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ABSTRACT In the era of cyberspace, malware is the main weapon for launching cyber-attacks and the
critical rival for the security community.More andmore researchers are investing in the wave of anti-malware
research. In order to promote researchers to enter the field of anti-malware research more smoothly, it is
necessary to provide a comprehensive roadmap of the related theory and techniques, so that new researchers
can quickly obtain the desiring knowledge. To this end, this article systematically reviews the knowledge of
malware in accordance with the most effective research route, that is, ‘‘Why? → What? → How?’’ First,
we analyze the significance of conducting malware research and explains ‘‘why?’’; then, the concept, type,
and harm of malware are summarized, and introduce ‘‘what?’’; finally, the focus is on ‘‘how?’’, i.e. malware
detection and classification. In the presence of the increasing complexity of malware types and scales, this
paper focuses on machine learning-based detection and classification methods in view of feature engineering
and analysis environment. The abstract and contributions are summarized for each typical method so that
researchers can quickly find the preferred references like a dictionary, and establish a comprehensive and
clear framework for anti-malware research in a correct route.

INDEX TERMS Malware, machine learning, feature engineering, review, roadmap.

I. INTRODUCTION
In the age of the Internet, malware has caused serious damage
to the network. To protect legitimate users from malware,
researchers have designed different anti-virus software to
build a security barrier. Unfortunately, due to the trend of
economic interests, malware producers are constantly updat-
ing malware manufacturing technologies and modifying the
structure and functions of disguised malware, leading to
enormous growth in the volume of malware variants and the
ability to evade the traditional detection. In order to mitigate
the serious threats aroused by malware, it is urgent for ana-
lysts to establish an overall framework for anti-malware coun-
terworking. However, it is not a turn-key process to obtain
desiring knowledge for new researchers when conducting
anti-malware research. A comprehensive reference guide
may be the most appealing tool for them before stepping into
the field of anti-malware research. To this end, this paper
takes the Windows platform malware as the object, system-
atically reviews the malware concept, type, harm, evolution
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trend, and the commonly-used intelligent detection methods
in recent years, and discusses the issues that need to tackle
in the future research. By performing an extensive survey on
malware and anti-malware literature, the paper aims to pro-
vide theoretical and methodological support for anti-malware
research.

In summary, we make the following contributions in this
review:

(1) Introduce malware according to the idea of ‘‘Why? →

What? → How?’’ It is convenient for researchers to quickly
and effectively establish awareness of malware.

(2) Depict a roadmap for conducting malware research,
which can help researchers quickly and effectively step into
the field of anti-malware research;

(3) Based on literature published in prestigious journals
and top academic conferences after 2010, provide the latest
and most systematic references for researchers to ensure the
effectiveness and efficiency of the review;

(4) Briefly introduce the implementation process and inno-
vation points of each typical method, and facilitate the
researchers to quickly find the methods that can be referred
to according to their research requirements;
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(5) Classify the literature of malware research from differ-
ent angles, which is convenient for researchers to quickly find
the entry point for malware research.

II. WHY STUDY MALWARE?
Choosing the direction is the first step before conducting
research. The choice of malware analysis as a research direc-
tion is reflected in the following aspects:

(1) Malware has become an acute threat to the current
network environment

In the era of cyberspace, the network has become the cov-
eted target of cyber attackers. Attackers often employ sophis-
ticated malware to launch cyber-attacks. Even though the
anti-virus community has spared no effort to build the protec-
tion fence, the volume of malware is increasing dramatically,
and the threat posed by malware continues to rise. According
to data released by SafetyDetective [89], malware infections
have continued to swell over the past decade, with more than
810 million malware infections in 2018. And with the trend
of economic interests, the volume of malware will continue
to increase in the future. A safe network security environment
can only be built by strengthening malware protection barrier
continuously.

(2) Themalware offensive and defensive arms race can pro-
mote the anti-malware research to be always at the forefront

Attack and protection of malware is an iterative evolution
process.Malware creators have been exploring new technolo-
gies, writing new codes, and creating new threats; while the
protection side has been analyzing the characteristics of new
malware and adopting new technologies to ensure accurate
and efficient detection of malware. Therefore, choosing mal-
ware as the research direction will not only make research
work always at the forefront of network security, but also
researchers can overlook the latest development trends of
the network security struggle, and stimulate the continuous
driving force in the research process.

III. CONCEPT, TYPE, AND HARM OF MALWARE
Any program that damages a user, computer, or network
in some way is called malware Kramer and Bradfield [52].
According to the general knowledge of researchers, common
malware mainly includes the following 10 types Panda Secu-
rity Info Glossary[77]:

(1) Computer Virus: A computer virus is a set of computer
instructions or codes that are attached to a computer program
and activated after the host program runs. A computer virus
can affect the normal use of the computer and self-replicate.

