
Received September 3, 2019, accepted September 18, 2019, date of publication October 7, 2019, date of current version October 22, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2945907

Cost-Sensitive Prediction of Stock Price Direction:
Selection of Technical Indicators
YAZEED ALSUBAIE , KHALIL EL HINDI , AND HUSSAIN ALSALMAN
Department of Computer Science, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia

Corresponding author: Khalil El Hindi (khindi@ksu.edu.sa)

This work was supported by the Deanship of Scientific Research and RSSU, King Saud University through the Research Group under
Grant RG-1439-035.

ABSTRACT Stock market forecasting using technical indicators (TIs) is widely applied by investors
and researchers. Using a minimal number of input features is crucial for successful prediction. However,
there is no consensus about what constitutes a suitable collection of TIs. The choice of TIs suitable for
a given forecasting model remains an area of active research. This study presents a detailed investigation
of the selection of a minimal number of relevant TIs with the aim of increasing accuracy, reducing
misclassification cost, and improving investment return. Fifty widely used TIs were ranked using five
different feature selection methods. Experiments were conducted using nine classifiers, with several feature
selection methods and various alternatives for the number of TIs. A proposed cost-sensitive fine-tuned
naïve Bayes classifier managed to achieve better overall investment performance than other classifiers.
Experiments were conducted on datasets consisting of daily time series of 99 stocks and the TASI market
index.

INDEX TERMS Cost-sensitive, feature selection, machine learning, market trend, prediction, stock market,
technical indicators.

I. INTRODUCTION
Prediction of stock market trends has long been an attrac-
tive topic that has been extensively studied by researchers
from various fields, because of its importance in making
informed investment decisions and its potential financial
benefits. Investment strategies can always benefit from new
insights and tools that better utilize historical data to predict
the future.

A wide range of approaches is used to analyze and fore-
cast market behavior. They include fundamental and techni-
cal analysis, statistical and multiple criteria decision aiding
(MCDA), textual analysis, data mining, and soft computing.
Machine learning (ML) algorithms are increasingly being
used in the financial sector [1]. ML has the potential of
identifying stock trends from massive amounts of data that
capture the underlying stock price dynamics.

In computational finance, the forecasting of financial mar-
kets using ML approaches often relies on technical indica-
tors (TIs) as the attributes, or features, of the input datasets.

The associate editor coordinating the review of this manuscript and
approving it for publication was Changsheng Li.

However, researchers have not reached a consensus about
a suitable collection of TIs to use. The choice of TIs
suitable for a given forecasting model remains an area of
active research. Some researchers use 10 TIs, whereas others
use 20 or more [2]–[5]. Numerous TIs are being used by
investors, and their number is still growing, as a result of the
addition of new indicators and variants.

This work focuses on the selection of a minimal number of
relevant TIs as input data, to reduce the dimensionality of the
forecasting problem while achieving acceptable prediction
performance. Using a minimal number of input features is
crucial for successful stockmarket forecasting [6]. Each input
feature introduces an additional dimension, which increases
the sparsity of training data in the data space; thus, the amount
of training data required increases exponentially with the
number of features, to cover each combination of feature
values.

Evaluating which TIs are relevant, and how many TIs
to use, is accomplished by experimenting with several fea-
ture selection configurations on different prediction models.
A ranking of 50 widely used TIs is developed, using three
different feature selectionmethods and twowrappermethods:

146876 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0003-4001-8144
https://orcid.org/0000-0003-2457-9961

Y. Alsubaie et al.: Cost-Sensitive Prediction of Stock Price Direction: Selection of TIs

one accuracy-based and the other cost-based. The ranking is
presented in the form of heat maps, which can serve as a guide
for selecting TI

Experiments investigate the impact of several feature selec-
tion configurations on the performance of various prediction
models, using three metrics: classification accuracy, mis-
classification cost, and the expected investment return of a
trading system simulation. The research utilizes nine clas-
sifiers: naïve Bayes (NB), fine-tuned naïve Bayes (FTNB),
artificial neural network (ANN), support vector machine
(SVM), MetaCost wrapper with these four classifiers, and
cost-sensitive fine-tuned naïve Bayes (CSFTNB). Using dif-
ferent ML algorithms is necessary to neutralize the effect of
their inductive bias.

The last five classifiers listed above are cost-sensitive
classifiers. Cost-sensitive techniques are essential to deal with
imbalanced datasets, such as those generated from the time
series of stock daily trading data. These datasets usually have
an unequal distribution between their classes, as shown in
TABLE 3. In such cases, classifiers tend to be biased toward
the majority class. That is, they tend to wrongly classify an
instance from a minority class as belonging to a majority
class, even though minority classes are more important in
making predictions and investment decisions.

CSFTNB is proposed in this research, to make the NB clas-
sifier cost sensitive. CSFTNB aims to fine-tune the probabili-
ties so that NB is more likely to make lower-cost predictions.
Once the classifier is tuned, new instances are classified in
the same manner as with the NB classifier.

The results show that choosing a large number of TIs
(above 30) is likely to reduce performance, with respect to
all three performance metrics. More specifically, results show
that the highest accuracy is achieved with at least 10 TIs,
the lowest cost with five TIs, and the best investment perfor-
mance with five to 10 TIs. The research finds that accuracy,
and those achieving the lowest cost, failed to produce the
best performance in a trading simulation. However, a cost-
sensitive fine-tuning of an NB classifier achieved the highest
balance between investment return and risk.

It is worth mentioning that numerous studies have been
conducted using ML to predict the direction of movement
of the world’s major stock markets. A few of them, such
as [3], [7], [8], have been applied to the Middle Eastern mar-
kets. Saudi Arabia is a G20 member and plays a significant
role in the global economy. Its economy is the largest in the
Middle East and North Africa (MENA) region, according
to the International Monetary Fund (IMF) in its World Eco-
nomic Outlook for 2015 [9]. Hence, the decision was taken to
base this work on data obtained from the Saudi stock market.

II. RELATED WORK
There are two major approaches to financial time series
prediction: statistical models and ML approaches. Statistical
methods generally assume a linear process while modeling
the generation of the underlying time series and predicting its
future values. However, financial time series are inherently

complex, highly noisy, dynamic, nonlinear, nonparametric,
and chaotic [10], [11].

Various ML techniques, such as ANN, SVM, NB, and
genetic algorithms [11]–[14], have been applied to stock
market prediction. Support vector regression (SVR) models
have been used to forecast various nonlinear and chaotic time
series, such as in [15]–[17], and have also been successfully
applied to stock market forecasting [18]. The expanding lit-
erature on the use of ML techniques for sentiment and textual
analysis in finance was reviewed in [14]. News, and other
company information, was classified and used to generate
sentiment series. The study compared the classification per-
formance of the lexicon-based and ML approaches: specifi-
cally ANN, SVM, and NB. Big data analysis techniques were
used in [19] for sentiment analysis, to forecast stock price
movement. Ou and Wang [20] applied 10 different ML tech-
niques to predict the price movement of the Hang Seng index
of the Hong Kong stock market. A benchmark of ensem-
ble methods (random forest, AdaBoost, and kernel factory)
against single-classifier models (ANN, logistic regression,
SVM, and k-nearest neighbors) was reported in [21].

Cost-sensitive ML addresses problems in which different
classification errors have different costs. There are numerous
practical applications in which the costs of different errors are
not equal. For example, in medical diagnosis, it is much less
costly to wrongly diagnose a healthy person as sick, and incur
further expense for more medical tests, than to misdiagnose
an ill person as healthy and risk a loss of life. Similarly, there
are varying costs associated with wrongly predicting the price
trend direction as up, down, or flat. A cost matrix is usually
built, based on the number of defined classes for a given
problem domain.

