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ABSTRACT In order to improve the accuracy and robustness of the air traffic prediction, in this paper,
a recurrent 3D convolutional neural network (R-3DCNN) based model is proposed to consider the spatial
and temporal air traffic transitions comprehensively. A new data representation, i.e., traffic situation graphics
(TSG), is firstly proposed to illustrate the traffic flow situations in a single instant. A TSG is generated by
splitting the 3D earth space with fixed grid map and flight levels. Motivated by the applications of deep
neural network, the 3D CNN and long short-term memory (LSTM) blocks are introduced to extract high-
level features (spatial and temporal) from an TSG sequence. The proposed TSG also allows us to consider
some real-time factors to enrich the input information. Thus, the model input is determined by combining the
traffic situations on different flight levels with areas affected by other real-time factors, such as the adverse
weathers, important activities and general aviation flights. The model output is the traffic flow on different
flight levels for studied airspaces at next prediction instant. The busiest routes in China are used to conduct
evaluation experiments. To determine the influence of temporal dependencies, the length of input sequence
is set to 30, 60 and 90 minutes before the prediction instant to select optimal architecture of the proposed
model. By evaluating the prediction results with three statistical factors, we can draw the conclusion that
the proposed model can obtain accurate and stable prediction results of air traffic flow with distribution on
different flight levels.

INDEX TERMS Air traffic flow, flight level, recurrent 3D convolutional neural network, spatial and temporal

dependency, traffic situation graphic.

I. INTRODUCTION

An accurate and prompt traffic flow prediction plays a key
role in making the decisions of the passenger traveling,
the concerned management measure and the governmen-
tal development plan. It also helps the air traffic controller
to make more efficient and effective controlling decisions.
Therefore, those purposes, relieving the air traffic congestion,
reducing the exhaust gas emission, and promoting the air traf-
fic operational efficiency, are supposed to be achieved based
on the air traffic prediction [1]. Over past few years, economic
achievements in China have greatly promoted the develop-
ment of civil aviation transportation industry. Increasingly
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busy air traffic caused serious airspace resource shortage,
which further results in the flight congestion and delay in
busy areas. In order to solve the facing problems of civil
aviation transportation in China, there is an urgent need to
develop more effectiveness and efficient measures to plan and
utilize the limited airspace resources. Advanced air traffic
flow management (ATFM) measures are then developed to
improve the flight safety and operational efficiency of air
traffic system. Air traffic flow prediction (ATFP), as the core
technique of the ATFM, has always been a hot research topic
and attracted more and more attentions from all over the
world.

In existing works of ground transportation system, the traf-
fic flow prediction has been highly developed with advanced
information technology. However, studies in air traffic system
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FIGURE 1. Architecture of the proposed prediction model.

did not keep up with the latest progress of algorithms and
models due to safety issues. Air traffic related works preferred
to simplify the computation model to ensure system stability,
which usually only deals with static data without considering
real time factors, such as bad weathers, important activities,
military and general aviation.

Motivated by the excellent performance of deep neural
network (DNN) on modeling complicated nonlinear features,
we propose a deep learning-based approach to predict the air
traffic flow for certain airspaces in the coming week. As a
common sense, traffic patterns in an airspace are influenced
by the spatial and temporal dependencies of traffic situation.
Basically, the spatial dependencies come from the traffic flow
in its adjacent areas. Flights in adjacent areas may locate
in the studied airspace or its adjacent areas in the future
according to their flight heading. Meanwhile, the traffic flow
in the studied airspace is also affected by its past traffic
situations, i.e., the temporal dependencies of traffic flow.
Flights may stay in current airspace or fly to its adjacent areas
in the future. Furthermore, flights are operated weekly based
on their schedules, which also provides long-term temporal
information for the ATFP research. As shown in the proposed
model, the design of predicting traffic flow in next week is
also based on this specificity. It can be seen that the spatial
and temporal dependencies should be considered and cannot
be separated in the air traffic prediction.

The most common deep leaning application of modeling
spatial and temporal dependency are computer vision and nat-
ural language processing, respectively. Deep neural network
(DNN) was proposed to deal with the mentioned dependen-
cies by building the nonlinear mapping between neuros as a
hierarchical architecture. Specifically, the convolutional neu-
ral network (CNN) and recurrent neural network (RNN) are
designed to consider the spatial and temporal dependencies
of air traffic flow, respectively. Moreover, DNNs have been
introduced to the existing works on ground transportation sys-
tem, which inspires us to reconsider the implementation of the
air traffic flow prediction. By combining the common CNN
block with 3D specificity of air traffic system, a recurrent
3D convolutional neural network (R-3DCNN) based model
is proposed in this paper to predict the air traffic flow.

The general architecture of the proposed model is illus-
trated in Fig.1. The basic idea of this model is to consider

148020

the spatial and temporal dependencies of air traffic sys-
tem comprehensively by using a new data representation,
i.e., traffic situation graphics (TSG). The TSG is generated
from raw flight trajectory that is a time series with discrete
flight positions. A TSG has the ability of representing the
spatial dependencies on adjacent areas and flight levels. The
temporal dependencies of traffic flow are considered by a
TSG sequence from previous instants, i.e., with a proper
look-ahead prediction horizon. Based on the core idea of
ATFP, the proposed model designs multiple 3D-CNN hid-
den layers to mine the spatial dependencies among adjacent
airspaces and flight levels. Similarly, an improved RNN layer,
long short-term memory (LSTM), is designed to build the
temporal correlations among continuous prediction instants,
in which the look-ahead horizon of the prediction model is
denoted by an input TSG sequence. In short, the processing
flow of the proposed model can be summarized as follows:
the 3D-CNN layers encode the spatial features of the traffic
situation into a vector, while the LSTM layer mines the
influence of past historical traffic situations on that of current
instant to predict the future air traffic flow.