(2)Worm:Aworm is a malicious program that is similar to
a computer virus and capable of self-replication. The differ-
ence is that the worm does not need to be attached to another
program, and it can be copied or executed without the host.

(3) Backdoor: A backdoor is a malicious program that
stealthily installs itself into a computer to enable the attackers
to bypass the security barrier of the computer and gain access
to a program or system.

(4) Botnet:A botnet is a malicious program that enables an
attacker to access the system stealthily like a backdoor. All
infected computers will receive commands from the control
command server to jointly attack the target.

(5)Downloader:Adownloader is amalicious program that
is usually employed to download other malware after being
installed.

(6) Launcher: A launcher is a malicious program that
configures itself or other malicious code snippets for instant
or future secret operations. It aims to install some programs to
hide malicious behavior from the user. The launcher usually
contains the malware that is loaded to achieve the purpose of
launching other malicious programs.

(7) Kernel-Kit: A kernel-kit is a malicious program
designed to hide other malicious applications. Kernel suites
are often combined with other malware (such as backdoors)
into a toolkit that enables an attacker to remotely access and
makes the software hard to find by the victim.

(8) Spyware: Spyware is a type of malicious program
designed to steal confidential information from an infected
computer and transmit it to the remote attacker without the
user’s permission.

(9) Ransomware: Ransomware is a type of malicious pro-
gram that is implicitly installed on the victim’s computer,
encrypts files on the infected computer, and intimidates and
extorts the victim.

(10) Spamware: Spamware is a type of malicious program
that uses the system and network resources to deliver large
amounts of spam. This type of malware benefits by selling
spam delivery services to attackers.

The main harm of malware includes:
(1) Degradation of Computer and Network Operation Per-

formance: The most direct harm of malware is that it affects
the normal operation of computers and networks, resulting
in a sharp or slow decline in their operational performance,
ultimately causing damage to normal program operations.

(2) Hardware Failure: Some malware causes hardware
failures by modifying its parameters or corrupting its core
data andmakes it work improperly. For example, the previous
CIH virus caused the startup program to work improperly by
destroying the data stored in the drive and the BIOS chip. The
victim had to replace the BIOS chip to restart the computer
Gratzer and Naccache [32].

(3) Data Loss or Theft: In the current information age,
information has become the most valuable intangible asset.
A large amount of malware aims to steal secret information,
such as stealing personal privacy information from personal
computers and then swindling victims. More malware aims
at companies to steal valuable intelligence information from
the company and gaining economic benefits; even more, tar-
gets a country and obtains intelligence information related to
national security from administrative departments to achieve
strategic goals.

(4) Other Hidden Damage: In addition to the above obvi-
ous harms, malware can also cause some hidden damage.
For example, some Trojans and viruses do not cause any
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TABLE 1. Advantages and disadvantages of static and dynamic analysis.

apparent damage to the system after infecting the target sys-
tem. Instead, they use the infected system as a transit station
to use the Internet to send some command information or
spam, and this information will be sent out hidden in normal
network traffic, not easily detected.

IV. MAIN TASKS OF MALWARE DEFENSE AND
COMMON ANALYSIS METHODS
Once malware emerges, malware and anti-malware have
fallen into a never-ending struggle. To detect and defend
against malware, we first need to analyze the unknown soft-
ware and detect the malware, and then classify the malware
into its corresponding family.

A. MAIN TASKS OF MALWARE DEFENSE
The two main tasks of malware defense are detection and
classification. Malware detection aims at identifying mal-
ware from unknown samples, and the goal of classification
is to group malware into their corresponding families. The
features of the program extracted during the malware detec-
tion process can also be applied to malware classification.
According to the different processes of feature extraction,
malware detection and classification techniques are usually
grouped into two categories: static analysis and dynamic
analysis.

B. MALWARE ANALYSIS
1) STATIC ANALYSIS
In the process of static analysis, the program does not need
to run actually. The researcher usually extracts information
from the PE header, PE body, and binary code of the program,
or disassembles the program, and extracts the opcode or other
related information from the assembly code to characterize
the program, so as to analyze the program’s maliciousness
Sung et al. [102]. Static analysis methods are more efficient
but need to deal with the effects of packing and obfuscation
Moser et al. [66].