One of the popular methods for cost-sensitive learning
is rescaling [22]. Rescaling can be achieved in different
ways, such as by sampling the training instances propor-
tionally to their cost. Sampling pushes the decision bound-
aries away from the classes with high cost [22]. There
are several approaches to sampling, such as oversampling,
undersampling, cloning, and instance weighting [23]. All
of these techniques work by changing the class distribu-
tion, by assuming that it does not obey the underlying real
distribution. This is done either by adding instances from
the minority class or removing instances from the major-
ity class. Chawla proposed the synthetic minority oversam-
pling technique (SMOTE) [24]. Jiang introduced the minority
cloning technique (MCT) [25], for cloning each minority
class instance several times, based on its similarity to a virtual
minority mode instance.

Instance weighting is a sampling technique that assigns a
normalized weight to each instance, which is based on the
cost of misclassification. This technique was used in [26]
to propose cost-sensitive Bayesian network classifiers. The
weighting method works whenever the underlying cost-blind
classifier can accept instance weights directly [23].

Thresholding [27], [28] is another method for cost-
sensitive learning. In this method, a threshold is used to

VOLUME 7, 2019 146877

Y. Alsubaie et al.: Cost-Sensitive Prediction of Stock Price Direction: Selection of TIs

classify instances. This method works when the underlying
cost-blind classifier can estimate the class probabilities. The
MetaCost technique, discussed in detail in the next section,
uses thresholding to relabel the training instances based on
the cost of misclassification.

Both sampling and thresholding fall into the meta-learning
category of cost-sensitive classification.Meta-learning works
by designing a wrapper around the underlying cost-blind
classifier, without changing it. The wrapper generally alters
the training data, to transform a classifier to make it
cost-sensitive. The other category is cost-sensitive learn-
ing, in which the learner is modified to make the classifier
cost-sensitive.

A. METACOST WRAPPER
Domingos [27] proposed the MetaCost method, which is a
wrapper procedure for making classifiers cost-sensitive using
a cost-minimizing procedure. The procedure treats the under-
lying classifier as a ‘‘black box’’: it has no knowledge of
how the classifier functions and does not change it. It uses an
ensemble of classifiers, similar to the bagging method [29],
to relabel each training instance with a label (class) that
minimizes the expected cost; this class may differ from the
instance’s actual class. The classifier is then trained using the
relabeled data; it is trained to predict the class with the lowest
cost, rather than the correct class.

The MetaCost procedure works best for unstable learners:
that is, in situations where a slight change in the training set
produces a substantially different classifier. Therefore, it is
not expected to work well for NB classifiers, because NB
is a stable learning algorithm [30]. The procedure works as
follows [27]:

– An ensemble of the underlying classifier is used to esti-
mate the class probabilities for each training instance.

– The class with the lowest expected misclassification
cost, or conditional risk R (i | x), is selected.

R (i | x) =
∑

p (j | x)C (i, j) (1)

where C (i, j) is the cost of classifying the instance to be of
class i when in reality it belongs to class j, and p (j | x) is the
probability of class j, given the instance x.

– The class with minimal conditional risk is chosen to
relabel the training instance.

– At the final stage, a classifier is trained with the rela-
beled training dataset.

B. FINE-TUNING THE NB
El Hindi [31] proposed an algorithm to improve the clas-
sification accuracy of the NB algorithm by fine-tuning the
probability values used by NB, to find better estimates for
these values. The method, called FTNB, showed a significant
improvement in classification accuracy compared to the NB
algorithm. In [32], a slightly different method was proposed
to fine-tune Bayesian networks.

The FTNB algorithm comprises two learning stages. In the
first stage, the training set is used to construct a classical NB

classifier, and the training set is used in the usual way to
estimate the required probability terms. In the second stage,
the training set is used again to find better estimates for
the probability terms of NB. If the NB classifier mistakenly
classifies a training instance, it means that the predicted
class, Cpredicted , has a greater computed probability than
the instance’s actual class (correct class), Cactual , given the
instance’s attribute values. Therefore, the algorithm increases
the values of the probability terms involved in computing
the probability of the actual class and decreases those of the
terms involved in computing the probability of the predicted
class. Specifically, it increases the values of the probability
terms p (ai |Cactual) for each attribute value ai. Additionally,
the algorithm decreases the probability of the mistakenly pre-
dicted class, Cpredicted , by decreasing the values of the proba-
bility terms that contributed to this error, namely, the terms
p
(
ai |Cpredicted

)
, for each attribute value ai. FTNB neither

increases p (Cactual) nor decreases p
(
Cpredicted

)
because it

was found empirically that fine-tuning these terms has no
effect on the performance of NB [31].

The size of the update, δi, is proportional to the size of the
error, which is computed as

Error = |p (cactual |a1, a2, . . . , an)

− p
(
cpredicted |a1, a2, . . . , an

)∣∣ (2)

where P (co|a1, a2, . . . , an) is the probability of class co
given the attributes a1, a2, . . . , an. It is calculated using the
equation

p (co|a1, a2, . . . , an) = p (co) ·
n∏
i=1

p (ai | co) (3)

where n is the number of attributes in a given instance and
p (co) is the frequency probability of class co in the dataset.

When computing δ(t+1) (ai, cactual), the size of the update
should be large for small probability values and small for
large probability values. The reason is that small probability
values are more likely to be responsible for misclassification
than large probability values. This goal is achieved by adjust-
ing the size of the update to be proportional to

α · p (maxi | cactual)− p (ai | cactual) (4)

where maxi is the value of the ith attribute with the maxi-
mum probability, given cactual . This equation ensures that a
greater difference between p (ai | cactual) and p (maxi | cactual)
leads to a larger update step. α is a constant greater than
or equal to 1, and is used to adjust the size of the update
step for the term p (ai | cactual), relative to its distance from
p (maxi | cactual). If αis set to 1, the size of the update step for
p (maxi | cactual) is 0, whereas, if it is greater than 1, the size
of the update step for p (ai | cactual) is greater than 0. The
following equation considers all factors mentioned above to
determine the size of the update step

δt+1 (ai, cactual) = η · (α · p(maxi|cactual)

− p(ai|cactual)) · error (5)

146878 VOLUME 7, 2019

Y. Alsubaie et al.: Cost-Sensitive Prediction of Stock Price Direction: Selection of TIs

where η is a constant between 0 and 1, and determines the
learning rate.

To compute δt+1
(
ai, cpredicted

)
, the probability terms

(responsible for cpredicted having a higher probability than
cactual) need to be decreased. Furthermore, the size of the
decrement step needs to be proportional to the size of the
error. This is achieved by making the size of the update
proportional to

β · p
(
ai | cpredicted

)
− p

(
mini | cpredicted

)
(6)

where mini is the value of the ith attribute with the minimum
probability, given cpredicted . β is a constant that is greater than
or equal to 1, and is used to control the size of the update step
by scaling the term p

(
ai | cpredicted

)
relative to its difference

from p
(
mini | cpredicted

)
. A larger value of β results in a larger

update step. The update step size is defined by the equation

δt+1
(
ai, cpredicted

)
= η · (β · p(ai|cpredicted)

− p(mini|cpredicted)) · error (7)

III. PROBLEM STATEMENT AND APPROACH
In this study, trend prediction is considered as a classifica-
tion problem, with three class values (labels): up, down, and
unchanged. These three labels represent the trend direction di,
where di ∈ {d1 = Up, d2 = Flat, d3 = Down}. For each
trading day, a vector of attributes is calculated, representing
the values of several TIs in addition to the daily closing price.
These daily data instances and labels (for each stock) are used
to generate the datasets for 100 stocks from the Saudi stock
market.

Numerous TIs are being used by investors. The number of
indicators is still growing, as a consequence of the addition of
new indicators and variants that aim to achieve better results.
The usefulness of an indicator may vary between different
stocks and markets; therefore, deciding which indicators to
use is not an easy task. Using TIs is more of an art than
a science. Some powerful insights into profitable technical
patterns and strategies are discussed in [33].