Traditionally, the data-source of the prediction model
would be extracted from discrete points of flight trajectory
stored in a distributed database, i.e., the flight number in
the studied airspaces. However, the total amount of flights
in a studied area is changing all the time. More importantly,
the basic deep neural network-based approaches failed to
describe spatial dependencies of the air traffic flow fully
for the studied airspaces in a proper form. The regression
models are designed for certain airspaces based on past traffic
situations, which ignored the spatial dependencies of traffic
flow with adjacent airspaces. In summary, existing ATFP
models failed to mine spatial and temporal dependencies of
air traffic flow comprehensively, which is what we strive to
achieve in this work.

In order to overcome above shortages and unify the input
format (spatial and temporal dependencies) into an integrated
framework, we first propose a special data representation
called traffic situation graphics (TSG). A TSG illustrates the
whole flight positions in the studied airspace at an updating
instant. Besides, areas affected by weathers, activities and
other events are also illustrated on the TSG to provide the
real-time factors. An TSG splits the studied airspace into
different customized airspace in the horizontal and vertical
plane, which represent more dedicated extents compared to
existing designed ones. The TSG also shows the overall traffic
flow distributions of the studied airspace in a single data. The
3D-CNN layers are applied to extract spatial dependencies
of adjacent areas and flight levels in one TSG. The LSTM
layer processes temporal correlations of air traffic situation
among past predicting instants. In this way, the spatial and
temporal dependencies of air traffic flow are considered
in the proposed model jointly. The output of the proposed
model is the traffic flow of studied airspaces at next pre-
diction instants. In addition, considering the 3D specificity
of air traffic system, we further subdivide the traffic flow
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into different flight levels that are designed by civil aviation
administration of China (CAAC). With the consideration of
spatial dependencies on adjacent flight levels, the traffic flow
distribution on flight levels are predicted to further support
the ATFM. For instance, based on the subdivided traffic flow
distribution on flight levels, more feasible ATFM measures
are supposed to be fulfilled. The most classical one is the
flight level adjustment based on the 3D features of air traffic
system. After analyzing the basic components in the pro-
posed model, we design several experiments to optimize the
length of input TSG sequence, i.e., the look-ahead horizon of
the prediction model, the architecture of the neural network
and other training hyper parameters. Experimental results
on real operating data show that the proposed model can
obtained more accurate and stable results over other existing
approaches. The proposed model also illustrates the overall
traffic flow with flight level distribution, which improves
the level of the ATFP. Compared with existing prediction
models, the proposed model takes both the temporal and
spatial dependencies of air traffic flow into consideration,
which naturally encloses sufficient traffic characteristics to
improve the prediction performance. Moreover, the compli-
cated nonlinear mapping of hierarchical architecture in a
neural network manages to represent the transition patterns
of air traffic flow. All in all, our original contributions in this
paper are summarized below:

a) A special data representation called TSG is proposed
to illustrate the spatial features of air traffic system
at a single instant. The spatial correlations of adja-
cent horizontal regions and flight levels are illustrated
on the TSG, which allows us to consider the spatial
dependencies in a global level with different scale. The
proposed TSG can unify spatial dependencies of air
traffic flow and serves as the input of the proposed
model.

b) A deep learning model based on the 3D-CNN and
LSTM (an improved RNN block) is proposed to predict
the air traffic flow. The 3D-CNN and LSTM blocks are
designed to mine the spatial and temporal dependen-
cies of air traffic system with complicated nonlinearity,
respectively. In order to further depict the spatial depen-
dency among different flight levels, we extend the CNN
to 3D-CNN to improve the overall performance of the
prediction model.

c) Instead of predicting the total flow of the studied
airspaces only, the proposed TSG allows us to obtain
the traffic flow for the customized and dedicated
airspaces, which improve the granularity of air traffic
flow and ATM measures.

d) The proposed model is able to predict the traffic
flow distribution on each flight level, which greatly
increases available ATFM measures and promotes the
efficiency of measures.

The rest of this paper is organized as follows. Related

works about this research are reviewed in Section II.
Details of our proposed model are introduced in Section III.
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The implementations of the model training are summarized
in Section I'V. Section V lists the experimental configurations,
design and evaluation factors. Moreover, experimental results
are also reported and discussed in this section. Conclusions
are in Section VL.

Il. RELATED WORKS
In recent years, traffic flow prediction has been attracted
more attention of researchers all over the world, and many
outstanding research outcomes were achieved in this field.
Existing methods of traffic flow prediction are categorized
into the following groups: 4-stages prediction, stochastic
probabilistic model and artificial neural network. With suc-
cessful applications of deep learning (DL) on computer vision
and automatic speech recognition, deep neural network-based
methods were also introduced to solve present problems in
the transportation research. Since air traffic is an extension
of the ground transportation system, those works are of great
significance to the study of air traffic system. In early 1970s,
the publication of “Chicago Area Transportation Study”
worked on the long-term traffic planning theory and method,
which includes the trip generation, trip distribution, traffic
mode split and traffic assignment [2]. The method played
an important role in supporting the road traffic planning and
urban construction. Ko et al. [3] proposed a method to predict
the ground traffic flow by analyzing the historical trajectories
and their geometric correlations. In [4], authors presented an
on-line sequential extreme learning machine (ELM) model by
considering historical datasets and transportation dynamics.
Moreover, the model can be updated adaptively by correcting
with real-time trajectories. Shang et al. proposed a short-
term traffic flow prediction model named SSA-KELM (sin-
gular spectrum analysis-kernel extreme learning machine) to
reduce the influence of uncertainty and nonlinearity on the
expressway system [5]. An ARIMA-GARCH based model
was proposed [6] to predict the short-time traffic flow.
Authors integrated the ARIMA with generalized autoregres-
sive conditional heteroscedasticity to capture both the con-
ditional mean and heteroscedasticity of traffic flow series.
Pascale and Nicoli used an adaptive Bayesian network to
achieve the traffic flow prediction in [7]. They created the
spatial-temporal traffic evolution graphics which is further
modeled by a Bayesian network. Castro-Neto et al. [8]
presented an online support vector machine for regression
(OL-SVR) method to predict short-term traffic flow. Lv et al.
introduced a deep learning approach to predict traffic flow in
the next week [9], in which the neural network consists of
multiple stacked auto-encoder (SAE) layers, and was trained
by the greedy layer-wise algorithm. In a conference book
named ‘“‘Intelligent Transportation Systems - Problems and
Perspectives”, authors believed that the artificial neural net-
work (ANN) would be a promising way to solve dozens of
problems on intelligent transportation systems [10].