2) DYNAMIC ANALYSIS
Compared with static analysis, dynamic analysis requires the
actual running of a program to capture the behavioral charac-
teristics during its execution. As a result, the dynamic analysis
usually is considered to be a behavior-based analysis tech-
nique. The main dynamic features include the API sequence
and various kinds of behaviors that the program interacts
with the underlying OS resources during the runtime. In the

process of dynamic analysis, a malware sample usually runs
in a virtual environment so as to prevent causing damages to
the host system.

3) HYBRID ANALYSIS
In addition, some researchers have combined static analysis
with dynamic analysis to perform a hybrid analysis of mal-
ware by extracting both static and dynamic features from the
malware and merging them to build a hybrid feature vector,
and outline more comprehensive and accurate profiling of
malware finally Roundy and Miller [87].

The advantages and disadvantages of the aforementioned
analysis techniques are illustrated in Table 1.

V. MALWARE RESISTANCE MANEUVERS
In response to the development of malware detection
technologies, the malware itself is constantly evolving and
resisting by adopting different maneuvers to change its
own characteristics or to cover hidden malicious behaviors,
thereby avoiding detection. Obfuscation is the use of cer-
tain methods to change the program code while retaining its
functionality, to reduce the possibility of being analyzed, and
to counteract reverse engineering by confusing the original
code. In general, the common ways of malware obfuscation
include packing, polymorphism, oligomorphism, and meta-
morphism You and Yim [113]; Okane et al. [76].

A. PACKING
Packing is currently the most commonly used method of code
obfuscation or compression. It first compresses and encrypts
PE files, then restores the original state at runtime and loads
them intomemory for execution.Malware authors can change
the characteristics of malware without having to change too
many codes in this mode.

B. POLYMORPHISM
Polymorphism, also known as code sealing and code packing,
uses encryption and data addition techniques to change the
body of malware, and in order to keep changing, it can also
change the encryption key every time it infects and change
the decryption function to achieve continuous confusion.
Identifying polymorphic malware from the wild is a daunting
task for traditional anti-malware tools because polymorphic
malware is constantly changing its own code and its size has
grown dramatically.
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C. OLIGOMORPHISM
Oligomorphism is also an obfuscation way to change its
structure through encryption. This confusing method has a
certain number of different decryptors to achieve the varia-
tion of its own decryption function. Both polymorphic and
oligomorphic techniques change the code in real-time each
time it runs, but its semantics remain the same. Therefore,
detecting its maliciousness through semantics is an effective
way to deal with these two ways of obfuscation.

D. METAMORPHISM
This kind of obfuscation does not use encryption techniques
but changes the code structure primarily by changing the
assembly code of the program. Metamorphism is usually
implemented by the following four ways: 1) dead instruction
or garbage instruction insertion, which inserts some instruc-
tions in the normal assembly code that do not perform any
operations, such as NOP; 2) instruction reordering, this way
aims to reorder the original instructions, and then use the
jump instruction to restore and maintain the original seman-
tics, thereby generating a different code structure different
from the original features; 3) register reallocation, also known
as variable renaming, which replaces the program identifier
such as registers, tags and constant names, etc., in this way the
original code is changed, but the program behavior does not
change; 4) instruction substitution, also known as equivalent
instruction replacement, this kind of metamorphic method
uses the equivalent instruction sequence dictionary for the
instruction sequence replacement. Therefore, the evolution
and protection of malware are like a game of cats and mice,
aiming at and playing against each other. The game situation
is illustrated in Fig 1.

FIGURE 1. Malware offensive and defensive schematic chess.

VI. MALWARE DETECTION TECHNIQUES
Currently, the malware detection technology has
evolved from traditional signature-based detection
Moskovitch et al. [67], heuristic-based detection
Bazrafshan et al. [12] to machine learning-based detection,
and researchers have used machine-learning technologies to
improve the level of automation and intelligence of mal-
ware detection. An intelligent malware detection process can

generally be considered to consist of two phases: feature
extraction and detection/classification. Therefore, malware
detection completely depends on the process of feature
extraction and detection/classification. Feature engineering is
a key stage in automatingmachine learning. Among them, the
realization of the acquisition feature is particularly critical.
In order to facilitate researchers to easily find a research
breakthrough that is suitable for their own research, we sum-
marize the malware detection process based on machine
learning, and then systematically introduce the detection
methods based on different feature engineering. The imple-
mentation process and innovation points of each typical
method are summarized, which is convenient for researchers
to find the reference method that meets their requirements as
quickly and efficiently as a dictionary.

A. BASIC PROCESS OF MALWARE DETECTION BASED
ON MACHINE LEARNING
The machine learning-based malware detection process
mainly includes two stages: training and detection, as shown
in Fig 2. In the former stage, the analysts usually extract
features from the samples set and then employ the features to
train the automatic classifier; in the latter stage, the features
will first be extracted from the samples to be detected, and
then input into the trained classifier to obtain a decision result.

