of
class rebalancing techniques on the performance and interpretation of
defect prediction models,’’ IEEE Trans. Softw. Eng., to be published.

[30] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto, ‘‘The
impact of automated parameter optimization on defect prediction models,’’
IEEE Trans. Softw. Eng., vol. 45, no. 7, pp. 683–711, Jul. 2019.

[31] J. Nam, P. J. Sinno, and S. Kim, ‘‘Transfer defect learning,’’ in Proc. 35th
Int. Conf. Softw. Eng., San Francisco, CA, USA, May 2013, pp. 382–391.

[32] X.-Y. Jing, S. Ying, Z.-W. Zhang, S.-S. Wu, and J. Liu, ‘‘Dictionary
learning based software defect prediction,’’ in Proc. IEEE Int. Conf. Softw.
Eng., Hyderabad, India, Jun. 2014, pp. 414–423.

[33] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and A. Bener,
‘‘Defect prediction from static code features: Current results, limitations,
new approaches,’’ Automated Softw. Eng., vol. 17, no. 2, pp. 375–407,
Dec. 2010.

[34] R. A. Coelho, F. dos R. N. Guimarães, and A. A. A. Ahmed, ‘‘Applying
swarm ensemble clustering technique for fault prediction using software
metrics,’’ in Proc. Mach. Learn. Appl. Detroit, MI, USA, Dec. 2014,
pp. 356–361.

[35] M. Park and E. Hong, ‘‘Software fault prediction model using clustering
algorithms determining the number of clusters automatically,’’ Int. J. Softw.
Eng. Appl., vol. 8, no. 7, pp. 199–204, 2014.

[36] P. S. Bishnu and V. Bhattacherjee, ‘‘Software fault prediction using quad
tree-based K-means clustering algorithm,’’ IEEE Trans. Knowl. Data Eng.,
vol. 24, no. 6, pp. 1146–1150, Jun. 2012.

[37] T. Wang, Z. Zhang, X. Jing, and L. Zhang, ‘‘Multiple kernel ensemble
learning for software defect prediction,’’ Automated Softw. Eng., vol. 23,
no. 4, pp. 569–590, Dec. 2016.

[38] H. Wan, G. Wu, C. Ming, H. Qing, W. Rui, and Y. Mengting, ‘‘Software
defect prediction using dictionary learning,’’ in Proc. Int. Conf. Softw. Eng.
Knowl. Eng. (SEKE), Pittsburgh, PA, USA, Jul. 2017, pp. 335–340.

[39] Y. Freund and R. E. Schapire, ‘‘A decision-theoretic generalization of on-
line learning and an application to boosting,’’ J. Comput. Syst. Sci., vol. 55,
no. 1, pp. 119–139, Aug. 1997.

[40] D. Georgios, B. Fernando, and L. Felix, ‘‘Oversampling for imbalanced
learning based on K-means and SMOTE,’’ Inf. Sci., vol. 465, pp. 1–20,
Oct. 2018.

[41] J. A. Sáez, J. Luengo, J. Stefanowski, and F. Herrera, ‘‘SMOTE-IPF:
Addressing the noisy and borderline examples problem in imbalanced
classification by a re-sampling method with filtering,’’ Inf. Sci., vol. 291,
pp. 184–203, Jan. 2015.

[42] G. Batista, B. Bazzan, and M. Monard, ‘‘Balancing training data for
automated annotation of keywords: A case study,’’ in Proc. WOB, 2003,
pp. 10–18.

[43] T. M. Khoshgoftaar and P. Rebours, ‘‘Improving software quality predic-
tion by noise filtering techniques,’’ J. Comput. Sci. Technol., vol. 22, no. 3,
pp. 387–396, May 2007.

[44] K. Napierala, J. Stefanowski, and S. Wilk, ‘‘Learning from imbalanced
data in presence of noisy and borderline examples,’’ in Rough Sets Current
Trends Computing (Lecture Notes in Computer Science), vol. 6086. Berlin,
Germany: Springer, 2010, pp. 158–167.

[45] G. Louppe and P. Geurts, ‘‘Ensembles on random patches,’’ in Machine
Learning and Knowledge Discovery in Databases. Berlin, Germany:
Springer, 2012, pp. 346–361.

[46] C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse, and A. Napoli-
tano, ‘‘RUSBoost: A hybrid approach to alleviating class imbalance,’’
IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 40, no. 1,
pp. 185–197, Jan. 2010.

[47] M. R. Smith, T. Martinez, and C. Giraud-Carrier, ‘‘An instance level
analysis of data complexity,’’ Mach. Learn., vol. 95, no. 2, pp. 225–256,
2014.

LINA GONG is currently pursuing the Ph.D.
degree with the School of Computer Science and
Technology, ChinaUniversity ofMining and Tech-
nology. Her research interests include software
analysis and testing, and machine learning.

SHUJUAN JIANG received the Ph.D. degree from
Southeast University, in 2006. She was a Visiting
Scholar with the Georgia Institute of Technology,
from September 2008 to April 2009. She is cur-
rently a Professor and a Supervisor of the Ph.D.
degree with the School of Computer Science and
Technology, ChinaUniversity ofMining and Tech-
nology. Her research interests include compilation
techniques and software engineering.

LI JIANG is currently pursuing the M.S. degree
with the School of Computer Science and Technol-
ogy, China University of Mining and Technology.
Her research interests include software analysis
and testing, and machine learning.

VOLUME 7, 2019 145737