As to the air traffic flow prediction, Cui et al. proposed
an ANN and regression combined method to forecast the air
traffic flow [11]. They selected an empirical neural network

148021



IEEE Access

H. Liu et al.: Research on the Air Traffic Flow Prediction Using a Deep Learning Approach

architecture and simplified some key impacts to predict air
traffic flow with a rough level. Zhang proposed an ANN
and double gravity model to predict air traffic flow [12].
An air traffic flow prediction algorithm called GA-WNN was
proposed in [13]. Genetic algorithm was explored to optimize
the wavelet neural network for the ATFP. A flight assignment
method (a subtask of the ATFP) was studied by creating
a dynamic system optimum (DSO) route network [14]. In
[15], as a part of air traffic management, an optimization
approach for the fairness and collaboration was presented to
improve the air traffic operational efficiency. In [16], authors
studied a subsequent topic of the ATFP called en-route,
and proposed an optimized flight schedules and advanced
scheduling strategy based on the traffic prediction. Cheng
et al. mined frequent patterns from historical trajectories to
predict traffic flow in coming hours [17], which are combined
with the real-time flight distribution by statistical analysis
and ANN. An air traffic flow forecasting method [18] was
proposed in a linked network by analyzing the arrival time
of each flight from historical trajectories. The probabilistic
distribution of the flight arrival time was estimated by a non-
parametric method, i.e., kernel density estimation. Sun et al.
proposed an approach to estimate the traffic congestion state
by probabilistic theory [19], in which the k-means algorithm
was used to generate traffic situation and support vector
machine was applied to train a traffic model to predict the
traffic jam. In [20], authors applied an analogous model to
improve the air traffic monitoring and controlling of terminal
areas in real-time. By classifying the terminal congestion into
five levels, they forecasted the air traffic condition in busy
areas to support the decision-making. The real-time operating
data in the Eurocat-X system, such as flight plan, radar and
automatic dependent surveillance-broadcast (ADS-B), was
applied to predict the current and short-term air traffic flow
in [21]. Least squares support vector regression-based predic-
tion model was introduced in [22].

Even though the CNN and RNN combined models are
new for the air traffic flow prediction, some works have
been applied the neural network with similar architecture
to other fields. The CNN applications concerned the image
classification, object detection, etc. [23] As to its combination
with RNN block or improved architectures, two-stream con-
volutional networks (ConvNet) were proposed to recognize
actions in videos [24]. Donahue et al. developed a recur-
rent convolutional model called LRCNs for the large-scale
visual learning [25]. Sequential 3D-CNN models for human
action recognition were studied in [26] and [27]. The models
extracted features from both spatial and temporal dimensions
by performing 3D convolutions, and thereby captured the
motion information between video frames. Lai et al. applied
arecurrent architecture to capture contextual information for
the text classification task [28]. CNN layers were designed
to model the left context, word embedding and right context
of a single word, while the recurrent architecture was used
to capture the temporal relationship between words. Pinheiro
et al. proposed recurrent convolutional neural networks [29]
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to perform the scene labeling task. The CNN and RNN
were used to extract spatial features from local region and
long range (pixel) label dependencies in images, respectively.
Those works provide the available reference on model archi-
tecture in this work.

lIl. METHODOLOGIES

A. TRAFFIC SITUATION GRAPHICS

Air traffic control builds communication, navigation and
surveillance infrastructures to provide basic information for
nationwide air traffic system [30]. The radar network mon-
itors and tracks flying targets in the air. Various attributions
of the target can be recognized, including the aircraft identi-
fication, longitude, latitude, altitude, velocity, heading, et al.
Each equipment keeps 4-seconds updating interval and sends
its recognized information to a data fusion center. In order
to generate discrete trajectory positions, the multi-source and
multi-type data items are processed by decoding, registration,
tracking and fusion algorithms [31].

As previously described, the real-time flight number in
an airspace is uncertain and changing as the time elapsed.
Meanwhile, the traffic flow on adjacent areas and flight levels
should also be considered in the ATFP and constructed in the
model input properly. Therefore, we propose a new data rep-
resentation called traffic situation graphics (TSG) to integrate
the traffic flow situations and build the interactive influence
among all customized airspaces and flight levels. The whole
3D air traffic system is firstly split into 2D transportation
scenes based on the standard flight levels designed by CAAC.
In each 2D horizontal plane, the traffic is further divided into
grids with fix size, in which each grid denotes a certain spatial
extent. The flight number in the grid is regarded as the traffic
flow. Consequently, the traffic on the 2D plane is encoded
as an image whose pixel value is represented by the flight
number in corresponding grids. Fig.2 shows the mappings
between the TSG and real traffic situation. The altitude is split
into 45 levels and arranged by a level code from 1 to 45 in a
TSG. In this paper, the grid size is 20 KM * 15KM because
of the width of route (typically 20 KM) and flight interval
restriction (typically 15 KM) in China. Finally, the whole
air traffic situation at a certain moment is constructed into
a 250*250 image with 45 channels approximately. A TSG
sequence with proper temporal memory serves as the input
of the proposed model and is processed by the following
3D-CNN layers.