FIGURE 2. Basic process of malware detection based on machine
learning.

B. COMMON MACHINE LEARNING CLASSIFICATION
ALGORITHMS
Generally speaking, all typical machine learning algorithms
can be applied into the field of malware detection, which
include Naïve Bayes, Support Vector Machine, Decision
Tree, Random Forest, K-Nearest Neighbor, Artificial Neural
Network, and several boosting algorithms, such as GDBoost,
AdaBoost and XGBoost.

In addition, because some researchers attempt to convert
software programs into images and therefore convert malware
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FIGURE 3. Malware detection method system.

detection problems into image classification problems, these
researchers apply deep learning algorithms to the field of
malware detection. Typical deep learning algorithms include
Deep Belief Network, Convolution Neural Networks and
Recurrent neural network Pouyanfar et al. [78]. At present,
the above-mentioned machine learning algorithms have been
widely and successfully applied in the field of network
security [Egele et al. [23], Rieck [85]; Ye et al. [110];
Han et al. [34]. Because some relevant reviews have intro-
duced the application of machine learning and deep learn-
ing algorithms in this filed in detail Ye et al. [110]
Nguyen et al. [71], this article will not give description about
this part anymore.

C. MALWARE DETECTION BASED ON
DIFFERENT FEATURES
According to the machine learning-based malware detection
process, since the classifier is mainly implemented by a
general-purpose machine learning algorithm, the main factor
affecting the effect of malware detection lies in the feature
engineering. That is, selecting different features for analysis
will determine different detection effects.

Based on a comprehensive analysis of the existing lit-
erature, malware detection methods can mainly be clas-
sified into the following categories based on the feature
types, include: binary code-based detection (grayscale, slice,
similarity), assembly instruction-based detection (opcode
extracted from assembly program, stack in assembly instruc-
tions), PE structure-based detection, flow graph-based detec-
tion (CFG and DFG), dynamic link library-based detection,
interaction behavior-based detection between program and
operating system, file relationship-based detection, informa-
tion entropy-based detection, hybrid feature-based detection,
etc., as shown in Fig 3. For a person who starts research in
this field, the first step is to choose what type of features to
utilize to conduct malware detection research.

To facilitate the understanding and application of different
types of features by researchers, we can divide these features
into different levels and establish a hierarchical feature archi-
tecture, as illustrated in Fig 4.

The specific explanation and description of the feature
level structure are as follows:

FIGURE 4. Hierarchical architecture of different types of features.

(1) Kernel Level Features: This level features mainly refer
to the operation behaviors of the kernel object during the
runtime of the program. The acquisition of this level features
is more difficult, but it is more accurate for understanding the
maliciousness of a program.

(2) The Underlying Behavior Level Features: This level
of feature mainly refers to the behavioral characteristics of
malware through assembly instructions (opcode), system call
(API), dynamic link library (DLL) and control flow graph
(CFG). These features are direct manifestations of program
behaviors and are frequently applied to malware detection.

(3) Senior-Level Behavior Features: It mainly refers to
the dynamic behaviors that the program interacts with the
underlying OS resources, mainly including operations on the
system files and the registry, and the network interaction
behaviors Han et al. [33].
(4) Software Structure Level Features: This level focuses

on the structural information of the software itself, includ-
ing PE structure, binary code structure, and information
entropy, which are a coarse-grained representation of soft-
ware features.

(5) Software Epitaxial Level Features: This level mainly
refers to the interrelationship between malware, and the rela-
tionship between malware and normal software. By mining
the extension features of the software, we can also find its
maliciousness.

1) PE STRUCTURE-BASED DETECTION
Because the PE structure is the standard format of the exe-
cutable file under the Windows platform, the PE format
can be employed to characterize the PE program, so some
analysts explore to discover the clues of the maliciousness
by mining the PE structure. The typical PE structure-based
detection methods are summarized in Table 2. Compared
with other methods, extracting features from the PE format
is less complex, which is more suitable for beginners to
quickly understand the basic process and principle of mal-
ware detection.
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TABLE 2. Typical PE structure-based detection methods.

TABLE 3. Dynamic link library-based detection.

The detection method based on PE structure is simple and
effective and ismost suitable for beginners. However, because
the PE structure is a standard format, the characteristics dif-
ference between normal software and malware may not be
apparent, and the detection accuracy is difficult to guarantee.
In addition, PE structural features are difficult to effectively
characterize a program’s semantic information.