This research investigates how the performance of a stock
market prediction system changes according to the number of
input TIs. The performance is measured using three metrics:
accuracy, cost of misclassification, and Sharpe ratio. The
experiments are conducted using several filtering and clas-
sification methods, as explained in the following paragraphs
of this section.

The underlying classification problem in this work is to
build a classifier that takes the closing price of a certain period
and the values of the selected TIs in that period, and then pre-
dicts the direction of the trend in the next period. The training
data consist of instances of the form < xi, di >, where xi is
a vector of n attributes a1, a2, . . . , an, and each vector xi is
labeled as di ∈ {d1 = Up, d2 = Flat, d3 = Down}.
The study uses nine classifiers, five of which are cost-

sensitive. The classifiers are NB, FTNB, ANN, SVM, Meta-
Cost wrapper with NB (M-NB), MetaCost wrapper with
FTNB (M-FTNB), MetaCost wrapper with ANN (M-ANN),

TABLE 1. Technical indicators.

MetaCost wrapper with SVM (M-SVM), and the newly pro-
posed CSFTNB.

Each classifier’s performance is evaluated and compared,
using the classification accuracymetric and the misclassifica-
tion cost metric. As the third performance metric, daily pre-
dictions are generated and used as input to a trading simulator,
to calculate the expected investment return.

The experiments start with the use of 50 widely used TIs,
listed in TABLE 1, and then apply three feature selection
methods—namely, GainRatio, ReliefF, and Correlation—in
addition to two NB wrapper methods: one accuracy-based
and the other cost-based. These five feature selectionmethods
are used to rank the TIs for each dataset. The nine classifiers
are trained and tested with distinct groups of datasets, con-
taining different numbers of highest-ranking TIs, to record
the performance levels for both accuracy and misclassifica-
tion cost. For each of these distinct combinations of filter
type, ranking level, and classifier method, daily predictions

VOLUME 7, 2019 146879

Y. Alsubaie et al.: Cost-Sensitive Prediction of Stock Price Direction: Selection of TIs

FIGURE 1. Class labeling. The threshold band [−V, +V] is used to determine the class label of each instance. This method is
used to label the 100 datasets generated from computing the selected TIs for each stock over the three-year period.

FIGURE 2. High-level flowchart for feature selection and classification.

are generated, to be used later as input to a trading system
simulator. The simulator applies a straightforward trading
strategy to calculate the investment return percentage, win-
ning rate, and Sharpe ratio. The procedure for applying the
filters and generating daily predictions is depicted in Figure 2,
and the trading strategy in Figure 3.

FIGURE 3. Trading strategy flowchart.

A. FEATURE SELECTION
One of the phenomena often encountered in ML is the ‘‘curse
of dimensionality,’’ as referred to by Bellman [34]. This
means that, with a given level of accuracy, the number of
training samples needed to estimate a target function grows
exponentially with the number of variables or features (i.e.,
dimensions) that it comprises. Each additional dimension
increases the sparsity of training data in the data space, and
thus, the requirement for more training data increases expo-
nentially, to cover all combinations of feature values.

Generally, there are two types of feature selection:
feature extraction, and feature subset selection. Feature
extraction mechanisms transform the set of features into

146880 VOLUME 7, 2019

Y. Alsubaie et al.: Cost-Sensitive Prediction of Stock Price Direction: Selection of TIs

a lower-dimensional feature space; such methods include
principal component analysis (PCA) and linear discriminant
analysis (LDA). In contrast, the feature selection process aims
to find relevant features that make the greatest contribution
to the prediction desired output. Feature selection methods
are further divided into three groups: filter methods, wrapper
methods, and embedded methods. This study applies filter
methods and wrapper methods, to find the minimal number
of relevant TIs to reduce the dimensionality of the forecasting
problem while achieving acceptable prediction performance.

1) FILTERS
Filter methods are computationally fast because they require
no learning. Filters are mostly univariate: they apply a per-
formance test on each feature independently to determine its
relevance to the output class. The filtering result is usually
a list of features ranked according to their relevance. Typi-
cal performance measures used for feature filtering include
information, distance, and statistical measures [35]. The three
filters used in this work are:

– GainRatio: a modification of information gain,
developed to reduce its bias toward features with large
numbers of possible values [36].

– Correlation: a statistical filter.
– ReliefF: a distance filter.

Reference [35] provides a good overview of filter methods.

2) WRAPPERS
Wrapper methods use a learning algorithm (a classifier)
to evaluate features and decide which features to retain.
Wrappers evaluate various subsets of features, based on the
underlying classifier performance. For subset generation,
they use a search strategy, such as the forward selection
and backward elimination strategies [37]. Forward selection
starts with an empty set, and then adds the most relevant
feature at each iteration until the stop condition is satisfied.
Backward elimination starts with a set of all features, and
then eliminates the least relevant feature at each iteration
until the stop condition is satisfied. Stepwise strategies vary,
by combining elements of forward selection and backward
elimination, in some fashion.

This research uses Weka’s greedy stepwise search set to
conservative forward selection [38], and NB as the under-
lying classifier. The default evaluation measure in Weka is
accuracy. Cost is not one of the available evaluation mea-
sures. Therefore, a cost-sensitive subset evaluation wrapper
was developed, which included average cost as an evaluation
measure.

IV. COST-SENSITIVE FINE-TUNING OF NB
This research proposes CSFTNB, a method for cost-sensitive
fine-tuning of the naïve Bayesian classifier. CSFTNB aims
to fine-tune the probabilities so that NB gives the lower-
cost class. It differs from Domingos’ MetaCost method [27]
in the sense that it does not relabel data, but modifies the

Algorithm 1 CSFTNB (Training Instances)

1 Input:
2 Cost matrix C; where C(cpred, ctarg) is the cost of
predicting the class cpred, whereas, in fact, it is ctarg

3 Training instances
4 Phase 1:
5 Use the training instances to estimate the value of each
probability term used by the NB algorithm.

6 Phase 2:
7 t = 0
8 Do
9 For each training instance x, do
10 Let cpred = classify(x), the predicted class;
11 Let ctarg = the target class with lowest

prediction cost;
12 if cpred<>ctarg then
13 Compute the misclassification cost as

ErrorCost = C(cpred, ctarg) ∗ |P(ctarg|x))−
P(cpred|x))|;

14 For each attribute value ak of x do
15 Compute δ(t+1)

(
ak , ctarg

)
;

16 P(t+1)
(
ak | ctarg

)
=

Pt
(
ak | ctarg

)
+ δ(t+1)

(
ak , ctarg

)
;

17 Compute δ(t+1)
(
ak , cpred

)
;

18 P(t+1)
(
ak | cpred

)
=

Pt
(
ak | cpred

)
+ δ(t+1)

(
ak , cpred

)
;

19 End
20 End
21 End
22 t = t + 1;
23 While total conditional risk

∑
R
(
cpred | x

)
is

decreasing;

probabilities to make the lower-cost class more likely to be
produced as the output of the NB classifier.

Like FTNB, the CSFTNB algorithm consists of two
phases. In the first phase, the training set is used to construct a
classical NB classifier, and it is used in the usual way to esti-
mate the required probability terms. The second phase is the
cost-sensitive fine-tuning of the probability values. Its pur-
pose is to fine-tune the probability values to reduce the cost
of misclassification. The probability values are fine-tuned
in such a manner that the NB classifier is more likely to
produce the lowest-cost class for the given instance. The aim
is to gradually reduce the conditional risk, R

(
cpred | x

)
, of the

predicted class cpred , given an instance, x.
The CSFTNB algorithm described in Algorithm 1 mod-

ifies the probability values so that the NB classifier pro-
duces the lowest-cost class ctarg, which may not be the
same as the actual class of the training instance. ctarg is
calculated using (8); hence, depending on the cost matrix, it
may differ from cpred . There are several differences between
CSFTNB and FTNB: they use different error functions, tun-
ing equations, and termination conditions. However, once the

VOLUME 7, 2019 146881

Y. Alsubaie et al.: Cost-Sensitive Prediction of Stock Price Direction: Selection of TIs

classifier is tuned, it is used to classify new instances in the
same manner as the NB classifier.

