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ABSTRACT Discount is a frequently used marketing tool. This paper is devoted to designing an effective
dynamic discount pricing (DDP) strategy in competitive marketing. First, we introduce a competitive word-
of-mouth (WOM) propagation model with DDP mechanism. On this basis, we model the original problem
as an optimal control problem. Next, we derive the optimality system for the optimal control problem and,
thereby, propose the concept of competitive DDP strategy. Finally, through comparative experiments, we find
that the profit of a competitive DDP strategy is satisfactory. Our findings contribute to maximizing the
marketing profit in the presence of commercial competitors.

INDEX TERMS Marketing management, profit maximization, discount pricing, word-of-mouth propaga-
tion, optimal control, optimality system.

I. INTRODUCTION
Marketing strategies play a critical role in marketing cam-
paigns; a wise marketing strategy could bring competitive
advantage to enterprises [1]. Dynamic pricing as one of the
most common marketing strategies has a long history [2].
Discount pricing, by which it means a discount off an earlier
price, is a widely adopted form of dynamic pricing [3]. The
marketing history has proved that a discounted price is more
likely to be accepted by consumers than a merely low price
[4]. With the ever-increasing popularity of online social net-
works (OSNs), people are willing to share with their friends
their experiences about their recently purchased products
through OSNs [5]. Therefore, the effect of word-of-mouth
(WOM) propagation on marketing campaigns must be taken
into account in designing discount pricing strategies [6].

A. PROBLEM FORMULATION
Market competition is a universal phenomenon in the busi-
ness area; competitive industries are like Darwinian arenas
where firms struggle to maximize their respective profits,
otherwise they would go out of business [7]. When a firm
decides to launch a discount marketing campaign to increase
its profit, it faces the following problem:
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Dynamic discount pricing (DDP) problem: In the presence
of commercial rivals and in view of the effect of WOM
propagation, find a dynamic discount pricing (DDP) strategy
so that the firm’s marketing profit is maximized.

To the best of our knowledge, this is the first time the DDP
problem is formulated explicitly.

B. MAIN CONTRIBUTIONS
This paper is devoted to themodeling and analysis of the DDP
problem. Our main contributions are listed below.

• In the presence of commercial competitors, we propose
a node-level competitive WOM propagation model with
dynamic discount pricing (DDP) mechanism. Thereby,
we estimate the firm’s marketing profit under a DDP
strategy. On this basis, we model the DDP problem as
an optimal control problem (i.e., the DDP∗ problem),
in which the objective functional stands for the market-
ing profit under a DDP strategy, each optimal control
stands for a DDP strategy that maximizes the marketing
profit.

• We derive the optimality system for the DDP∗ problem.
Thereby, we propose the concept of competitive DDP
strategy. Through comparative experiments, we find that
a competitive DDP strategy is superior to all static
discount pricing strategies in terms of the marketing
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profit. Therefore, the performance of a competitive DDP
strategy is satisfactory.

The subsequent materials of this paper are organized in this
fashion: Section 2 reviews the related work. Section 3 reduces
theDDP problem to theDDP∗ problem. Sections 4 derives the
optimality system for the DDP∗ problem and, thereby, pro-
poses the concept of potential DDP strategy. Section 5 exam-
ines the performance of a potential DDP strategy. This work
is summarized by Section 6.

II. RELATED WORK
This section is dedicated to reviewing the previous work that
is closely related to the present paper. First, we mention
WOM propagation models. Second, we discuss the optimal
control approach to marketing.

A. WOM PROPAGATION MODELS
To deal with the DDP problem, we have to take into full
account the effect of WOM propagation on the discount mar-
keting campaign. To this end, we need to establish a WOM
propagation model with DDP mechanism. There are three
types of WOM propagation models: state-level, degree-level,
and node-level. Below is a sketch of this taxonomy.

In a state-level WOM propagation model, all individu-
als in the WOM propagation network are classified simply
based on their states, and the fraction of each class evolves
following a differential equation [8]–[11]. As the modeling
process neglects the difference between different individuals
in terms of network characteristics at all, state-level WOM
propagation models can only be used to describeWOM prop-
agation processes on homogeneous networks. Since OSNs
are typically heterogeneous, this modeling technique is not
applicable to describing WOM propagation on OSNs.

In a degree-level WOM propagation model, all individuals
in the WOM propagation network are categorized based on
both their states and their network degrees, and the fraction
of each class evolves following a differential equation [12],
[13]. Although the modeling process considers the difference
between different individuals in terms of network degree,
it neglects the difference between different individuals in
terms of any other network characteristic. As a result, degree-
level WOM propagation models can only be used to capture
WOM propagation processes on some special heterogeneous
networks such as scale-free networks. Since OSNsmay admit
arbitrary network structures, this modeling technique is not
suited to describing WOM propagation on OSNs neither.

In a node-level WOM propagation model, every indi-
vidual in the WOM propagation network is classified as a
few classes based on his state, and the probability of each
individual being in each specific state evolves following a
differential equation [14]–[17]. Since this modeling process
fully considers the difference between different individuals in
terms of all network characteristics, node-level WOM prop-
agation models can be used to describe WOM propagation
processes on arbitrary networks.