2) DYNAMIC LINK LIBRARY-BASED DETECTION
Because the PE program needs to call the DLL during the
actual running process, the calling relationship between the
PE file and the DLL, and the association relationship between
the DLLs called during the PE file execution process are
also visual representations of the program behavior charac-
teristics. The detection of malicious behavior can also be
achieved by evaluating the relationship between the PE file
and the DLL. The typical DLL-based detection methods are
summarized in Table 3.

The dynamic link library-based detection method is simple
to implement and high-efficiency. However, it is susceptible
to obfuscation and difficult to obtain accurate and effective
semantic information.

3) INFORMATION ENTROPY-BASED DETECTION
Entropy is an effective indicator for measuring information
uncertainty. When a normal program is implanted with a
malicious code segment, its entropy value changes before
and after implantation. In addition, when a packed program
is unpacked, its entropy value also changes. Based on the
connotation of entropy and the content changes that may be
involved in the malware detection process, some researchers
have also proposed methods for malware detection based on
entropy calculation. The typical information entropy-based
detection methods are summarized in Table 4.

The information entropy-based detection is easier to imple-
ment and more efficient. However, the semantic information
obtained in this way is limited and is susceptible to obfusca-
tion.

4) BINARY CODE-BASED DETECTION
In the malware detection process, because of the difficulty
of obtaining the source code of a program, its binary code is
often analyzed directly. Researchers can extract byte n-grams
from binary code; or convert binary to decimal to gen-
erate texture maps for image-based detection; or extract
binary code slice for code slice matching; or generate binary
code pattern for code pattern matching. The typical binary
code-based detection methods are summarized in Table 5.

The binary code-based detection can directly perform
static analysis on the binary code of one program and does
not require operations such as disassembly, so the efficiency
is high. However, binary code is poorly readable, it is dif-
ficult to understand program behavior characteristics, and is
susceptible to obfuscation.

5) OPCODE BASED DETECTION
A common way of malware research is to perform the
reverse engineering analysis of a binary program to obtain its
assembly instructions. Compared with binary code, assembly
instructions can more intuitively reflect the behavior of a
program, which is more conducive to understanding the intent
of the malware. Therefore, the detection method based on
assembly instructions is the most common way to carry out
malware detection. Even in the face of the latest ransomware,
this analysis method also works properly Bolton et al.[6];
Hanqi et al. [114]. The typical assembly instruction-based
detection methods are summarized in Table 6.
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TABLE 4. Information entropy-based detection.

TABLE 5. Binary code-based detection.

The assembly instruction can better demonstrate the pro-
gram semantics, and it is better than the binary code in the
comprehensibility, but it is susceptible to the packing and
metamorphism maneuvers.

6) API BASED DETECTION
Generally, malware needs to call API to perform malicious
actions, so API calling information can be employed to
characterize malware, and are most widely used for mal-
ware detection. The static methods for obtaining the system
call API include: obtaining the system call by analyzing
the program syntax; extracting the system call or function
relationship by using the program state machine; obtaining
the system call information by analyzing the PE file header,
because the PE file header contains all the system calls infor-
mation; the dynamic method of getting the system call infor-
mation is to actually run the program and capture the behavior
traces during the runtime to get the API sequence. The typical
API-based detection methods are summarized in Table 7. The
method of detecting malware based on API can be divided
into multiple levels: the basic way is to directly use the API
sequence, such as count the frequency of occurrence of API or

n-grams as the feature value; or cut the basic API sequence
into API sequence slices, and build more abstract semantic
representation.

The API sequence usually is considered to be the best
choice for characterizing a program, so the API based detec-
tion technique is most widely applied for malware detection.
But the API extraction process requires a certain amount of
effort, and only using API features is vulnerable to imitative
malware.

7) CFG BASED DETECTION
Although Opcode and API can profile the program, they do
not really indicate the execution intention of the program.
Therefore, some researchers build control flow graphs based
on the Opcode andAPI sequences to reflect the true execution
intent of the program and apply graph matching to carry out
the detection process. The typical control flow graph-based
detection methods are summarized in Table 8.

The detection method based on CFG can more
vividly represent the program behavior characteristics,
but the implementation process is more complicated and
difficult.
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TABLE 6. Assembly instruction-based detection.

8) KERNEL OPERATION-BASED DETECTION
Malware need inevitably take relevant actions on the kernel
during its actual running process. By monitoring the changes
of the kernel during the runtime, the malicious tendency
of the program can also be detected. The typical detection
methods based on kernel operation behavior are summarized
in Table 9.