In the fine-tuning stage, each instance in the training set is
classified and compared with the target class. If the predicted
class cpred is not the lowest-cost class ctarg, then the algo-
rithm makes gradual updates to find better estimates for the
probability terms. The probability values P

(
ak | ctarg

)
need

to be gradually increased for each attribute value ak to make
the NB classifier more likely to produce the lowest-cost class
ctarg, whereas the probability values P

(
ak | cpred

)
need to be

gradually decreased for each attribute value ak . The lowest-
cost class is defined as

argmin
v∈class labels

P (v | a1, a2, . . . , an)C
(
v, ctarg

)
(8)

The step size δt+1 of the update should be proportional to:
– The cost of predicting class cpred when, in fact,

the lowest-cost class is ctarg; i.e., C
(
cpred , ctarg

)
.

– The difference between the probabilities of the pre-
dicted and lowest-cost classes: i.e.,

∣∣P (cpred | a1, a2,
. . . , an)− P

(
ctarg | a1, a2, . . . , an

)∣∣. The greater the
difference, the larger the update step.

These two elements are combined to calculate the cost of
the error as

ErrorCost = C
(
cpred , ctarg

)
∗
∣∣P (ctarg | a1, a2, . . . , an)
−P

(
cpred | a1, a2, . . . , an

)∣∣ (9)

The update step size δt+1 is computed iteratively for each
probability term and added to the previous term’s value.
The update value is either positive, to increase P

(
ak | ctarg

)
,

or negative, to decrease P
(
ak | cpred

)
.

Equations (10) and (11) define the update step size for
ctarg and cpred . They differ from the corresponding equations
of FTNB in two ways. First, the algorithm uses ErrorCost ,
defined in (9), instead of error , defined in (2). Second, it uses
a decaying learning rate η, to make the update process more
gradual as the number of iterations t increases.

δt+1
(
ai, ctarg

)
=

η

10t
· (α · p(maxi|ctarg)

− p(ai|ctarg)) · ErrorCost (10)

δt+1
(
ai, cpred

)
=

η

10t
· (β · p

(
ai | cpred

)
− p(mini|cpred)) · ErrorCost (11)

CSFTNB also differs from FTNB in its termination con-
dition. CSFTNB continues the fine-tuning process until the
total conditional risk

∑
R
(
cpred | x

)
no longer decreases.

During each iteration, the algorithm calculates the total con-
ditional risk for the training instances, as defined by (1), and
terminates the fine-tuning process once this total has ceased
to decrease.

Because CSFTNB gradually increases the likelihood of
predicting the lowest-cost class, it decreases the conditional
risk for each training instance, and thereby the total condi-
tional risk. Once CSFTNB is fine-tuned, it can be used to

classify new instances in the same manner as an NB or FTNB
classifier.

V. EMPIRICAL EXPERIMENT
The Saudi financial market’s daily historical data is available
on several commercial websites by subscription. Each data
point consists of the following attributes: Date, Open, High,
Low, Close, Change, Value, and Volume. Each stock has a
unique ticker code. The data for 99 companies, and the TASI
market index, were used in the experiments, to construct
100 datasets. These companies are large to medium-sized.
They are well-known organizations in banking, telecommu-
nications, utility, and various other market segments. The
experiments used data for the period from January 1, 2015 to
March 31, 2018 for each of the 100 datasets. These datasets,
including a summary of the class categories, are listed in
TABLE 3. Each dataset was subjected to a preprocessing
phase, wherein each trading day’s data was transformed to a
feature vector of TIs (an instance). Each instance has a class
value that indicates the direction of the stock price: up, flat,
or down.

A. PREPARING THE DATASETS
This section describes the input feature set and the prepro-
cessing work, as well as the class labeling. Matlab was used
for dataset preparation, labeling, and normalization.

1) PREPROCESSING THE FEATURES
Several TIs were evaluated to be used as input features
in addition to the closing price (as a return percentage).
Fifty of the most common TIs were selected, as described
in TABLE 1. The TIs were calculated using the Technical
Analysis Library (TA-Lib) [39] (available at www.ta-lib.org),
which is an open-source library widely used by commercial,
private, and open-source applications for technical analysis.
Because the Java version of TA-Lib is not directly usable
fromwithinMatlab, we developed a Java wrapper to facilitate
parameter passing between the two frameworks. The TIswere
calculated from the historical trading time series, includ-
ing open, close, high, and low prices, and trading volume.
A medium-range lookback window w, of the past 20 trading
days, was chosen to calculate the TIs. The prediction window
was set to the same length. The best prediction performance
is expected when these two windows are equal as reported
in [2]. The features were then normalized to have zero mean
and unit variance.

2) CLASS LABEL CALCULATION
The class labeling process used two variables to label each
instance: the past price volatility V and the future stock
accumulated returns AReturns. The calculation of these two
variables was based on a specific period (or window) whose
size was set to bew = 20, which is similar to the window size
used to calculate the TIs. Stock price volatility is defined as
the standard deviation of the daily percentage change, for a
given period. Volatility is usually annualized by multiplying

146882 VOLUME 7, 2019

Y. Alsubaie et al.: Cost-Sensitive Prediction of Stock Price Direction: Selection of TIs

TABLE 2. Cost matrix.

by the square root of the number of trading days in a year;
therefore, for the period of w trading days, the standard devi-
ation was multiplied by the square root of w, as in (12). The
class labeling process used the volatility to create a threshold
band, by using the positive and negative values of V . This
threshold band was then used to evaluate the accumulated
returns, AReturns. AReturns is simply the sum of the daily
percentage change in price for the next w trading days.

V = STD (Past w daily returns) ∗
√
w (12)

The class labeling process labeled each instance following
the rules:

– If AReturns exceeds the upper threshold, +V , then the
class of that day is labeled Up.

– If AReturns is below the lower threshold,−V , then the
class is labeled Down.

– If AReturns is within the threshold band, then it is
labeled Flat.

ClassLabel =


Up; AReturns > +V
Flat; −V ≤ AReturns ≥ +V
Down; AReturns < −V

(13)

Figure 1 shows the threshold band between the two red
lines: the upper and lower lines indicate the positive volatility
+V and negative volatility −V , respectively, of the TASI
returns. The blue line indicates the daily TASI returns, and
the green line indicates the AReturns of the next w days after
each trading day. These lines are used for labeling each data
point in the datasets. When the green line crosses above the
upper red line, that period is labeled Up. The period in which
the green line is below the red line is labeled Down. The
remaining periods, in which the green line remains between
the two red lines, are labeled Flat.

3) DISCRETIZATION
This research used (weka.filters.unsupervised .attribute),
a Weka package, for discretizing all numeric attributes and
replacing the missing values. This package, and the methods
used, are explained in the Weka document [38].

B. EVALUATING THE PERFORMANCE OF THE CLASSIFIERS
A prediction system was constructed with the architecture
shown in Figure 2. The system was trained and tested sep-
arately for each dataset’s distinct group of TIs, resulting

from each feature selection method. These distinct groups
are the ranked lists of either the top five, top 10, top 20,
top 40, or all 50 TIs, in the case of filters or the generated
subset of TIs from the wrappers. Ten-fold cross-validation
was applied in all experiments, to calculate the accuracy and
misclassification cost. TheWeka Java framework was used to
implement all feature selection techniques and classification
methods, as depicted in Figure 2. The predictions needed for
the simulationwere generated similarly, except for the bottom
two boxes in the figure; the classifiers were trained based
on rolling periods, to generate predictions. These generated
predictions were later used in Matlab to simulate a trading
strategy for each configuration, from which the investment
return percentage, winning (or hit) rate, and Sharpe ratio were
calculated.