All of the above node-level WOM propagation models
are used to characterize the propagation of a single WOM.
In many real-world applications, there are multiple compet-
ing WOMs. In order to have a better understanding of this
phenomenon, it is necessary to introduce and study nodel-
level competitive WOM propagation models. Inspired by
the node-level conflicting message propagation model pro-
posed in [18], in the present paper we introduce a node-level
competing WOM propagation model with DDP mechanism.
On this basis, we estimate the firm’s marketing profit under
a DDP strategy.

B. OPTIMAL CONTROL APPROACH TO MARKETING
Optimal control theory is devoted to finding a control scheme
of a state evolution system so that a specific optimality cri-
terion is achieved [19]. In the past decades, optimal control
theory has been widely employed in marketing researches
such as advertising [20], [21] and influential maximization
[22]–[24].

Recently, optimal control theory has been applied to the
maximization of marketing profit. [14] introduced a node-
level WOM propagation model with an influence-based dis-
count pricing mechanism (see [16]) and, thereby, studied
the marketing profit maximization problem. [15] established
a node-level positive and negative WOMs mixed propaga-
tion model (see [11]) with discount pricing mechanism and,
on this basis, dealt with the marketing profit maximization
problem. In the above two references, it is implicitly assumed
that the firm has no commercial rival. In practice, how-
ever, most firms have commercial competitors. Therefore,
the results given in these references have very limited appli-
cations.

The present paper is devoted to the profit maximization
in competitive marketing. Based on the novel competitive
WOM propagation model with DDPmechanism proposed by
us, we model and study the DDP problem through optimal
control approach. As a result, our model and results should be
more practical than those presented in the above references.

III. THE MODELING OF THE DDP PROBLEM
This section is dedicated to themodeling of theDDP problem.
First, we establish a node-level competitive WOM propa-
gation model with DDP mechanism. Second, we model the
DDP problem as an optimal control problem.

A. A NODE-LEVEL COMPETITIVE WOM PROPAGATION
MODEL WITH DDP MECHANISM
Let A denote a firm, B the set of all commercial virals of A.
SupposeA decides to launch a discount marketing campaign
in a given time horizon [0,T ]. Let V = {v1, v2, . . . , vN }
denote the target market of the campaign, where each node
vi stands for a potential customer of the campaign. Let
G = (V ,E) denote the WOM propagation network over
the target market, where each edge {vi, vj} ∈ E stands for
that the person vi and the person vj are friends and hence
can recommend their respective favorite goods to each other
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through the WOM propagation network. Let A =
(
aij
)
N×N

denote the adjacency matrix ofG. In practice, the structure of
the WOM propagation network is available by employing the
network crawling technique.

At each time point in the time horizon [0,T ], each and
every person in the target market is in one of three possible
states: wavering, A-decisive, and B-decisive. Here, a person
is wavering if he has not yet decided where to shop, a person
isA-decisive if he has decided to shop fromA, and a person is
B-decisive if he has decided to shop from B. Let Xi(t) = 0, 1,
and 2 denote that the person vi is wavering, A-decisive, and
B-decisive at time t , respectively. Then the N -dimensional
random vector

X(t) = (X1(t), . . . ,XN (t)). (1)

stands for the state of the target market at time t . Hence,
the N -dimensional stochastic process {X(t) : 0 ≤ t ≤ T }
stands for the evolutionary process ofX(t) over time. In order
to describe the stochastic process, we need to introduce a set
of notations as follows.
• α: the average rate at which, owing to the effect of B’s
average discount, a waverer becomes B-decisive.

• βWA: the average rate at which, owing to the WOM
effect of a neighboring A-decider, a waverer becomes
A-decisive.

• βWB: the average rate at which, owing to the WOM
effect of a neighboring B-decider, a waverer becomes
B-decisive.

• βBA: the average rate at which, owing to the WOM
effect of a neighboring A-decider, a B-decider becomes
A-decisive. Intuitively, we have βBA < βWA.

• βAB: the average rate at which, owing to the WOM
effect of a neighboringB-decider, anA-decider becomes
B-decisive. Intuitively, we have βAB < βWB.

• δ: the average rate at which, owing to the descent in
shopping desire, an A-decider or a B-decider becomes
wavering.

• θ (t): the average discount ratio of allA’s goods at time t .
Additionally, we introduce an assumption as follows.

(A1) Owing to the effect ofA’s discount, a waverer becomes
A-decisive at time t at the average rate f (θ (t)), where
f (0) = 0, f is increasing. This assumption conforms to
the intuition.

In practice, α, βWA, βWB, βBA, βAB, δ, and f can be esti-
mated through well-crafted online questionnaire survey.