The kernel-based detection method is a relatively low-
level detection method that can accurately profile the mali-
cious software. However, it is difficult to implement, and this
detection process will encounter challenges when detecting
rootkit-type malware.

9) INTERACTION BASED DETECTION BETWEEN THE
PROGRAM WITH OS
When analyzing malware, in addition to paying attention to
the behavior of the program itself, the interaction between
the program and the underlying OS resources is also an
important aspect worthy of analysis. These malicious behav-
iors can be assessed by evaluating these external behav-
iors. The typical methods in this area are summarized
in Table 10.

This kind of method is system-centric and can
intuitively reflect the behavioral characteristics of
the program. However, this detection method usually
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TABLE 7. API based detection.
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TABLE 7. (Continued.) API based detection.
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TABLE 8. CFG based detection.

TABLE 9. Kernel operation-based detection.

runs malware in a virtual machine environment, which
affects the detection effect when encountering evasive
malware.

10) FILE RELATIONSHIP-BASED DETECTION
There are also some researchers who focus on the inter-
relationship between malicious samples and explore the
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TABLE 10. Interaction based detection between the program with OS.

TABLE 11. File relationship-based detection.

malicious behavior intentions by constructing a relation-
ship network between samples and conducting the quan-
titative evaluation. The typical methods are summarized
in Table 11.

The file relationship-based detection method is an effec-
tive complement for malware detection that focuses on the
program itself but may be limited by the way in which the
data source is obtained. Usually, it is difficult for ordinary
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TABLE 12. Hybrid features-based detection.

researchers to have such conditions without the necessary
commercial support.

11) HYBRID FEATURE-BASED DETECTION
As the malware mechanism becomes more complex,
the detection effect of relying solely on static features or
dynamic features is difficult to meet the detection require-
ments. Therefore, some researchers have tried to integrate
static and dynamic features to construct the hybrid feature set
to realize hybrid detection. The typical research methods are
summarized in Table 12.

The detection method based on the hybrid feature can
realize the comprehensive depiction of the program, and the
detection effect is the best. However, the workload required
for the feature acquisition process is also relatively heavy.

12) COMPARISON BETWEEN DETECTION METHODS BASED
ON DIFFERENT FEATURES
This section compares the advantages and disadvantages of
malware detection methods based on different features to
facilitate researchers to choose the suitable method. The com-
parison results are shown in Table 13.

D. MALWARE DETECTION BASED ON DIFFERENT
ANALYSIS ENVIRONMENTS
According to the different principles of static analysis and
dynamic analysis, the static analysis method usually analyzes
the malware itself or its derivatives on the host, and the
dynamic analysis needs to select different operating environ-
ments according to different application needs. In order to

prevent malware from causing damages to the host, the virtual
execution environment is usually suitable for running soft-
ware. However, some malware can first detect whether the
running environment is a virtual environment before running,
and will not perform malicious operations once discovering
the clue of a virtual environment. In response to this eva-
sive malware, some researchers have proposed to build a
bare-metal environment to stimulate the unobtrusivemanifes-
tation of malware, by comparing the behavior of the software
in the bare-metal environment to realize detection.

1) VIRTUAL MACHINE-BASED DETECTION
In the process of dynamic analysis, virtual machines are
often used to build virtual execution environments to run
malware actually, capture malware footprints, and prevent
malware from causing damages to the host system. Therefore,
building different types of virtual machines to obtain different
granularity and different types of behavioral characteristics
information is also a common method for researchers to
analyze malware. The typical methods for performing mal-
ware detection based on virtual machines are summarized
in Table 14.

2) BARE-METAL BASED DETECTION
Current dynamic analysis methods generally use a virtual
environment to run malware to prevent malware from dam-
aging the underlying operating system. However, some mal-
ware will detect the characteristics of the environment before
running, and if it is found to be in a virtual environment,
it will stop running or not perform malicious behavior,
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TABLE 13. Comparison between detection methods based on different features.

143586 VOLUME 7, 2019



W. Han et al.: Review: Build a Roadmap for Stepping Into the Field of Anti-Malware Research Smoothly

TABLE 13. (Continued.) Comparison between detection methods based on different features.

TABLE 14. Virtual machine-based detection.

thereby spoofing malware detection. To ensure that malware
unleashes malicious manifestations, some researchers pro-
pose to build a real-world operating environment for malware

to activate malware to fully perform its malicious behaviors.
This real execution environment built on real hardware plat-
forms is often referred to as bare-metal. Currently, the typical

VOLUME 7, 2019 143587



W. Han et al.: Review: Build a Roadmap for Stepping Into the Field of Anti-Malware Research Smoothly

TABLE 15. Bare-metal based detection.