1) ACCURACY
Classification accuracy was calculated by counting the true
positives and dividing by the number of instances. Because
there are three classes {d1 = Up, d2 = Flat, d3 = Down},
the formula is as follows:

Accuracy =
True (d1)+ True (d2)+ True(d3)

N
(14)

The accuracy values were averaged over all 100 datasets,
to produce one accuracy number for each combination of
filter method, feature subset size, and classifier.

2) COST OF MISCLASSIFICATION
A 3× 3 matrix C (i, j), shown in Table 2 was used as the cost
matrix. The order of the matrix is 3 × 3 because there are
three distinct classes. Following Domingos [27], a different
cost matrix was built for each dataset, based on the class
distributions in the training set. The cost of predicting class
i, where the actual class is j, was calculated from the class
probabilities, such that

C (i, j) = α ·
P (i)
P (j)

(15)

where α is a constant. This cost model provides the highest
misclassification cost while classifying a rare class j as a com-
mon class i, and provides the lowest cost when classifying a
common class as a rare one. The cost of a correct prediction
(i.e., i = j) is set to zero. As a result, the diagonal elements
of the cost matrix are always equal to zero. It is worth men-
tioning that the value of the constant α is irrelevant in making
comparisons, and was set to 10 in the implementation.

The cost valueswere averaged over all 100 datasets, as with
accuracy.

3) SIMULATION OF A TRADING SYSTEM
The Saudi stock market does not allow for short positions on
listed stocks; therefore, only long trades are considered in the
simulation. The simulation adopted a straightforward trading
strategy, as shown in Figure 3, to test the predictions made
by each of the nine classifiers for each distinct configuration.

VOLUME 7, 2019 146883

Y. Alsubaie et al.: Cost-Sensitive Prediction of Stock Price Direction: Selection of TIs

TABLE 3. 100 generated datasets.

As shown in the flowchart, it starts by loading a given daily
prediction file. With each Up prediction a bet is made: a bet is
a buy trade of a certain amount of money. A bet is made sub-
ject to satisfying some buying rules, such as the availability
of funds and the number of open bets allowed. Each bet has a
target selling price equal to (1+ V)∗Buy price, and a holding
window equal to the lookback window of w = 20 trading
days. The holding window determines the maturity date of
the bet. With each Down prediction, the oldest open bet is

closed at the current day’s closing price. In the case of both
Flat and Down predictions, all open bets are closed when they
reach or exceed their target price or maturity date. To make
the simulation more realistic, a limit on the number of open
bets that can be generated for a given stock is enforced. This
is conservatively set to 1 in this study.

Based on the above trading strategy, the investment return
was calculated for each stock and compared with the generic
baseline investment strategy of buy and hold: where a stock is

146884 VOLUME 7, 2019

Y. Alsubaie et al.: Cost-Sensitive Prediction of Stock Price Direction: Selection of TIs

FIGURE 4. Prediction system architecture.

FIGURE 5. Filters heat map showing the count of datasets where a TI is ranked in the top 20. Four filter methods are shown. The
top row shows the average, which is used as a guide for sorting TIs.

bought at the beginning of the period and sold at its end. The
experiments used a prediction period from July 1, 2015 to
March 31, 2018; the first half of 2015 was used for training
the classifiers. The classifiers were trained using data from
six months to predict the next period of six months, and
then the training and forecasting was repeated six months
later. This process mitigates the effect of dataset shift or
concept shift, which occur when the unseen testing data
tends to differ from the training data in the distribution of
all or some of its features, or class boundaries [40]. This
phenomenon is present in most practical applications [41].
It is certainly evident in the Saudi stock market, because
of political and macroeconomic changes during the period
under study. In this research, several periods were consid-
ered, including a no retraining option, to finally settle on a
six-month window, which produced more acceptable results.

In addition to the investment return percentage, the simu-
lation measured the following three investment performance
indicators:

– The number of bets. This is the total number of bets
made on a given stock.

– Winning rate (or hit rate). This is the ratio of the
number of successful bets to the total number of bets.

– Sharpe ratio. This is used in finance to measure the
performance of an investment, or trading strategy, after
adjusting for risk. This is defined as in (16), where
E (RA) is the return of an asset A, σA is the stan-
dard deviation of asset A, and Rf is the risk-free rate.
The ratio measures the average return achieved above
the risk-free rate, per unit of standard deviation σ .
A greater standard deviation or volatility is associated
with a greater investment risk.

Sharpe =
E (RA)− Rf

σA
(16)

C. RANKING TIS WITH FILTER METHODS
For each of the 100 datasets, each filter method ranked the
50 TIs differently. This research aimed to find the TIs that
were ranked highly by the majority of the datasets. Therefore,
for each TI, we counted the number of datasets for which
the TI was ranked among the top 20. This procedure was
repeated for each filter method. The combined results are
shown in Figure 5 as a heat map, in which each row corre-
sponds to a filter method and each column corresponds to
a TI. The top row of the heat map shows the average for
all filter methods and provides a guide for sorting the TIs.

VOLUME 7, 2019 146885

Y. Alsubaie et al.: Cost-Sensitive Prediction of Stock Price Direction: Selection of TIs

FIGURE 6. Wrappers heat map showing the count of datasets where a TI is a member of their resultant subsets. Two wrapper
methods are shown. The top row shows the average, which is used as a guide for sorting TIs.

As shown by the heat map, the NATR TI is ranked in the
top 20 by all 100 datasets when applying the ReliefF filter
method. It is ranked in the top 20 by 74 datasets with the
Correlation method; this is the highest count for this filter.
However, with GainRatio, NATR is ranked in the top 20 by
only 69 datasets. On average, it is ranked in the top 20 by
81 datasets. Four TIs (NATR, ADXR, ADX, and Stoch_SD)
are ranked in the top 20 by all 100 datasets when applying the
ReliefF filter method.

The heat map shows which TIs are more significant when
applying each filter method. Only the 38 TIs that are ranked
highly by all filter methods are shown in the heat map. The
remaining TIs are omitted even if they rank highly with one
or two filters but not all three.

D. RANKING TIS WITH WRAPPER METHODS
Wrappers generate a subset of most relevant TIs for each
dataset, not a ranked list of all 50 TIs, like filters. Therefore,
for each TI, we counted the number of datasets in which
the TI was a member of the resultant subset of the dataset.
Figure 6 shows the results of the NB accuracy wrapper and
NB cost wrapper. The top row of the heat map shows the
average for the two wrapper methods and provides a guide
for sorting the TIs. The first observation is that there is a
much smaller number of datasets per TI for both wrappers.
This is because of the size of the resultant subsets, which
is eight on average for the accuracy wrapper and only two
for the cost wrapper. The heat map shows that the NATR
TI is the most relevant for the accuracy wrapper because it
appeared in 49 subsets, while the WillR TI is the most rele-
vant for the cost wrapper because it appeared in 25 subsets.
However, the OBV TI is the most relevant on average. The
heat map does not show whole resultant subsets of mixable
TIs, as selected by wrappers. It is interesting to see the largest

subset of highly ranked TIs for each wrapper, because these
wrappers remove redundant features. The whole subset that
includes the greatest number of highly ranked TIs for the
accuracy wrapper contains 11 TIs {AD, ADXR, ARO, ATR,
BBands_UP,MFI,Midpoint, NATR, OBV, STD, T3}, and the
best whole subset for the cost wrapper contains five TIs {AD,
ADOsc, StochF_FK, StochRSI_FK, WillR}.