Furthermore, to illustrate the real-time flight impacts, all
affected areas are also indicated in each grid. In general,
the real-time factors mainly affect the dynamic capacity of
related airspaces. Therefore, we imply real-time factors con-
cerned airspace capacity to illustrate the influence. If the
airspace is restricted by some events (bad weathers, traffic
flow controlling, etc.), the airspace capacity will be reduced
to some extent. Consequently, we increase the traffic flow
in the affected areas to illustrate real-time factors, as shown
in (1). [ is pixel value of the cells in affected area on the
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FIGURE 2. The description of nationwide traffic situation graphic.

TSG. R is the range of the gray value. Vs and V; are the
static and dynamic capacity (affected by real-time factors)
respectively [32]. Vs in an airspace is evaluated and published
by a top-level ATC department. V; in an airspace is a real-
time evaluation, which is determined by the low-level ATC
department.
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B. CNN

CNN is a kind of neural network, which is proposed to extract
high-level features of spatial dependencies, such as image.
A CNN layer is usually designed with a pooling layer to
mine discriminative features and compress the data dimen-
sion. The general architecture of a CNN layer is showed
in Fig.3 [33]. The convolutional operation is designed to mine
spatial correlations among adjacent grids on a TSG. In gen-
eral, CNN designs several different convolutional kernels to
extract diverse features for modeling spatial correlations. The
weights among interdependent adjacent grids are shared to
make the feed-forward propagation and backward training
become more efficient in practice. The convolutional opera-
tion allows the CNN block to maintain the rotation, distortion
and scaling invariance for spatial features, which promotes
the performance of spatial modelling. For example, the traffic
patterns on different routes can be captured and learned by the
rotation of CNN.

=@ A + b)) @
ieM;
xfj = g(xlg_l) (3)

The forward inference of a CNN block is listed
in (2) and (3), in which the former one is the propagation
rule of a convolutional layer, and the latter one shows the
formulation of a pooling layer. x} is the output of j# neuron
in layer /. Operator * denotes the convolution operation, Af.
is the convolutional kernel of the j neuron in layer /and 7"
neuron in layer /—1. b]l- is the bias of /" neuron in layer [. £ (.)is
the non-linear activation function, such as sigmoid, tanh and
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FIGURE 3. The general architecture of CNN.

ReLU (Rectified Linear Unit). ¢ indicates the spatial field
for processing the pooling operation in layer /. g(.) is the
sub-sampling function in a pooling layer, which is usually
specified as average, median or maximal operation.

In the ATFP, the traffic flow of an airspace is greatly influ-
enced by other adjacent airspaces. Therefore, CNN layers are
designed to mine spatial dependences of traffic flow patterns
in our proposal. Moreover, due to the 3D character of air
traffic system, the air traffic flow on given flight level is also
interacted by the traffic situation on adjacent flight levels.
Consequently, we extend the CNN operation to the 3D data
space, i.e., 3D-CNN, to extract diverse features and spatial
dependencies on different flight levels. Typically, the con-
volutional operation of the CNN can be detailly expressed
as (4). Considering the 3D specificity, the inference rule for
3D-CNN are rewritten as (5). In the CNN block, deeper layers
are expected to extract high-level abstract features, which is
the key to mine spatial dependencies of traffic flow patterns.

Pi—10;,—1
Xy _ q  (x+p)y+q)
D DD B D Avis @
m  p=0 ¢g=0
Pi—10;—1 Ri—1

Xz __ qr . (x+p)(y+q)(z+r)
=D D D Wit ®)

m p:O q:() r=0

In the listed equations, v is the value at a grid index
(denoted by x,y, z) on the j” feature map in the i layer.
m saves the total number of the feature map. P;, Q;, R; are
the configuration of the convolutional kernel in three dimen-
sions, respectively, i.e., the width, height, depth. wgfn and
wh are (p, ¢)™ and (p, g, r)™ weights of the convolutional
kernel connected to the m' feature map in the previous layer,
respectively.

C. LSTM

LSTM is an improved RNN block, named long-short term
memory, which receives not only the output of the previous
layer but also the output of the last prediction instant. For each
hidden unit s in an RNN block, the input comprises of the x(*)
at current instant and the A6~ at last time instant, as shown
below.

B = fwinh™Y + wipx® + by)
Y = fo(wioh® + by) (©6)

In (6), K and y*® are the hidden activation and output of
the hidden unit s, respectively. b, and b, represent the bias of
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> 

FIGURE 4. The general architecture of LSTM.

the hidden activation at last and current time instant, respec-
tively. wpp, wip, and wy, indicate the weights of the connection
between hidden units in neighboring timestep, input units and
output units of current time step, respectively. The connec-
tions of hidden units between different time instants are the
key to share the sequential information of air traffic flow.
However, excessive connections in the RNN block impose
extra computational burdens on training progress, including
gradient vanishing and exploding. The block used in this
work, i.e., LSTM [34], was proposed to solve those issues.
A LSTM block comprises a memory cell, and three control
gates, i.e., the input, output and forget gates, as shown in Fig.4
[35]. The vectorized inference rules of the LSTM block are
shown in (7). By controlling the weight of the information
transmission among the three gates, the important sequential
information is propagated to the next timestep to build the
temporal dependencies of the input sequence. In this work,
after extracting deep spatial features from TSG sequence
using 3D-CNNs, temporal dependencies among historical
TSGs are built by a LSTM layer.