TABLE 16. Comparison between methods based on different analysis environments.

bare metal environment based detection methods are summa-
rized in Table 15.

3) COMPARISON BETWEEN METHODS BASED ON
DIFFERENT ANALYSIS ENVIRONMENTS
This section compares malware detection methods based
on different analysis environments to facilitate researchers
to choose the suitable method. The comparison results are
shown in Table 16.

E. THE CHOICE OF MALWARE DETECTION FROM
DIFFERENT ANGLES
Through the above analysis, malware detection can be per-
formed based on different features. When conducting mal-
ware research, the corresponding research methods can be
selected according to different angles. The choice of conduct-
ing malware detection from different angles can be summa-
rized as shown in Fig 5. The specific division is illustrated as
follows:

(1) According to the detection locations, the detec-
tion methods can be divided into various types includ-
ing host-based detection, server-based detection, and
cloud-based detection, that is, analyzing and detecting mal-
ware on the host side, or on the server-side, or in the cloud;

(2) According to the detection environments, the detection
methods can be divided into various types including vir-
tual machine-based detection, bare metal environment based
detection, that is, malware is actually running to capture the

behavior characteristics either in the virtual machine environ-
ment or in the bare metal environment;

(3) According to the detection objects, the detection
methods can be divided into various types including
program-centric and system-centric detection. That is, the
program-centric detection method focuses on extracting fea-
tures directly from the program itself, and the system-centric
detection focuses on the interaction between the observed
program and the operating system;

(4) According to the levels of extracted features, the detec-
tion methods can be divided into the following categories
including detection based on kernel features, detection based
on program and OS interaction behavior characteristics,
detection based on program running behavior characteristics.
These types of detection focus on extracting different types of
features, from kernel to operating system-related information,
to interactions between the underlying OS resources and the
program.

VII. TYPICAL MALWARE CLASSIFICATION METHODS
Malware classification aims to group the malware into cor-
responding families, to grasp the overall characteristics of
a malware family, and to quickly discover its unique fea-
tures from a large number of malware variants. Malware
classification is similar to detection. Researchers first need
to extract features from malware samples and then select
automated classifiers for classification. The typical malware
classification method are summarized in Table 17.
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TABLE 17. Typical malware classification methods.

FIGURE 5. Different types of malware detection methods.

VIII. ADDITIONAL SUPPLEMENTS REQUIRED FOR
MALWARE RESEARCH
In addition to focusing on malware detection methods,
we also need to learn about other aspects in this field.

A. CHOICE OF DATASET
According to the published papers, there are three types of
data sets currently used by the malware research community.
The application of malware dataset is shown in Table 18.
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TABLE 18. Common datasets for malware research.

1) PUBLICLY AVAILABLE DATASETS
Most of the currently published papers use the publicly
available data sets in the field of network security. These
datasets are maintained by research enthusiasts in the world
of cybersecurity and are constantly being updated for free use
by researchers.

2) COMMERCIAL DATASETS
There are also some commercial projects that are supported
by companies. These data sets are usually not publicly free
for utilization.

3) ARTIFICIALLY GENERATED DATASETS
There are also some datasets in which the researcher uses
special tools to generate manually or extract from the network
traffic.

B. COMMON MACHINE LEARNING TOOLS
In the experimental phase of malware detection, some com-
mon machine learning tools can be used to assist in the exper-
imental verification. Commonmachine learning tools include
Python-based frameworks and Java-based frameworks.

1) MACHINE LEARNING TOOLS BASED ON PYTHON
Python is considered to be the most suitable programming
language for machine learning. So, in the field of machine
learning, researchers have developed a variety of machine
learning and deep learning tools based on the Python lan-
guage.

a: SCIKIT-LEARN
Scikit-learn is a simple and efficient Python-based data min-
ing and data analysis tool based on NumPy, SciPy, and
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TABLE 19. Shortcomings of similar reviews.

Matplotlib. Scikit-Learn provides a consistent and easy to
use API set and random search framework. Its main advan-
tage is that the algorithm is simple and fast. Scikit-learn
mainly includes the following 6 basic functions: classifica-
tion, regression, clustering, data dimensionality reduction,
model selection, and data preprocessing.

b: KERAS
Keras is a high-level neural network API set that provides
a Python deep learning library. For any beginner, Keras is
the best choice for conducting machine learning applications
because it provides a simpler way to construct neural net-
works than other libraries.

c: THEANO
Theano is one of the most mature Python deep learning
libraries. Its main features include tight integration with
NumPy, customize functions in symbolic languages, and effi-
cient execution on GPU or CPU platforms.