We refer to the function θ defined by θ (t) (0 ≤ t ≤ T )
as a dynamic discount pricing (DDP) strategy of A. For
ease in realization, we assume θ is piecewise continuous. Let
PC[0,T ] denote the set of all piecewise continuous functions
defined on [0,T ]. Then the set of all allowable DDP strategies
is

2 = {θ ∈ PC[0,T ] : 0 ≤ θ (t) ≤ 1, 0 ≤ t ≤ T } . (2)

Let χS denote the characteristic function of the set S.
It follows from stochastic process theory [25] that the state
transition diagram of the person vi is as shown in Fig. 1.

FIGURE 1. State transition diagram of the person vi at time t .

Let Wi(t), Ai(t) and Bi(t) denote the probabilities of the
person vi being wavering, A-decisive and B-decisive at time
t , respectively.

Wi(t) = Pr{Xi(t) = 0}, Ai(t) = Pr{Xi(t) = 1},

Bi(t) = Pr{Xi(t) = 2}. (3)

AsWi(t) = 1− Ai(t)− Bi(t), the expected state of the target
market at time t can be characterized by the vector

E(t) = (A1(t), . . . ,AN (t),B1(t), . . . ,BN (t)) . (4)

In practice, E(0) can be estimated through online question-
naire survey.
Theorem 1: The target market’s expected state evolves

over time according to the differential equation system (5).
Proof: Let E(·) denote the mathematical expectation of

a random variable. For 1 ≤ i ≤ N , 0 ≤ t ≤ T , vi becomes
A-decisive at time t at the expected rate

E

f (θ (t))+βWA N∑
j=1

aijχ{Xj(t)=1}

= f (θ (t))+βWA N∑
j=1

aijAj(t)

if Xi(t) = 0, vi becomes A-decisive at time t at the expected
rate

E

βBA N∑
j=1

aijχ{Xj(t)=1}

 = βBA N∑
j=1

aijAj(t)

if Xi(t) = 2, and vi becomes B-decisive at time t at the
expected rate

E

βAB N∑
j=1

aijχ{Xj(t)=2}

 = βAB N∑
j=1

aijBj(t)

ifXi(t) = 1, and vi becomeswavering at time t at the expected
rate δ if Xi(t) = 1. Hence, the first N equations in this system
hold. Similarly, we can prove the second N equations in this
system.
The differential equation system (5), as shown at top of

the next page, is a node-level competitive WOM propagation
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dAi(t)
dt
=

f (θ (t))+ βWA N∑
j=1

aijAj(t)

 [1− Ai(t)− Bi(t)]−

βAB N∑
j=1

aijBj(t)+ δ

Ai(t)
+

βBA N∑
j=1

aijAj(t)

Bi(t), 0 ≤ t ≤ T , 1 ≤ i ≤ N ,

dBi(t)
dt
=

α + βWB N∑
j=1

aijBj(t)

 [1− Ai(t)− Bi(t)]−

βBA N∑
j=1

aijAj(t)+ δ

Bi(t)
+

βAB N∑
j=1

aijBj(t)

Ai(t), 0 ≤ t ≤ T , 1 ≤ i ≤ N ,

E(0) = E0.

(5)

model with DDPmechanism. For brevity, we write theWOM
propagation model as

dE(t)
dt
= f(E(t), θ(t)), 0 ≤ t ≤ T ,

E(0) = E0.
(6)

In what follows, let

E(t, θ(t)) = (A1(t, θ(t)), . . . ,AN (t, θ(t)),

B1(t, θ(t)), . . . ,BN (t, θ(t))) , 0 ≤ t ≤ T , (7)

denote the solution to theWOMpropagation model (5) or (6).

B. MODELING THE DDP PROBLEM
In order to model the DDP problem, we have to estimateA’s
marketing profit. For now, let p denoteA’s average profit per
unit time owing to an A-decider, provided there is discount.
Theorem 2: Under the DDP strategy θ ,A’s expected mar-

keting profit is

P(θ ) = p
∫ T

0

N∑
i=1

[1− θ (t)]Ai(t, θ(t))dt. (8)

Proof: Let dt > 0 be an infinitesimal. For 1 ≤
i ≤ N , 0 ≤ t ≤ T − dt , A’s average marketing profit
in the infinitesimal time horizon [t, t + dt) owing to vi is
p [1− θ (t)] dt or 0 according as Xi(t) = 1 or not. Hence,A’s
expected marketing profit in the infinitesimal time horizon
[t, t + dt) owing to vi is p [1− θ (t)]Ai(t, θ(t))dt . Therefore,
Eq. (8) follows.

A’s goal is to find a DDP strategy θ so that P(θ ) is maxi-
mized. In doing so, the value of pmakes no difference. Hence,
in what follows we assume p = 1. Based on the previous
discussions, we model the DDP problem as the following
optimal control problem:

Maximize P(θ ) =
∫ T

0

N∑
i=1

[1− θ (t)]Ai(t)dt

subject to


dE(t)
dt
= f(E(t), θ(t)), 0 ≤ t ≤ T ,

E(0) = E0.
(9)

We refer to the optimal control problem as theDDP∗ problem.
Each instance of the problem is described by the 10-tuple

M = (G,T , α, βWA, βWB, βAB, βBA, δ, f ,E0). (10)

IV. AN APPROACH TO DEALING WITH THE DDP∗

PROBLEM
In the previous section, we reduced the DDP problem to
an optimal control problem, i.e., the DDP∗ problem. In this
section, we devote ourself to dealing with the DDP∗ problem.
First, we derive a necessary condition for optimal control of
the DDP∗ problem. Second, we present the optimality system
for the DDP∗ problem.