E. AGGREGATED RESULTS
This study conducted a total of 180 experiments. Each of
the nine classifiers was subjected to 20 different groups
of datasets (100 datasets each), generated by the filter and
wrapper methods. The filter methods generated 18 groups
of datasets (six per method): the six groups contained the
top 5, 10, 20, 30, 40, and 50 TIs. The wrapper methods
generated one group of subsets per method, making a total
of 20 groups of datasets. Each experiment was measured
using three metrics: a) accuracy, b) average cost, and c) return
percentage. The results were aggregated for each classifier,
and shown in Figs. 7 to 11 as boxplots and graphs, to simplify
visual representation. The y-axis scale is fixed for all sub-
plots, to enable quick comparison; this caused some boxplot
whiskers to be trimmed. Each figure has three rows (one per
metric) and five columns (one per feature selection method).
The first two rows (a and b) use boxplots to present results,
while the third row uses graphs with two y-axes (blue and red)
to plot the investment strategy return percentage (as bars) and
the Sharpe ratio (as lines). The best performance for a metric
is highlighted by a box with a thick border (for the subplot)
and an asterisk (for the best performing group of datasets).

Table 9 shows, for each classifier, the average results of
the three metrics when applied to each of the 20 groups of
datasets. The rightmost column shows the overall average
for each classifier, along with a statistical significance mark.

146886 VOLUME 7, 2019

Y. Alsubaie et al.: Cost-Sensitive Prediction of Stock Price Direction: Selection of TIs

FIGURE 7. Best accuracy for NB classifier is achieved by NB accuracy wrapper. Best cost is achieved by NB cost wrapper. Best
Sharpe ratio is achieved by GainRatio filter with five TIs.

FIGURE 8. Best accuracy for ANN classifier is achieved by ReliefF filter with 10 TIs. Best cost is achieved by NB cost wrapper. Best
Sharpe ratio is achieved by GainRatio filter with 10 TIs.

The Wilcoxon signed-rank test [42] was used to compare
the distribution of two paired groups: the baseline classifier
CSFTNB and each other classifier. A statistical significance
mark is attached to each classifier average in the table:
‘‘v’’ indicates that the classifier outperformed the baseline,
‘‘∗’’ indicates that it underperformed the baseline, and no
mark indicates no statistically significant difference. Finally,
the Friedman test [43] was used to confirm that there was
a statistically significant difference between all classifiers’
results for each metric used. Both Wilcoxon and Friedman
tests use a significance level of α = 0.05.

1) ACCURACY RESULTS
It was expected that the best accuracy score for the NB classi-
fier would be achieved by wrappers, because these wrappers

use NB to select TI subsets. Indeed, NB achieved 76.78 ±
3.28 with the accuracy wrapper, which was the highest for
NB, making it the third-best classifier, following SVM and
FTNB, and this was followed by ANN. The accuracy wrapper
produced high accuracy, particularly with ANN, M-NB, and
M-ANN, achieving their third-best scores. Table 4 focuses on
filter methods only: the classifiers are ordered by their best
filter method score. The second-best and third-best scores are
listed, to show the effect of the number of features. It can be
observed that the best accuracy scores were achieved by most
classifiers using 10 and 30 TIs. However, 20 TIs is the mode
for all top three scores. Table 4 shows that ReliefF was the
best performing filter for accuracy, followed by GainRatio.
Generally, from the boxplots and Table 9, the four accuracy
classifiers ANN, SVM, NB, and FTNB show similar curves:

VOLUME 7, 2019 146887

Y. Alsubaie et al.: Cost-Sensitive Prediction of Stock Price Direction: Selection of TIs

FIGURE 9. Best accuracy for FTNB classifier is achieved by ReliefF filter with 30 TIs. Best cost is achieved by NB cost wrapper. Best
Sharpe ratio is achieved by GainRatio filter with five TIs.

FIGURE 10. Best accuracy for SVM classifier is achieved by ReliefF filter with 30 TIs. Best cost is achieved by NB cost wrapper. Best
Sharpe ratio is achieved by GainRatio filter with five TIs.

TABLE 4. Classifiers’ best accuracy scores using filter methods.

they peak at either 10 or 30 TIs, with a minimum score at 5 or
50 TIs. Statistically, using the Wilcoxon test, Table 9 shows
that CSFTNB’s performance was similar to the performance

of M-NB and M-ANN, and it outperformed M-SVM, while
the other accuracy-based classifiers outperformed it by the
accuracy metric, as expected. The accuracy results were also

146888 VOLUME 7, 2019

Y. Alsubaie et al.: Cost-Sensitive Prediction of Stock Price Direction: Selection of TIs

FIGURE 11. Best accuracy for CSFTNB classifier is achieved by GainRatio filter with 40 TIs. Best cost is achieved by NB cost
wrapper. Best Sharpe ratio is achieved by GainRatio filter with 10 TIs.

TABLE 5. Classifiers’ best cost scores using filter methods.

TABLE 6. Classifiers’ best investment returns.

tested using the Friedman test: the resulting statistic was
126.320, with p= 1.637e-23, which confirms that the classi-
fiers’ accuracy results had different distributions.

2) COST RESULTS
The boxplots show that seven of the nine classifiers achieved
their best cost score with the use of the NB Cost wrapper. The
remaining two classifiers, M-ANN and M-SVM, achieved
their best cost scores (1.14 ± 0.32 and 1.22 ± 0.40, respec-
tively) with the use of ReliefF. These two results are the
overall best for all classifiers. As before, Table 5 focuses
on filter methods only: classifiers are ordered by their best
filter method score. Second-best and third-best scores are
listed, to show the effect of the number of features. Most
classifiers achieved their best cost scores using 10 and 30 TIs;

TABLE 7. Classifiers’ prediction distribution.

however, five TIs is the mode for all of the top three scores.
As with the accuracy metric, ReliefF, followed by GainRa-
tio, is the best performing filter for cost. Generally, from
the boxplots and Table 9, it is clear that three of the five
cost-sensitive classifiers (M-ANN, M-SVM, and CSFTNB)

VOLUME 7, 2019 146889

Y. Alsubaie et al.: Cost-Sensitive Prediction of Stock Price Direction: Selection of TIs

TABLE 8. Classifiers’ best investment returns using filter methods.

TABLE 9. Aggregated average results of accuracy, average cost, and return percentage.

maintain low-cost scores with the use of more TIs; how-
ever, M-NB and M-FTNB scores are negatively affected by
increasing the number of TIs, with their worst results for 30 or
more TIs.

Statistically, using the Wilcoxon test, CSFTNB outper-
formed all other classifiers except M-ANN and M-SVM,
in respect of the cost metric. The Friedman test was also

performed on the cost results: the statistic was 130.147, with
p = 2.638e-24, which confirms that the classifiers’ cost
results had different distributions.

3) TRADING SYSTEM SIMULATION RESULTS
The baseline results of the buy-and-hold strategy for the
period was an aggregated negative return of −0.18±0.93,

146890 VOLUME 7, 2019

Y. Alsubaie et al.: Cost-Sensitive Prediction of Stock Price Direction: Selection of TIs

with a Sharpe ratio of −0.19. Figure 1 shows the market
index performance for the period, which explains the negative
results. Table 6 shows the maximum returns achieved by
each classifier. All classifiers were able to achieve a positive
return as their best result. The table also shows the hit rate
and the average number of bets made per stock, for each
trading system configuration. All results in the table were
calculated per stock, and then aggregated and averaged over
the 99 stocks. In the table, the classifiers are sorted by their
Sharpe ratios; in this case, the Sharpe ratio is simply the return
divided by the standard deviation.

M-SVM is top-ranked in the table because its Sharpe
ratio is affected by division by the zero standard deviation.
M-SVM made only three bets overall, with a 100% hit rate.
This extremely risk-averse classifier is followed by M-ANN,
which returned 15% on investments of three bets (on aver-
age) per stock, with a Sharpe ratio of 1.93. The best overall
performance was achieved by the CSFTNB classifier, with a
1.8 Sharpe ratio. CSFTNB made over 28 bets (on average)
per stock, with a winning rate of 53%. Good results were
also achieved by the accuracy classifiers FTNB and NB. The
CSFTNB returns were statistically greater than those of all
other classifiers. The Friedman test statistic was 102.747,
with p = 1.171e-18, which confirms that the classifiers’
results had different distributions.