2) MACHINE LEARNING TOOLS BASED ON JAVA
The most commonly used machine learning tool written in
Java is WEKA.Weka integrates machine learning algorithms

related to data mining tasks. These algorithms can be applied
directly to the dataset, or you can call them by writing Java
code yourself. Weka includes a variety of tools for data pre-
processing, classification, regression, clustering, rules asso-
ciation, and visualization. In addition, new machine learning
methods can also be developed based on Weka.

IX. ISSUES NEED TO TACKLE IN FUTURE MALWARE
RESEARCH
The offense and defense of malware is a never-ending arms
race in the field of cybersecurity. With the rapid development
of web applications, unseen types of malware are contin-
uously emerging, and old malware is constantly evolving.
Issues that need to be addressed in the future include:

A. DETECTION OF NEW MALWARE
As the socio-economic situation continues to evolve, new
malware will continue to emerge. For example, the ran-
somware that has been erupting in recent years has a similar
form in real life, that is, by encrypting network information
assets and then extorting asset owners for economic benefits.
The ransomware has caused destructive damage in society,
and the existing protective measures are still evolving and
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may have subsequent effects Al-Rimy Bander et al. [5]
Homayoun et al. [39].

B. DETECTION OF MALWARE AGAINST CRITICAL
NETWORK INFRASTRUCTURE
With the important influence on social development, net-
work infrastructure has become an important target of cyber-
attacks. Various advanced persistent threat attacks against
network infrastructure occur frequently. How to effectively
analyze such complex malware and discover advanced
symptoms of persistent threats are key to protecting crit-
ical infrastructure in the cyberspace [Bolton et al. [6];
Li et al. [58].

C. MALWARE DETECTION BASED ON THE CLOUD
COMPUTING ENVIRONMENT
The cloud computing environment provides a platform for
ordinary researchers to customize their application services.
Given the rich computing and storage resources available
in the cloud, the cloud computing environment can per-
form malware analysis tasks that cannot be delivered by
ordinary computing platforms. Therefore, the malware anal-
ysis strategy based on cloud computing environment has
attracted considerable attention. How to fully utilize the
cloud computing environment to carry out malware anal-
ysis tasks while ensuring the security of cloud resources
is a problem that researchers must tackleYadav [108] and
Zou et al. [117].

D. MALWARE DETECTION BASED ON EDGE COMPUTING
With the widespread application of edge computing in the
network, analysis tasks for large amounts of malware can also
be handled by local devices without recourse for the cloud
service, and the analysis process will be done at the local
edge computing side. The combination of edge computing
and malware analysis will effectively improve the security
of local devices. Therefore, edge computing-based malware
analysis will also be a direction in the field of malware
research [He et al. [37]; Kozik [51]; Ren et al. [83 ].

E. ANTI-MALWARE RESEARCH BASED ON THE
TRUST MECHANISM
The trust mechanism is an effective security measure for the
industrial Internet of Things (IoT) to detect compromised and
malicious nodes. This mechanism calculates the trust values
of the nodes based on their behaviors, which can tackle the
typical security issues faced by industrial IoT. From the per-
spective of behavioral evaluation, the trust evaluation scheme
can be applied in the anti-malware research field, especially
with the widespread application and development of IoT.
We can evaluate the trust values of the unknown applications
emerging in the distributed nodes in IoT and identify the
malware with lower consumption and higher performance
[Huang et al. [41]; Liu et al. [61]; Wang et al. [107].

X. COMPARISON WITH SIMILAR REVIEWS
There have been some similar review articles on malware
research, as shown in Table 19. The differences between this
review and the published literature are as follows:

(1) This article does not propose any new concept, but
according to the general roadmap for carrying out research
‘‘Why? → What? → How?’’, so that the beginners can
quickly enter the malware research field guided by the article;

(2) This paper has categorized the malware research meth-
ods from different angles, which can help researchers quickly
find the entry point suitable for their own research;

(3) This paper gives a systematic introduction of the influ-
ential papers published after 2010, ensuring the novelty and
comprehensiveness of the content. Researchers can quickly
find the content they are interested in, just like a dictionary,
and improve research efficiency.

XI. CONCLUSION
In the cyberspace environment, malware offense and defense
is an ever-lasting arms race. To help initial researchers
quickly and effectively establish a framework for malware
awareness, this article conducts an extensive survey on this
field based on papers published in SCI journals and important
international academic conferences after 2010, according to
an easy-to-understand roadmap. The theories and techniques
on malware and anti-malware are summarized and catego-
rized comprehensively. Instructed by this article, the new
researchers can step into the route of malware research
quickly and smoothly.
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