I' = f(Wix' + Wiph'™' + W, .C'™' + b))

F' = f(Wpx' + Wyh' ™' + W€ + by)

C'=F oC™"+I 0 g(Wex' + Weoh' ™' +b,)

o' :f(Woxxt + Wohhtil + WoC' +b,)

k' = 0"og(C) )

where, I', F', C', O' are the activations of the input gate,
forget gate, cell, and output gate, respectively. The super-
script ¢ denote the predicting instant. W.. save the weight
tensor, whose subscripts indicate the direction of the infor-
mation transmission. For example, the subscript fh of W..
shows the direction from hidden unit of last time instant to
forget gate at current time. b. is the bias in the corresponding
component.
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D. D.R-3DCNN

As described before, both the whole nationwide traffic sit-
uation (spatial) and traffic situation at past time instants
(temporal) should be considered in the ATFP. In this paper,
a CNN- and RNN- combined neural network is designed to
consider both the spatial and temporal dependencies jointly
for predicting the air traffic flow. Furthermore, we extend the
common CNN operation to the 3D-CNN to mine the spatial
correlations among adjacent customized airspaces and flight
levels integrally. To cope with the long-time dependency
of the input sequence, i.e., the look-ahead horizon of the
prediction model, we also apply LSTM blocks to improve
the accuracy and robustness of the prediction model. The
architecture of the proposed model is shown in Fig.1. The
input TSG sequence is first fed to 3D-CNN to extract spatial
features in horizontal plane and vertical direction at each
predicting instant. The improved RNN block, i.e., LSTM,
is designed to mine temporal correlations among historical
TSGs. With the designed blocks, a deep neural network based
ATFP approach comes into being. The architecture of the
model is detailly described below:

a) The TSG is organized as a 3D data (3D dependencies),
where the spatial dependencies of the air traffic flow
concern the adjacent areas and flight levels. Therefore,
more CNN layers are designed to extract the transition
patterns of air traffic flow in the proposed model.

b) Since a TSG illustrates a global traffic situation in the
studied airspaces, the spatial dependencies are reflected
in different spatial scales (corresponding to different
kernel size of convolutional operations), just like a
pyramid architecture. That is to say, the near areas
influence the traffic flow of a certain airspace in a short
term, where the far areas are in a long term. This is
also the reason why multiple CNN layers are needed
to extract traffic flow patterns.

c) As we can see, the temporal dependencies of air traffic
depend only on the traffic situation of past instants,
i.e., 1-D dependencies. Moreover, the TSG represent
the air traffic in more refined and dedicated customized
airspaces, in which the nonlinearity of the traffic flow
is easy to be captured compared to the spatial depen-
dencies. Therefore, we only designed one LSTM layer
to obtain the temporal transition patterns of air traffic.

After determining the blocks of the proposed network,

the next step is to optimize the parameters of the network by
an effective algorithm with large number of credible training
data.

IV. MODEL TRAINING

The training of a deep learning model aims at learning the
data distribution from training samples by optimizing the
trainable parameters of the neural network. The difference
between the true labels and predicted outputs is evaluated
by a loss function. Meanwhile, a regularization item is also
proposed to improve the generalization of the deep learning
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model. In general, the optimization target of the model train-
ing consists of an estimation error item (J) and a regulariza-
tion item (R) [36], as shown in (8).

0 = argmin L(X, Y) = argmin(J + AR) ®)
6 0

[
J=— ;f(y(l),y (i) ©9)

In the listed equations, 6 represents the parameter set of a
deep neural network, including trainable weights and biases.
A denotes the hyper parameters of the regularization item. J is
the loss function, and R is selected as Frobenius norm. m saves
the total number of training samples. X, Y save the inputs
and outputs of the model, respectively. y(i) and y'(i) are the
true label and predicted output of the i-th training sample,
respectively.

Other details of training hyper parameters are sketched
below. The activation function is ReLU in this work. In order
to speed up the training progress, mini-batch gradient descent
with 16 samples per iteration is applied to update training
parameters in the back-propagation algorithm. All param-
eters (weights and biases) in the proposed neural network
are initialized by sampling from a uniform distribution. The
updating of the weights and biases is shown in (10), in which
W, b are the vectorized weight and bias tensors, respectively.
Batch normalization is applied to adjust the data distribution
of training samples after CNN layers. Dropout layers are
used to cut some connections between nodes of two adja-
cent layers to prevent the over-fitting problem. The Adam
optimizer is applied to improve the performance of gradient
descent algorithm with 0.001 initial learning rate, 0.9 beta_1,
0.999 beta_2 and ¢ = 1e — 8. The proposed network is totally
trained 50 epochs with shuffling the training samples. The
parameters of the proposed model, including the number of
the CNN layers, the number of hidden units of each layer,
the configuration of convolutional kernels, the size of sub-
sampling kernel, and the neuron of LSTM cell, need to be
determined to obtain the best prediction performance.