To help explain the performance of the classifiers,
Table 7 shows the prediction distribution of each classi-
fier with the same configuration as in Table 4. The class
distribution for all datasets combined was 15%, 24%, and
61% for Up, Down, and Flat, respectively. Table 7 shows that
SVMandANNwere very strongly biased toward themajority
class, with 72% and 63% respectively. The cost-sensitive
versions of these two classifiers enforced this bias, rather
than mitigating it. However, the cost-sensitive versions of NB
and FTNB did reduce the majority class bias. The extreme
case was observed with M-SVM, for which over 99% of
predictions were in the Flat class. This explains whyM-SVM
achieved the best results for the cost metric and the worst for
both the accuracy and investment return metrics.

Finally, it is important to note that, in contrast with the
accuracy and cost metrics, GainRatio was the best performing
filter for investment return. The best scores were achieved by
most classifiers using five or 20 TIs; however, 10 TIs was the
mode for all of the top three scores, as shown in Table 8.

VI. CONCLUSION
This work contributed a detailed investigation of the selec-
tion of a minimal number of relevant TIs to forecast the
direction of movement of stock prices. The results show that
choosing a large number (more than 30) of TIs was likely
to reduce prediction accuracy, increase misclassification cost,
and reduce investment return. More specifically, results show
that the highest-accuracy scores were produced with at least
10 TIs, the lowest-cost scores with five TIs, and the best
investment performance with five or 10 TIs. The research
found that classifiers that achieved the highest-accuracy

scores and those that achieved the lowest-cost scores did not
produce the best investment performance when used to sim-
ulate a realistic trading strategy. CSFTNB, a cost-sensitive
fine-tuning of the NB classifier, achieved the highest balance
between investment return and associated risk.

The proposed CSFTNB classifier augments the classical
NB classifier with a fine-tuning phase, in which the value
probabilities are modified or fine-tuned to reduce the classifi-
cation cost. Unlike the MetaCost method [27], no relabeling
is made to the datasets; thus, the instance classes remain
unchanged. However, the changes and adjustments are made
to the probability values used by NB in such a manner that it
is more likely to produce the class with the lowest prediction
cost, and not the correct class. Stock market trend prediction
is an interesting problem that can be tackled in the context of
cost-sensitive learning because the cost of misclassification,
or risk, is a significant factor that traders need to consider.

Several feature selection configurations and various alter-
natives for the number of TIs were tested, to measure and
compare the performance of the nine prediction models. The
performance of each setup was measured using three met-
rics: classification accuracy, misclassification cost, and the
expected investment return of a trading system simulation.
Data from the Saudi stock market was used to construct and
test the prediction models.

This research also presented a ranking of 50 widely used
TIs, using three different feature selection methods, as well
as two wrapper methods: accuracy-based and cost-based. The
ranking heat maps can serve as a guide for selecting TIs.

As future work, we intend to investigate different feature
selection techniques, to select from a broader set of indica-
tors, including (in addition to TIs) fundamental and senti-
ment indicators that best reduce the cost of misclassification.
We also aim to incorporate cost-sensitive learning with other
fine-tuning methods, such as [32], [44], as well as studying
the effect of noise and developing techniques—such as those
reported in [45]—to mitigate the impact of noise.

APPENDIX
The following five figures from Figure 7 to Figure 11 show
detailed results for each classifier.

REFERENCES
[1] F. S. Board, Artificial Intelligence and Machine Learning in Financial

Services. Accessed: Jan. 30, 2018. [Online]. Available: http//www.fsb.org/
2017/11/artificialintelligence-and-machine-learning-in-financialservice/

[2] Y. Shynkevich, T. M. McGinnity, S. A. Coleman, A. Belatreche, and Y. Li,
‘‘Forecasting price movements using technical indicators: Investigating
the impact of varying input window length,’’ Neurocomputing, vol. 264,
pp. 71–88, Nov. 2017.

[3] Y. Kara, M. A. Boyacioglu, and Ö. K. Baykan, ‘‘Predicting direction of
stock price index movement using artificial neural networks and support
vector machines: The sample of the istanbul stock exchange,’’ Expert Syst.
Appl., vol. 38, no. 5, pp. 5311–5319, May 2011.

[4] K. J. Kim, ‘‘Financial time series forecasting using support vector
machines,’’ Neurocomputing, vol. 55, nos. 1–2, pp. 307–319, Sep. 2003.

[5] M. Qiu and Y. Song, ‘‘Predicting the direction of stock market index
movement using an optimized artificial neural network model,’’ PLoS
ONE, vol. 11, no. 5, May 2016, Art. no. e0155133.

VOLUME 7, 2019 146891

Y. Alsubaie et al.: Cost-Sensitive Prediction of Stock Price Direction: Selection of TIs

[6] G. S. Atsalakis and K. P. Valavanis, ‘‘Surveying stock market forecasting
techniques—Part II: Soft computing methods,’’ Expert Syst. Appl., vol. 36,
no. 3, pp. 5932–5941, Apr. 2009.

[7] M. P. Naeini, H. Taremian, and H. B. Hashemi, ‘‘Stock market value
prediction using neural networks,’’ in Proc. Int. Conf. Comput. Inf. Syst.
Ind. Manage. Appl. (CISIM), Oct. 2010, pp. 132–136.

[8] S. O. Olatunji, M. Al-Ahmadi, M. Elshafei, and Y. Fallatah, ‘‘Forecasting
the saudi arabia stock prices based on artificial neural networks model,’’
Int. J. Intell. Inf. Syst., vol. 2, no. 5, pp. 77–86, 2013.

[9] R. Alkhareif, ‘‘Are there significant premiums in the Saudi stock market,’’
Financ. Res. Lett., vol. 18, pp. 108–115, Aug. 2016.

[10] Y.-W. Si and J. Yin, ‘‘OBST-based segmentation approach to financial time
series,’’ Eng. Appl. Artif. Intell., vol. 26, no. 10, pp. 2581–2596, Nov. 2013.

[11] R. C. Cavalcante, R. C. Brasileiro, V. L. F. Souza, J. P. Nobrega,
and A. L. I. Oliveira, ‘‘Computational intelligence and financial markets:
A survey and future directions,’’ Expert. Syst. Appl., vol. 55, pp. 194–211,
Aug. 2016.

[12] A. Gupta and D. S. D. Sharma, ‘‘A Survey on Stock Market Prediction
Using Various Algorithms,’’ Int. J. Comput. Technol. Appl., vol. 5, no. 2,
pp. 530–533, Apr. 2014.

[13] C. Zopounidis, E. Galariotis, M. Doumpos, S. Sarri, and K. Andriosopou-
los, ‘‘Multiple criteria decision aiding for finance: An updated biblio-
graphic survey,’’Eur. J. Oper. Res., vol. 247, no. 2, pp. 339–348, Dec. 2015.

[14] L. Guo, F. Shi, and J. Tu, ‘‘Textual analysis and machine leaning: Crack
unstructured data in finance and accounting,’’ J. Financ. Data Sci., vol. 2,
no. 3, pp. 153–170, Sep. 2016.

[15] W.-C. Hong, M.-W. Li, J. Geng, and Y. Zhang, ‘‘Novel chaotic bat algo-
rithm for forecasting complex motion of floating platforms,’’ Appl. Math.
Model., vol. 72, pp. 425–443, Aug. 2019.

[16] Y. Dong, Z. Zhang, and W.-C. Hong, ‘‘A hybrid seasonal mechanism with
a chaotic cuckoo search algorithm with a support vector regression model
for electric load forecasting,’’ Energies, vol. 11, no. 4, p. 1009, 2018.

[17] G.-F. Fan, L.-L. Peng, andW.-C. Hong, ‘‘Short term load forecasting based
on phase space reconstruction algorithm and bi-square kernel regression
model,’’ Appl. Energy, vol. 224, pp. 13–33, Aug. 2018.