A. A NECESSARY CONDITION FOR OPTIMAL CONTROL OF
THE DDP∗ PROBLEM
It follows from optimal control theory [19] that the Hamil-
tonian for the DDP∗ problem is as shown in Eq. (11),
as shown at top of the next page, where (λ,µ) =

(λ1, · · · , λN , µ1, · · · , µN ) is the adjoint of H . Below we
give a necessary condition for optimal control of the DDP∗

problem.
Theorem 3: Suppose θ is an optimal control of the DDP∗

problem (9), E is the solution to the corresponding WOM
propagation model. Then there exists an adjoint function
(λ,µ) such that the system (12) holds. Moreover,

θ (t) ∈ arg max
θ̃∈[0,1]

{{
N∑
i=1

λi(t)[1− Ai(t)− Bi(t)]

}
f (θ̃ )

−

[
N∑
i=1

Ai(t)

]
θ̃

}
, 0 ≤ t ≤ T . (13)

Proof: According to the PontryaginMaximumPrinciple
[19], there exists (λ,µ) such that

dλi(t)
dt
= −

∂H (E(t), θ(t), λ(t), µ(t))
∂Ai

,

dµi(t)
dt
= −

∂H (E(t), θ(t), λ(t), µ(t))
∂Bi

,

0 ≤ t ≤ T , 1 ≤ i ≤ N .
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H (E, θ, λ, µ) =
N∑
i=1

(1− θ)Ai

+

N∑
i=1

λi

f (θ )+ βWA N∑
j=1

aijAj

 (1− Ai − Bi)+

βBA N∑
j=1

aijAj

Bi −

βAB N∑
j=1

aijBj + δ

Ai


+

N∑
i=1

µi

α + βWB N∑
j=1

aijBj

 (1− Ai − Bi)+

βAB N∑
j=1

aijBj

Ai −

βBA N∑
j=1

aijAj + δ

Bi

 . (11)



dλi(t)
dt
= θ (t)− 1+

f (θ (t))+ βWA N∑
j=1

aijAj(t)+ βAB
N∑
j=1

aijBj(t)+ δ

 λi(t)
−

N∑
j=1

aij
{
βWA

[
1− Aj(t)− Bj(t)

]
+ βBABj(t)

}
λj(t)

+

α + (βWB − βAB) N∑
j=1

aijBj(t)

µi(t)+ βBA N∑
j=1

aijBj(t)µj(t), 0 ≤ t ≤ T , 1 ≤ i ≤ N ,

dµi(t)
dt
=

[
f (θ (t))+ (βWA − βBA)

∑N
j=1 aijAj(t)

]
λi(t)+ βAB

∑N
j=1 aijAj(t)λj(t)

+

α + βWB N∑
j=1

aijBj(t)+ βBA
N∑
j=1

aijAj(t)+ δ

µi(t)
−

N∑
j=1

aij
{
βWB

[
1− Aj(t)− Bj(t)

]
+ βABAj(t)

}
µj(t), 0 ≤ t ≤ T , 1 ≤ i ≤ N ,

λ(T ) = µ(T ) = 0.

(12)

The first 2N equations in Eqs. (12) follow by direct calcula-
tions. As the terminal cost is unspecified and the final state
is free, the transversality conditions λ(T ) = µ(T ) = 0 hold.
Again by the Pontryagin Maximum Principle, we have

θ (t) ∈ arg max
θ̃∈[0,1]

H (E(t), θ̃ , λ(t), µ(t)), 0 ≤ t ≤ T .

This implies Eq. (13).

B. THE OPTIMALITY SYSTEM FOR THE DDP∗ PROBLEM
According to optimal control theory [19], the system consist-
ing of Eqs. (5), (12), as shown at top of this page, and (13) is
referred to as the optimality system for the DDP∗ problem.
We refer to the control in each solution to the optimality
system as a competitive control of the DDP∗ problem. Since
2 is incomplete [26], the DDP∗ problem may not admit
an optimal control. In the case when the DDP∗ problem
admits an optimal control, it follows from Theorem 3 that
the optimal control must be a competitive control. However,
the converse is not true. Henceforth, we refer to the DDP
strategy represented by a competitive control as a competitive
DDP strategy

In what follows, we deal with the DDP∗ problem in this
way: First, solve the optimality system to get a competitive

DDP strategy. Then, examine the effectiveness of the com-
petitive DDP strategy.