W= W —adJ/aW)
b= b—a(dJ/db) (10)

V. EXPERIMENTS AND DISCUSSIONS

A. EXPERIMENTAL CONFIGURATIONS

Since the flight execution in China mainly follows the flight
schedule published by civil aviation department, which con-
tains a spring and autumnal version. All flights usually oper-
ate in weekly, i.e., week cyclicity [37]. The studied airspaces
in this paper are the busiest routes in China, including the
Beijing-Shanghai (JHR) and Beijing-Guangzhou (JGR). The
primary task of the experiment is to predict the air traffic
flow of the two routes with flight level distribution in next
flight period (weekly). Several experiments are first designed
to optimize the model architecture and parameters, such as
the number of the CNN layers, the configuration of con-
volutional kernels, the look-ahead prediction horizon, etc.
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Based on an preliminary analysis of air traffic situation, three
candidates serves as the option of the look-ahead horizon
of the prediction model, i.e., 30, 60, 90 minutes before the
predicting instant [38]. All the three options are taken part in
the designed experiments to obtain a best look-ahead horizon
of the prediction model. Historical trajectories of executed
flights are the raw data of the proposed model and real-
time affected areas are also considered in the ATFP. The
raw updating interval is about 10 seconds, while the raw
data is converted into the TSGs with one-minute updating
interval based on fact that the traffic situation of a certain
airspace in one minute is steady. Flight trajectories from
December 29, 2014 to May 29, 2016 are used to generate
training samples for the proposed prediction model, and the
flight trajectories from May 30, 2016 to June 5, 2016 (a
week) are also collected and processed for the final test in
the similar way. The whole dataset is further divided into
two parts, in which the training and validation set account for
95% and 5%, respectively. We also design several comparison
experiments, including the flight trajectory prediction-based
method (FTP) [39], the regression-based prediction model
(RP) [6] and the neural network-based ones (NN). Since the
proposed model is a neural network-based one, the following
architectures, including the fully connected neural network
(FC-NN), common recurrent neural network (B-LSTM), FC
and LSTM combined (FC-NN-+LSTM), 2D-CNN and LSTM
(2D-CNN+LSTM) combined model, are designed to validate
different improvements in this work. In this paper, all pre-
dicted results obtained by different methods are evaluated by
the following three measurements:

1) Mean prediction error (MPE)

| T,
MPE:ZZM;—fg (11)
i=1
2) Mean error ratio (MER)
NGRS
mer ==Yy (12)
n i=1 fc’
3) Prediction error variance (PEV)
L1, .2
PEV = _Zw_f; (13)
n
i=1

where 7 is the total number of the predicted samples in the
test data. fp’ and f! are the predicted and real value of i
training samples, respectively. The first two measurements
mainly focus on the accuracy of the predicted results, in
which the second one is a measurement of the relative error
percentage. The last one focuses on the stability and robust-
ness of the prediction results for dealing with different traffic
situations.

The main configurations of the training server are summa-
rized as: 2*Intel Xeon E5-2650 CPUs, 64GB memory, and
2* NVIDIA GTX 1080 GPUs, and the operation system is
Ubuntu 16.04. All codes are programmed using Python, and
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deep learning-based model is constructed based on the open
framework Keras (2.0.4) with TensorFlow (1.0.0) backend.

B. INPUT AND OUTPUT

All the raw flight trajectories are first converted into the
training samples, i.e., (X, Y) pairs that represent the input
and output of the neural network. In this paper, X is a
TSG sequence generated by our proposed data representation.
The shape of X is tuple with 6 elements, as shown below:
X = (batch-size, timestep, width, height, depth, channel). The
batch-size is the sample size for implementing the mini batch
gradient descent algorithm. The timestep is the temporal
memory of LSTM block, i.e., the look-ahead horizon of the
prediction model. The width and height denote the shape of
the horizontal TSGs on each flight level, 250*250 in this
work. The depth is the third dimension of the TSG, namely
flight level, 45 in this work. The channel is the channels of
the 3-D TSG, 1 in this work. Y is the traffic flow vector for
the studied airspaces in each flight level.

C. NETWORK ARCHITECTURE

The parameters concerned the model architecture comprise
the number of the 3D-CNN layers, the number of hidden
units of each layer, the configuration of the convolutional
kernels, the size of the sub-sampling kernels, the nodes of
the LSTM layer. Those parameters are determined by several
designed experiments. In this paper, the input shape of the
proposed neural network is (batch-size, timestep, 250, 250,
45, 1), the output is the vector with 90 dimensions, i.e., 2
(the number of the studied airspaces, JHR and JGR) multiply
45 (the number of flight levels). In this paper, the number
of 3D-CNN hidden layers is selected from 3 to 6, and the size
of convolutional kernel and sub-sampling must be ensuring
the output dimension. The sub-sampling function is max-
pooling operation. The final architecture of the proposed
model will be determined by experiments in the later section.

D. RESULTS AND DISCUSSIONS

The first experiment focuses on confirming the model param-
eters, i.e., feeding the TSG sequence with different look-
ahead horizon into the neural network with different number
of 3D-CNN hidden layers to evaluate the model performance.
The prediction results consist of the traffic flow of the studied
airspaces and their distribution on different flight levels. All
predicted traffic flow are evaluated by the proposed three
measurements, i.e., MPE, MER and PEV. Experiment results
in this section are reported in the Tab.1, in which the input
length and #h denote the look-ahead horizon of the prediction
model, and the optimal number of the hidden 3D-CNN layers,
respectively.

From the results in Tab.1, we can see that:

a) Regarding the model trained by the data collected
60-minute before the prediction instant, the prediction
results for both the total flow and its flight level dis-
tribution are more accurate (lower MPE and MER) and
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TABLE 1. Results with different input length and CNN layers.