[18] B. M. Henrique, V. A. Sobreiro, and H. Kimura, ‘‘Stock price prediction
using support vector regression on daily and up to the minute prices,’’
J. Finance Data Sci., vol. 4, no. 3, pp. 183–201, 2018.

[19] M.-Y. Chen and T.-H. Chen, ‘‘Modeling public mood and emotion: Blog
and news sentiment and socio-economic phenomena,’’Future Gener. Com-
put. Syst., vol. 96, pp. 692–699, Jul. 2019.

[20] P. Ou and H. Wang, ‘‘Prediction of stock market index movement by
ten data mining techniques,’’ Mod. Appl. Sci., vol. 3, no. 12, pp. 28–42,
Dec. 2009.

[21] M. Ballings, D. Van den Poel, N. Hespeels, and R. Gryp, ‘‘Evaluating
multiple classifiers for stock price direction prediction,’’Expert Syst. Appl.,
vol. 42, no. 20, pp. 7046–7056, Nov. 2015.

[22] Z.-H. Zhou and X.-Y. Liu, ‘‘On multi-class cost-sensitive learning,’’ Com-
put. Intell., vol. 26, no. 3, pp. 232–257, 2010.

[23] C. X. Ling and V. S. Sheng, ‘‘Cost-sensitive learning and the class imbal-
ance problem,’’ in Encyclopedia of Machine Learning. Berlin, Germany:
Springer, 2011, pp. 231–235.

[24] N. V. Chawla, K. W. Bowyer, L. O. Hall, andW. P. Kegelmeyer, ‘‘SMOTE:
Synthetic minority over-sampling technique,’’ J. Artif. Intell. Res., vol. 16,
no. 1, pp. 321–357, 2002.

[25] L. Jiang, C. Qiu, and C. Li, ‘‘A novel minority cloning technique for cost-
sensitive learning,’’ Int. J. Pattern Recognit. Artif. Intell., vol. 29, no. 4,
2015, Art. no. 1551004.

[26] L. Jiang, C. Li, and S. Wang, ‘‘Cost-sensitive Bayesian network classi-
fiers,’’ Pattern Recognit. Lett., vol. 45, pp. 211–216, Aug. 2014.

[27] P. Domingos, ‘‘MetaCost: A general method for making classifiers
cost-sensitive,’’ in Proc. 5th Int. Conf. Knowl. Discovery Data Mining,
Aug. 1999, pp. 155–164.

[28] V. S. Sheng and C. X. Ling, ‘‘Thresholding for making classifiers cost-
sensitive,’’ in Proc. AAAI, Jul. 2006, pp. 476–481.

[29] L. Breiman, ‘‘Bagging predictors,’’ Mach. Learn., vol. 24, no. 2,
pp. 123–140, 1996.

[30] D. F. Nettleton, A. Orriols-Puig, and A. Fornells, ‘‘A study of the effect of
different types of noise on the precision of supervised learning techniques,’’
Artificial Intelligence Review, vol. 33, no. 4, pp. 275–306, 2010.

[31] K. El Hindi, ‘‘Fine tuning the Naïve Bayesian learning algorithm,’’ J. AI
Commun., vol. 27, no. 2, pp. 133–141, Apr. 2014.

[32] A. Alhussan and K. El Hindi, ‘‘Selectively fine-tuning Bayesian network
learning algorithm,’’ Int. J. Pattern Recognit. Artif. Intell., vol. 30, no. 8,
2016, Art. no. 1651005.

[33] A. Grimes, The Art and Science of Technical Analysis: Market Structure,
Price Action, and Trading Strategies, vol. 546. Hoboken, NJ, USA: Wiley,
2012.

[34] R. Bellman and Karreman Mathematics Research Collection, Adap-
tive Control Processes: A Guided Tour (Princeton Legacy Library).
Princeton, NJ, USA: Princeton Univ. Press, 1961. [Online]. Available:
https://books.google.com.sa/books?id=POAmAAAAMAAJ

[35] A. Jović, K. Brkić, and N. Bogunović, ‘‘A review of feature selection meth-
ods with applications,’’ in Proc. 38th Int. Conv. Inf. Commun. Technol.,
Electron. Microelectron. (MIPRO), May 2015, pp. 1200–1205.

[36] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical
Machine Learning Tools and Techniques, 3rd ed. San Francisco, CA, USA:
Morgan Kaufmann, 2011.

[37] S. Maldonado, R. Weber, and F. Famili, ‘‘Feature selection for high-
dimensional class-imbalanced data sets using support vector machines,’’
Inf. Sci., vol. 286, pp. 228–246, Dec. 2014.

[38] R. R. Bouckaert, ‘‘Weka manual for version 3-6-0,’’ Univ.Waikato, Hamil-
ton, New Zealand, Tech. Rep., 2008.

[39] TA-Lib. Technical Analysis Library—Home. Accessed: May 18, 2019.
[Online]. Available: https://ta-lib.org/

[40] J. G. Moreno-Torres, T. Raeder, R. Alaiz-Rodríguez, N. V. Chawla,
and F. Herrera, ‘‘A unifying view on dataset shift in classification,’’
in Pattern Recognition. Amsterdam, The Netherlands: Elsevier, 2012.
doi: 10.1016/j.patcog.2011.06.019.

[41] N. Adams, ‘‘Dataset shift in machine learning,’’ J. Roy. Stat. Soc.
A, Statist. Soc., vol. 173, no. 1, p. 274, 2010. doi: 10.1111/j.1467-
985X.2009.00624_10.x.

[42] F. Wilcoxon, ‘‘Individual comparisons by ranking methods,’’ Biometrics
Bull., vol. 1, no. 6, pp. 80–83, 1945.

[43] M. Friedman, ‘‘A comparison of alternative tests of significance for the
problem of m rankings,’’ Ann. Math. Statist., vol. 11, no. 1, pp. 86–92,
1940.

[44] D. M. Diab and K. M. El Hindi, ‘‘Using differential evolution for fine
tuning naïve Bayesian classifiers and its application for text classification,’’
Appl. Soft Comput., vol. 54, pp. 183–199, May 2017.

[45] K. El Hindi, ‘‘A noise tolerant fine tuning algorithm for the Naïve Bayesian
learning algorithm,’’ J. King Saud Univ. Comput. Inf. Sci., vol. 26, no. 2,
pp. 237–246, Jul. 2014.

YAZEED ALSUBAIE received the M.Sc. in com-
puter science from the University of Colorado,
USA. He is currently pursuing the Ph.D. degree
with the Computer Science Department, King
Saud University, Riyadh, Saudi Arabia. He has
several years of experience in IT and telecommuni-
cation fields in technical and managerial positions.
His research interests include machine learning
and computational finance.

KHALIL EL HINDI received the B.Sc. degree
fromYarmouk University and theM.Sc. and Ph.D.
degrees from the University of Exeter, U.K. He is
currently a Professor with the Department of Com-
puter Science, King Saud University. His research
interests include machine leaning and data min-
ing. He is particularly interested in improving
the classification accuracy of Bayesian classi-
fiers and developing new similarity metrics for
instance-based learning.

HUSSAIN ALSALMAN received the B.Sc. and M.Sc. degrees in computer
science from King Saud University (KSU), Riyadh, Saudi Arabia, and the
Ph.D. degree in artificial intelligence from U.K. He worked for several years
as a Consultant for a number of companies in private sector and institutes in
government sector, Saudi Arabia. From 2009 to 2014, he chaired Computer
Science Department, College of Computer and Information Sciences, KSU.
He is currently a Staff Member with the Computer Science Department,
KSU. He was a member of review board of Saudi Computer Journal, from
2004 to 2014.

146892 VOLUME 7, 2019

http://dx.doi.org/10.1016/j.patcog.2011.06.019
http://dx.doi.org/10.1111/j.1467-985X.2009.00624_10.x
http://dx.doi.org/10.1111/j.1467-985X.2009.00624_10.x