V. THE EFFECTIVENESS OF A COMPETITIVE DDP
STRATEGY
In the previous section, we introduced the notion of compet-
itive DDP strategy. In this section, we examine the effective-
ness of a competitive DDP strategy in terms of the expected
marketing profit through comparative experiments.

A. EXPERIMENT DESIGN
In each of the following experiments, a DDP instance is
generated, a competitive DDP strategy for the DDP instance
is obtained by solving the associated optimality system, and
the competitive DDP strategy is compared with a set of
static discount pricing strategies in terms of the expected
marketing profit. First, all the experiments are carried out on
a PC with inter(R) Core(TM) i5-7600 CPU @3.50GHz and
16GB RAM. Second, all the optimality systems are solved by
employing the Euler Forward-Backward scheme [27].

In order to generate a number of DDP instances, we select
three online social networks from a dataset named Graph
Embedding with Self Clustering: Facebook in thewidely used
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FIGURE 2. Three subnets of real online social networks.

FIGURE 3. The results in Experiment 1: (a) θ∗, (b) P(θ) versus θ ,
θ ∈ {θ∗}

⋃
2.

network library SNAP [28], [29]. First, we take a 100-node
subnet GART from an artists network with 50,515 nodes and
819,306 edges. See Fig. 2(a). Second, we extract a 100-node
subnetGATH from an athletes network with 13,866 nodes and
86,858 edges. See Fig. 2(b). Finally, we fetch a 100-node
subnetGPUB from a public figures networkwith 11,565 nodes
and 67,114 edges. See Fig. 2(c).

Let S = {0, 0.01, 0.02, . . . , 1}. For a ∈ S, let θa denote
the static discount pricing strategy defined by θa(t) = a
(0 ≤ t ≤ T ). Let 2 = {θa : a ∈ S}. Finally, let E(a,b)

=

(a, . . . , a, b, . . . , b), where there are 100 a components and
100 b components.

B. COMPARATIVE EXPERIMENTS
Experiment 1 (Consider the DDP instance):

MART

=

(
GART , 10,0.4, 0.2, 0.15,0.1,0.15,0.01, θ0.6,E(0.1,0.1)

)
.

By solving the optimality system, we get the competitive
DDP strategy θ∗, which is plotted Fig. 3(a). Fig. 3(b) exhibits
P(θ ) versus θ , θ ∈ {θ∗}

⋃
2. It is seen that P(θ∗) >

P(θ ), θ ∈ 2. Hence, θ∗ is superior to all the static discount
pricing strategies in 2 in terms of the expected marketing
profit.
Experiment 2 (Consider the DDP instance):

MATH

=

(
GATH , 10, 0.3,0.2,0.15,0.1, 0.15,0.01, θ0.3,E(0.1,0.2)

)
.

By solving the optimality system, we get the competitive
DDP strategy θ∗, which is plotted in Fig. 4(a). Fig. 4(b)
depicts P(θ ) versus θ , θ ∈ {θ∗}

⋃
2. Again, it is seen that θ∗

outperforms all the static discount pricing strategies in 2 in
terms of the expected marketing profit.

FIGURE 4. The results in experiment 2: (a) θ∗, (b) P(θ) versus θ ,
θ ∈ {θ∗}

⋃
2.

FIGURE 5. The results in experiment 3: (a) θ∗, (b) P(θ) versus θ ,
θ ∈ {θ∗}

⋃
2.

Experiment 3 (Consider the DDP instance):

MPUB

=

(
GPUB, 10, 0.3,0.2,0.15,0.1, 0.15, 0.01, θ0.5,E(0.1,0.2)

)
.

By solving the optimality system, we get the competitive
DDP strategy θ∗, which is plotted in Fig. 5(a). Fig. 5(b)
displays P(θ ) versus θ , θ ∈ {θ∗}

⋃
2. Again, it is seen that

θ∗ is better than all the static discount pricing strategies in2
in terms of the expected marketing profit.

From the above three experiments and 100 similar exper-
iments, we find that the competitive DDP strategy is always
superior to all the static discount pricing strategies in terms
of the expected marketing profit. Therefore, the effectiveness
of the competitive DDP strategy is satisfactory.

In practice, the commercial competitors of a firmmay well
employ DDP strategies. In this case, the proposed scheme
is not directly applicable. Nonetheless, we may apply the
scheme indirectly in this way: First, divide a larger time
horizon into a number of smaller time horizons. Second,
apply the scheme to each of these smaller time horizons.

VI. CONCLUSION
This paper has dealt with the problem of developing an
effective dynamic discount pricing (DDP) strategy in compet-
itive marketing. Based on a novel WOM propagation model,
we have reduced the original problem to an optimal control
problem. We have derived the optimality system for the opti-
mal control problem and proposed the concept of competitive
DDP strategy. Through comparative experiments, we have
found that the effectiveness of a competitive DDP strategy
is satisfactory. This work contributes to increasing a firm’s
marketing profit in competitive marketing.