Total traffic flow Flight level distribution

nput #h MER MER
length

g MPE %) PEV MPE %) PEV
30 5 8.50 8.71 10.06 021 237 044
160 4 5.67 5.25 5.97 015 192 037
90 6 6.98 7.05 11.25 020 236 041

stable (lower PEV) than that of other options even using
a simpler model architecture. In general, the 30-minute
TSG sequence fails to provide enough temporal depen-
dencies for the air traffic prediction, in which the tran-
sition patterns of air traffic flow are not fully implied.
Consequently, more CNN layers are needed to extract
the incompatible transition patterns, which turns out to
limit the model performance.

b) Comparing the predicted traffic flow obtained by the
TSG sequence 90-minute before the prediction instant,
the results are not comparable with that of 60-minute
TSG sequence, in both the accuracy and stability. If a
longer historical TSG sequence is taken by the neu-
ral network, more non-determinacy flight patterns are
inclined to be introduced during the model training.
It turns out to be that the longer input TSG sequence not
only increases the complexity of network architecture
but also imposes detrimental influences on the accuracy
and stability of the final results.

¢) Based on the results, we find that most of the predic-
tions obtained with 90-minute historical memory are
nearly as accurate as that of 60-minute historical mem-
ory by computing the prediction error on each predict-
ing instant. However, the remaining results fluctuate in
a wide range, and they are even not comparable with
the results obtained by only the 30-minute look-ahead
horizon. The reason of the results can be attributed that
most of the flight time are about 120-180 minutes. Due
to the studied airspaces are arterial routes, flights will
go through the studied airspaces in about 60 minutes.
Therefore, more hidden layers are required to mine the
dependency for a longer TSG sequence. Meanwhile,
the prediction accuracy and stability are not promoted
as expected due to the feeding of the interferential
model input.

Judging from above discussions, we can see that the TSG
sequence with 60-minute look-ahead horizon is a preferred
option for training the proposed prediction model. With the
determined look-ahead horizon, the prediction results are
optimized by the neural network with 4 hidden 3D-CNN
layers. For the 3D-CNN training, we select an optimal archi-
tecture for the proposed model, as listed in Tab. 2. The
configurations of the convolutional and pooling kernel in
each hidden layer are reported in this table. The digits after
@ denote the number of filters for convolution operations,
which also denotes the output depth in each hidden layer.
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TABLE 2. The CNN configurations.

Layer name Kernel/stride #filters Pooling
3D Conv 1 (3,3, 1)1 64 2,2,2)
3D Conv 2 (3,3,1)2 128 2,2,2)
3D Conv 3 (5,5,3)1 64 2,2,1)
3D Conv 4 (5,5, 1)2 32 2,2,1)
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FIGURE 6. The histogram of the prediction error (MPE and MER) for JHR.

A single TSG is finally encoded as a feature vector with
2560-dimension. The feature vector is further fed into a
LSTM layer with 1024 hidden units to mine the temporal
dependencies of air traffic flow. Finally, a fully connected
predicting layer is designed to estimate the traffic flow for
the studied airspaces.

Based on the optimized parameters, the final training and
prediction experiments are conducted to evaluate the perfor-
mance of the proposed model. In those experiments, the total
traffic flow, flight level distribution and the error ratio of the
studied airspaces are applied to make comparison with real
data in this week. In this section, experimental results are also
discussed to explain the frequent patterns of air traffic flow.

Fig.5-10 show the experimental results for evaluating the
performance of the proposed model. Fig.5 and Fig.8 show
the predicted traffic flow and real traffic flow (true values) of
the JHR and JGR in the test dataset, respectively. Fig.6 and
Fig.9 show the prediction error of the JHR and JGR respec-
tively, in which both the MPE and MER are reported as
histograms. Fig.7 and Fig.10 show the traffic flow distribution
on different flight levels (the predicted and real traffic flow)
for the JHR and JGR, respectively.

From the figures, we can see that the predicted traffic flow
for the studied airspaces on given days are closed to their

VOLUME 7, 2019

Number of predictions
NN
G 3 O
s 38 &
s 8 8

Number of predictions
NN
& 8 o
s 8 &
8 8 8

o
~N
IS
o
@
=
o
"
Iy]
=
kN

0 12 14

1000 1000
500 500
o [ o
v 4 6 8 10
MPE

FIGURE 9. The histogram of the prediction error (VIPE and MER) for JGR.

B Real flow
W Predicted flow

A U 0 N ®
L L L s L

w
L

Flow distribution(%)

0 10 20 30 40
Flight level
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collected traffic flow (true values), which proves the accuracy
and robustness of the proposed model. In addition, we also
come to the following understandings below based on the
analysis of experimental results:
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a) The traffic flow of the JHR at May 30, 2016 is bus-
ier than that of other days in this week obviously.
By checking the real-time influences, we find that
there is a routine event near this route, so more flights
are required to meet the transportation demands. The
experimental results indicate that the proposed model is
able to consider the real-time impacts for predicting the
air traffic flow by the proposed new data representation,
i.e., TSG.

b) The traffic flow of both the JHR and JGR shows huge
fluctuation from 9 am to 18.pm. Since both the two
airspaces are trunk route in China, most flights will pass
the studied routes in the near areas. The traffic flow
patterns of a trunk route show a frequent flow-splitting
and convergence in the concerned areas. This is a strong
proof that the proposed model takes the general tempo-
ral dependencies of air traffic flow tendency.

¢) As can be seen from the figure, more traffic flow of
the JHR distributes in the low flight levels. It is easy
to know that there are two civil airports in Shanghai,
which concentrates more flight departure and landing
in this studied area. Meanwhile, Shanghai is a main
transfer airport for international flights outside China,
which is denoted by the traffic flow distribution on
flight levels. It is believed that spatial patterns of air
traffic system are captured by the proposed model for
predicting air traffic flow. Similarly, the traffic flow of
the JGR distributes in the cruise altitude, from flight
level 20 to 30, due to its spatial location in the studied
airspace.

d) The prediction errors (MPE and MER) show a different
trend for the studied airspaces. The prediction error of
the JHR spread in a wide range, which attributes to
the flight departure and landing in this route. The air-
craft has higher maneuverability during flight departure
and landing, which aggravates the nonlinearity of the
traffic flow patterns and further reduces the prediction
accuracy. The MPE and MER of the JGR are in low
prediction errors since most flights are in cruise phase
in this route.