Toward the direction, there are a number of issues to be
addressed. First, estimating the parameters involved in the
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proposed scheme is a problem. Second, this work should
be extended to the situation where the WOM propagation
network varies over time [30]–[32]. Next, the methodology
used in this paper may be applied to some other issues such
as rumor restraint [18], [33]–[36] and active cyber defense
[37]–[40]. Last, in the situation where all firms involved
in a competitive discount marketing campaign are strategic,
the marketing profit maximization problem must be dealt
with in the framework of game theory [41]–[43].

ACKNOWLEDGMENTS
The authors are would like to thank the three anonymous
reviewers and the editor for their valuable comments and
suggestions.

REFERENCES
[1] D. West, J. Ford, and E. Ibrahim, Strategic Marketing: Creating Com-

petitive Advantage, 3rd ed. New York, NY, USA: Oxford Univ. Press,
2015.

[2] A. V. den Boer, ‘‘Dynamic pricing and learning: Historical origins, current
research, and new directions,’’ Surv. Oper. Res. Manage. Sci., vol. 20, no. 1,
pp. 1–18, Jun. 2015.

[3] D. Ngwe, ‘‘Fake discounts drive real revenues in retail,’’ in Harvard
Business School Working Papers. Boston, MA, USA: Harvard Business
School, 2018, pp. 18–113.

[4] C. B. Gabler, V. M. Landers, and K. E. Reynolds, ‘‘Purchase decision
regret: Negative consequences of the Steadily Increasing Discount strat-
egy,’’ J. Bus. Res., vol. 76, pp. 201–208, Jul. 2017.

[5] Z. Chen, ‘‘Social acceptance and word of mouth: How the motive to belong
leads to divergent WOM with strangers and friends,’’ J. Consum. Resear.,
vol. 44, no. 3, pp. 613–632, Oct. 2017.

[6] M. Petrescu, Viral Marketing on Social Networks, New York, NY, USA:
Business Expert Press, 2014.

[7] D. D. P. Johnson, M. E. Price, and M. van Vugt, ‘‘Darwin’s invisible hand:
Market competition, evolution and the firm,’’ J. Econ. Behav. Org., vol. 90,
pp. S128–S140, Jun. 2013.

[8] H. S. Rodrigues andM. J. Fonseca, ‘‘Can information be spread as a virus?
Viral marketing as epidemiological model,’’ Math. Methods Appl. Sci.,
vol. 39, no. 16, pp. 4780–4786, 2016.

[9] P. Jiang, X. Yan, and L. Wang, ‘‘A viral product diffusion model to forecast
themarket performance of products,’’Discrete Dyn. Nature Soc., vol. 2017,
Feb. 2017, Art. no. 9121032.

[10] R. Kumar, A. K. Sharma, and K. Agnihotri, ‘‘Dynamics of an innovation
diffusion model with time delay,’’ East Asian J. Appl. Math., vol. 7, no. 3,
pp. 455–481, Aug. 2017.

[11] P. Li, X. Yang, L.-X. Yang, Q. Xiong, Y. Wu, and Y. Y. Tang, ‘‘The
modeling and analysis of the word-of-mouth marketing,’’ Phys. A, Stat.
Mech. Appl., vol. 493, pp. 1–16, Mar. 2018.

[12] S. Li and Z. Jin, ‘‘Modeling and analysis of new products diffusion
on heterogeneous networks,’’ J. Appl. Math., vol. 2014, May 2014,
Art. no. 940623.

[13] W. Liu, T. Li, X. Liu, and H. Xu, ‘‘Spreading dynamics of a word-of-mouth
model on scale-free networks,’’ IEEE Access, vol. 6, pp. 65563–65572,
2018.

[14] P. Li, X. Yang, Y. Wu, W. He, and P. Zhao, ‘‘Discount pricing in word-
of-mouth marketing: An optimal control approach,’’ Phys. A, Stat. Mech.
Appl., vol. 505, pp. 512–522, Sep. 2018.

[15] X. Zhong, J. Zhao, L.-X. Yang, X. Yang, Y. Wu, and Y. Y. Tang,
‘‘A dynamic discount pricing strategy for viral marketing,’’ PLoS One,
vol. 13, no. 12, Dec. 2018, Art. no. e0208738.

[16] T. Zhang, P. Li, L. X. Yang, X. Yang, Y. Y. Tang, and Y. Wu, ‘‘A discount
strategy in word-of-mouth marketing,’’ Commun. Nonlinear Sci. Numer.
Simul., vol. 74, pp. 167–179, 2019.

[17] J. Zhao, L.-X. Yang, and X. Yang, ‘‘Maximum profit of viral marketing:
An optimal control approach,’’ in Proc. 4th Conf. Math. Artif. Intell.,
Apr. 2019, pp. 209–214.

[18] L.-X. Yang, P. Li, X. Yang, Y. Wu, and Y. Y. Tang, ‘‘On the competition of
two conflicting messages,’’ Nonlinear Dyn., vol. 91, no. 3, pp. 1853–1869,
2018.

[19] D. Liberzon, Calculus of Variations and Optimal Control Theory: A Con-
cise Introduction. Princeton, NJ, USA: Princeton Univ. Press, 2012.

[20] S. P. Sethi, ‘‘Dynamic optimal control models in advertising: A survey,’’
SIAM Rev., vol. 19, no. 4, pp. 685–725, 1977.

[21] G. Feichtinger, R. F. Haetl, and S. Sethi, ‘‘Dynamic optimal control mod-
els in advertising: Recent developments,’’ Manage. Sci., vol. 40, no. 2,
pp. 195–226, Feb. 1994.

[22] K. Kandhway and J. Kuri, ‘‘How to run a campaign: Optimal control
of SIS and SIR information epidemics,’’ Appl. Math. Comput., vol. 231,
pp. 79–92, Mar. 2014.

[23] J. N. C. Gonçalves, H. S. Rodrigues, and M. T. T. Monteiro, ‘‘On the
dynamics of a viral marketing model with optimal control using indirect
and direct methods,’’ Stat. Optim. Inf. Comput., vol. 6, pp. 633–644,
Dec. 2018.

[24] S. Rosa, P. Rebelo, C. M. Silva, H. Alves, and P. G. Carvalho, ‘‘Optimal
control of the customer dynamics based on marketing policy,’’ Appl. Math.
Comput., vol. 330, pp. 42–55, Aug. 2018.

[25] W. J. Stewart, Probability, Markov Chains, Queues, and Simulation:
The Mathematical Basis of Performance Modeling. Princeton, NJ, USA:
Princeton Univ. Press, 2009.

[26] E. M. Stein and R. Shakarchi, Real Analysis: Measure Theory, Integration,
and Hilbert Spaces. Princeton, NJ, USA: Princeton Univ. Press, 2005.

[27] K. Atkinson, W. Han, and D. Stewart, Numerical Solution of Ordinary
Differential Equation. Hoboken, NJ, USA: Wiley, 2009.

[28] J. Leskovec and R. Sosič, ‘‘SNAP: A general-purpose network analysis and
graph-mining library,’’ ACM Trans. Intell. Syst. Technol., vol. 8, no. 1, p. 1,
Oct. 2016.

[29] B. Rozemberczki, R. Davies, R. Sarkar, and C. Sutton, ‘‘GEMSEC: Graph
embeddingwith self clustering,’’ 2018, arXiv:1802.03997. [Online]. Avail-
able: https://arxiv.org/abs/1802.03997

[30] E. Valdano, L. Ferreri, C. Poletto, and V. Colizza, ‘‘Analytical computation
of the epidemic threshold on temporal networks,’’ Phys. Rev. X, vol. 5,
Apr. 2015, Art. no. 021005.

[31] M. Ogura and V. M. Preciado, ‘‘Stability of spreading processes over time-
varying large-scale networks,’’ IEEE Trans. Netw. Sci. Eng., vol. 3, no. 1,
pp. 44–57, Jan./Mar. 2016.

[32] M. Ogura, V. M. Preciado, and N. Masuda, ‘‘Optimal containment of
epidemics over temporal activity-driven networks,’’ SIAM J. Appl. Math.,
vol. 79, no. 3, pp. 986–1006, 2019.

[33] H. Zhao and L. Zhu, ‘‘Dynamical analysis of a reaction-diffusion rumor
propagation model,’’ Int. J. Bifurcation Chaos, vol. 26, no. 6, Jun. 2016,
Art. no. 1650101.

[34] L. Zhu, H. Zhao, and H. Wang, ‘‘Complex dynamic behavior of a
rumor propagation model with spatial-temporal diffusion terms,’’ Inf. Sci.,
vols. 349–350, pp. 119–136, Jul. 2016.

[35] L.-X. Yang, T. Zhang, X. Yang, Y. Wu, and Y. Y. Tang, ‘‘Effectiveness
analysis of a mixed rumor-quelling strategy,’’ J. Franklin Inst., vol. 355,
no. 16, pp. 8079–8105, 2018.

[36] L. Zhu, H. Zhao, and H. Wang, ‘‘Partial differential equation modeling
of rumor propagation in complex networks with higher order of orga-
nization,’’ Chaos, Interdiscipl. J. Nonlinear Sci., vol. 29, no. 5, 2019,
Art. no. 053106.

[37] S. Xu, W. Lu, and H. Li, ‘‘A stochastic model of active cyber defense
dynamics,’’ Internet Math., vol. 11, no. 1, pp. 23–61, 2015.

[38] R. Zheng, W. Lu, and S. Xu, ‘‘Preventive and reactive cyber defense
dynamics is globally stable,’’ IEEE Trans. Netw. Sci. Eng., vol. 5, no. 2,
pp. 156–170, Apr./Jun. 2018.

[39] L.-X. Yang, P. Li, Y. Zhang, X. Yang, Y. Xiang, and W. Zhou, ‘‘Effec-
tive repair strategy against advanced persistent threat: A differential
game approach,’’ IEEE Trans. Inf. Forensic Security, vol. 14, no. 7,
pp. 1713–1728, Jul. 2018.