To further show performance of the proposed model,
more experiments are designed as the comparison base-
lines, including FTP, RP, and NN (specifically the FC-NN,
B-LSTM, FC-NN+LSTM and 2D-CNN+LSTM based mod-
els). The experimental results are reported in Tab.3. In this
section, only the total traffic flow of the studied airspaces
(without flight level distributions) is predicted and evaluated
by the proposed measurements. The listed results are the best
one of different models during the experiments.

According to the result, we can see that the proposed model
shows the desired superior performance over the designed
baselines. The experimental result can be summarized as
follows:

a) The FTP based ATFP approach is a bottom-up one,

in which the ATFP is implemented based on the FTP.
Therefore, the ATFP results are heavily influenced by
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TABLE 3. Comparison of prediction with different approaches.

Category Approaches MPE MER (%) PEV
FTP FTP 11.99 9.74 17.54
RP Regression 10.71 9.41 9.55
FC-NN 11.55 9.60 14.69
B-LSTM 9.68 9.24 11.33
NN FC-NN+LSTM 7.90 7.54 8.20
2D-CNN+LSTM 6.05 591 6.24
R-3DCNN* 5.67 5.25 5.97

b)

)

d)

the FTP performance, and the prediction error of the
FTP limits the ATFP accuracy. As can be seen from
result, the FTP based ATFP approach suffers the largest
prediction error (MPE and MER) in the listed methods.
In this work, the customized airspace generated by
the TSG are refined ones with smaller spatial extent.
Therefore, the influence of FTP errors for the flight in
the airspace margin on the ATFP accuracy is frequent
and hugely magnified. Besides, the FTP accuracy in the
cruise phase is higher than that of in the cruise/descent
phase, which will cause larger deviation of the predic-
tion results, as shown as the PEV in the result.

The results obtained by the FC-NN model also has
large deviation with the ground truth. Since the FC-NN
cannot consider the temporal and spatial dependen-
cies for predicting the air traffic flow jointly (mainly
focuses spatial dependencies in the experiment), it fails
to obtain a comparable performance with other models.
In general, all the following methods, regression,
B-LSTM, and FC-NN-+LSTM model, are based on
the time series processing algorithms. The regression
mainly considers the temporal dependencies of air traf-
fic flow, which finally predict the traffic flow with
larger prediction error (10.71 and 9.41%). The LSTM
based models consider the temporal dependencies and
minor spatial dependencies by organizing the input
as a traffic flow vector. Therefore, the LSTM based
approaches has the ability of obtaining higher pre-
diction performance (MPE, MER, PEV) than that of
the first three baselines due to the powerful ability of
modeling nonlinearity. By improving the model capac-
ity and its representation ability on nonlinear features,
the FC-NN+LSTM model can obtain better results
than that of B-LSTM model.

Finally, the 2D-CNN+-LSTM based model is designed
to prove the validity on predicting the distribution on
flight levels by extending the 2D-CNN to 3D-CNN.
In the two experiments, the TSG is well organized
by considering the spatial dependencies and LSTM
block is designed to mine the temporal dependen-
cies. The prediction results really show the desired
improvement since the 3D specificity is the key to
capture the transition patterns in the air traffic system.
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In addition, we also compare the mean error of flight
level distribution (0.15% of R-3DCNN versus 0.36% of
2D-CNN+LSTM) to show the advantage of 3D-CNN
on predicting the traffic flow on flight level distribution.

In summary, based on the experimental results, the pro-
posed model shows higher accuracy and stability of the pre-
diction results among all the comparison baselines, and the
traffic flow distribution on different flight levels show the
same trend. The proposed TSG illustrates required spatial
patterns on a single input, which promotes the modeling
performance in this work. The LSTM layer is further pro-
posed to build the temporal patterns of traffic flow, which
integrates the spatial and temporal information for air traffic
flow prediction comprehensively.

VI. CONCLUSION

Air traffic is a complex and time-varying system and easy
to be influenced by real-time factors. To overcome the low
predicting accuracy and stability of existing methods on the
air traffic flow prediction, a deep neural network (R-3DCNN)
based air traffic flow prediction approach is proposed in
this paper. A data representation called TSG is firstly pro-
posed to integrate the model input and describe the spatial
dependencies of air traffic situation. The TSG illustrates the
spatial dependencies of air traffic flow on adjacent areas
and flight levels, which is essential to the ATFP research.
Meanwhile, real-time factors, such as important activities,
adverse weather, etc., can also be represented on the TSG.
Naturally, 3D-CNN layers are applied to mine high-level
abstract features of air traffic flow by the convolutional oper-
ations. A LSTM layer is also designed to build the tempo-
ral dependencies of air traffic flow, i.e., the historical TSG
sequence. The accuracy, stability and robustness superiority
of the proposed model is fully proved by several designed
experiments with real data. Comparison experimental results
with other baseline models are also obtained to validate the
proposed model. Besides, the improvement of the proposed
data representation, i.e., the TSG for representing the spatial
dependencies and real-time factors, is also confirmed by the
2D-CNN and 3D-CNN based experiments, respectively.

In the future, we will apply the improvement of ATFP to
real air traffic management scene. Based on the proposed
approach and combining it with the theory of traffic schedul-
ing, a refined air traffic management system with more effi-
cient and effective joint operation and controlling measures
are expected to fulfill in busiest areas in China. That’s what
we want to do for solving facing problems of the civil aviation
in China.
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