[40] L.-X. Yang, P. Li, X. Yang, and Y. Y. Tang, ‘‘A risk management approach
to defending against the advanced persistent threat,’’ IEEE Trans. Depend-
able Secur. Comput., to be published. doi: 10.1109/TDSC.2018.2858786.

[41] M. A. García-Meza, E. V. Gromova, and J. D. López-Barrientos,
‘‘Stable marketing cooperation in a differential game for an
oligopoly,’’ Int. Game Theory Rev., vol. 20, no. 3, Sep. 2018,
Art. no. 1750028.

[42] E. J. Dockner and S. Jørgensen, ‘‘Strategic rivalry for market share: A con-
test theory approach to dynamic advertising competition,’’ Dyn. Games
Appl., vol. 8, no. 3, pp. 468–489, Sep. 2018.

[43] Y. Dong, G. Hao, J. Wang, C. Liu, and C. Xia, ‘‘Cooperation in the spatial
public goods game with the second-order reputation evaluation,’’ Phys.
Lett. A, vol. 383, no. 11, pp. 1157–1166, Mar. 2019.

145346 VOLUME 7, 2019

http://dx.doi.org/10.1109/TDSC.2018.2858786


J. Chen et al.: DDP in Competitive Marketing

JIAN CHEN received the B.Sc. degree from the
School of Software Engineering, Chongqing Uni-
versity, in 2017, where he is currently pursuing the
M.Sc. degree. His research interests include rumor
spreading and viral marketing in online social net-
works.

LU-XING YANG received the B.Sc. degree
from the School of Mathematics and Statistics,
Chongqing University, and the Ph.D. degree from
the College of Computer Science, Chongqing Uni-
versity. He is currently a Lecturer with the School
of Information Technology, Deakin University.
During this time, he visited Imperial College Lon-
don. He was a Postdoctoral Researcher with the
Delft University of Technology and Deakin Uni-
versity. He has published more than 40 academic

articles in peer-reviewed international journals. His research interests include
epidemic dynamics and cybersecurity.

DA-WEN HUANG received the B.Sc. degree from
the Department of Mathematics, College of Sci-
ence, China Three Gorges University, in 2014, and
the M.Sc. degree from the School of Mathematics
and Computational Sciences, Xiangtan University,
in 2017. He is currently pursuing the Ph.D. degree
with Chongqing University. He has published four
academic articles in peer-reviewed international
journals. His research interests include cybersecu-
rity, wireless sensor networks, network dynamics,
and data mining.

XIAOFAN YANG received the B.Sc. degree from
the Department of Mathematics, Sichuan Univer-
sity, in 1985, the M.Sc. degree from the Depart-
ment of Applied Mathematics, Chongqing Uni-
versity, in 1988, and the Ph.D. degree from
the Department of Computer Science, Chongqing
University, in 1994. He is currently a Professor of
computer science with Chongqing University. He
visited the University of Reading, from 1998 to
1999. He has published more than 160 academic

articles in peer-reviewed international journals and more than 20 students
have received the Ph.D. degree under his supervision. His research interests
include fault-tolerant computing, epidemic dynamics, and cybersecurity.

YUAN YAN TANG is currently a Chair Professor
with the Faculty of Science and Technology, Uni-
versity of Macau, Macau, China. He is also a Pro-
fessor/Adjunct Professor/Honorary Professor with
several institutes including Chongqing University,
Chongqing, Concordia University, andHongKong
Baptist University. He has published over 400 aca-
demic articles. He has authored/co-authored over
25 monographs/books/book chapters. His current
research interests include wavelets, pattern recog-

nition, image processing, and cybersecurity. He is the Founder and the
Editor-in-Chief of the International Journal on Wavelets, Multiresolution,
and Information Processing and an Associate Editor of several international
journals. He is the Founder and the Chair of Pattern Recognition Committee
at the IEEE SMC. He is a Fellow of the IAPR.

VOLUME 7, 2019 145347


	INTRODUCTION
	PROBLEM FORMULATION
	MAIN CONTRIBUTIONS

	RELATED WORK
	WOM PROPAGATION MODELS
	OPTIMAL CONTROL APPROACH TO MARKETING

	THE MODELING OF THE DDP PROBLEM
	A NODE-LEVEL COMPETITIVE WOM PROPAGATION MODEL WITH DDP MECHANISM
	MODELING THE DDP PROBLEM

	AN APPROACH TO DEALING WITH THE DDP* PROBLEM
	A NECESSARY CONDITION FOR OPTIMAL CONTROL OF THE DDP* PROBLEM
	THE OPTIMALITY SYSTEM FOR THE DDP* PROBLEM

	THE EFFECTIVENESS OF A COMPETITIVE DDP STRATEGY
	EXPERIMENT DESIGN
	COMPARATIVE EXPERIMENTS

	CONCLUSION
	REFERENCES
	Biographies
	JIAN CHEN
	LU-XING YANG
	DA-WEN HUANG
	XIAOFAN YANG
	YUAN YAN TANG


