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ABSTRACT Study on fish behavior is essential to fishery development and water environment protection.
Quantitative analysis of fish behavior is impossible without information on fish trajectories. Although the
computer vision techniques have provided an effective approach to the collection of fish trajectories, it is
still challenging to track fish groups accurately and robustly due to fish appearance variations and frequent
occlusions. In this paper, a skeleton-based method for 3-D tracking of fish group is proposed. First, skeleton
analysis is performed to simplify the top- and side-view objects into representation of feature points. Next,
the feature points under the top view are associated to obtain the top-view trajectories of objects. Finally,
the epipolar constraint and the motion continuity constraint are used to match the top-view trajectories
with the side-view feature points, thereby obtaining the 3-D trajectories of objects. Experimental results
demonstrate the ability of the proposed method to track fish group more effectively than other state-of-the-
art methods.

INDEX TERMS Fish tracking, 3-D tracking, skeleton analysis, motion trajectory.

I. INTRODUCTION
Animal behavior analysis is a hot research topic in natural
science. As a key member of aquatic animal family, fish
bears an important status in the animal world. Fish behavior
analysis is important to promote the development of sport
dynamics and collective ethology. It is of great significance to
fishery and water environment protection as well. The most
intuitive and effective method to study fish behaviors and
extract their pattern is to first obtain their motion trajectories.
This is done by sampling and quantifying the motion data
of each individual fish, and then by analyzing the intra-track
and inter-track relationships. Fishes live across a wide region.
Data of their motion in the rivers or lakes can be collected
using sensor-based or acoustics-basedmethods [1], [2]. These
two methods can acquire real-world data of fish behav-
ior from the living environment. However, deploying these
methods requires purchasing expensive hardware in advance.
Besides, equipment installation and configuration are very
complex. Therefore, only a few institutions conduct research
in this way. To facilitate research, the fishes are usually
housed in the laboratory. Under the laboratory environment,
the camera is used to take photo of the fish. Themost effective
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method for extracting fish trajectories from captured images
is to track the target fish in the image individually by using
computer vision technique [3], [4]. Based on the processes
used, the approach of computer vision-based fish tracking can
be classified into 2-D and 3-D [5].

For 2-D tracking, the objects are placed into a container
with shallow water. A camera is used to track each individual
fish in 2-D plane. In the case of 3-D tracking, several cameras
are used to capture the motion of fish from different views to
estimate their motion trajectories in 3-D space. The trajec-
tories obtained through 3-D tracking are valuable and useful
to research, as they closely resemble to those of real-world
behavior of fish.

Unlike the common scenario of 3-D tracking, camera
imaging is prone to be affected by unsettled water surface due
to fish swimming in the water. In the traditional method for
3-D tracking based on binocular vision, the parallax between
two cameras is very little. Due to this, stereo matching can be
performed using appearance similarity of objects under two
views. But in underwater environment, 3-D reconstruction
is inaccurate if the fish trajectory is captured in this way.
In order to alleviate problems arising from water surface
refraction, the most effective way of capturing image is to
vertically align the camera’s optical axis to water surface.
But the parallax of cameras is large in such a way that the
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object appearance differs considerably under different views.
As a result, appearance similarity is no longer useful for
stereo matching, and subsequently it becomes more difficult
to model the objects.

To solve these problems, a tracking method based on three
views had been proposed by us in a previous research [6].
Then, it was improved at the CCCV2017 [7] (denoted as
SK-3D). Especially, the top view plays a main role in track-
ing, while the detection results of the side views are not used
in tracking. Instead, they are used for stereo matching with
the tracking result of the top view. On the basis of SK-3D,
this paper offers extensions in the following aspects:

(1) Extend and supplement Sec.I Introduction and Sec.II
Related work, and elaborate on the parameters of the pro-
posed method.

(2) Modify and improve the top-view tracking and stereo
matching in the proposed method and further enhance the
tracking performance of the method.

(3) Enrich the experimental data and compare and analyze
the tracking performance of the proposed method with more
contrast methods.

II. RELATED WORK
Many researchers had proposed some effective methods for
3-D fish tracking. Hughes and Kelly [8] first began to study
for tracking fish in 3-D space, and designed a method to track
fish swimming movements by using multiple video cameras.
This method uses a point model to represent the object, which
simplifies the tracking process. However, the calculation of
the object centerline is complicated, occlusion processing
is not considered, and the association accuracy is not high.
Goodwin et al. [9] presented an Eulerian–Lagrangian–agent
method which can handle dynamics at multiple scales simul-
taneously for tracking 3-D movement patterns of individ-
ual fish. Their method can perform 3-D tracking of fish
in real environments, but the spatial transformation pro-
cess is complicated and the hardware requirements are high.
Zhu and Weng [10] designed a catadioptric stereo-vision
system for obtaining the motion trajectories of several fish
by using a video camera and two planar mirrors. This system
can accurately reconstruct the 3-D trajectory of the fish, but
the hardware installation and the debugging process are cum-
bersome (two mirrors are required), the ability of tracking
occluded objects is weak, and only a small number of objects
can be tracked. Nimkerdphol and Nakagawa [11] proposed
a method to compute the 3-D coordinates of zebrafish by
using nonplanar 3-D stereo cameras in combination with
3-D coordinate computation with perspective correction. This
method can continuously track a single fish for a long time
but does not have the capability of multi-object tracking,
which leads to certain limitations. Wu et al. [12] presented
a multi-object multi-camera framework for tracking large
numbers of flying objects by using a greedy randomized
adaptive search procedure. This framework can track a large
number of objects simultaneously and is universally applica-
ble. However, only the position information of the object is

considered. For this reason, the tracking effect is poor in case
of complicated motion or occlusion. Wu [13] introduced a
tracking system to obtain the 3-D kinematic parameters in
fish swimming by simultaneously taking images from the
ventral view and the lateral view with two cameras. This
system can obtain the motion parameters of a fish swimming,
which is beneficial to behavior analysis. However, the hard-
ware setting is complicated and only a single object can be
tracked, which limits the application scenarios. Butail and
Paley [14] designed a 3-D tracking framework to reconstruct
the motion trajectories of densely schooling fish using 2-D
silhouettes from multiple camera views. This framework can
track multiple fish simultaneously and can obtain multiple
motion parameters of the fish, but the calculation process is
complicated, and the ability of tracking of occluded objects
is not strong. Maaswinkel et al. [15] presented an automatic
video tracking system to acquire the swimming trajectories of
single and groups of zebrafish by using a mirror system and a
calibration procedure. This system can accurately locate the
object in the 3-D space, and it provides high accuracy regard-
ing the tracking result. However, only a small number of
objects can be tracked, and a lot of parameters are required for
the installation and the debugging. Pérez-Escudero et al. [16]
proposed a multiple fish tracking method that extracts a char-
acteristic fingerprint from each object in a video recording.
Their method uses simple texture features to recognize the
objects, and has high tracking accuracy, but its calculation
speed is slow. Pautsina et al. [17] designed an infrared reflec-
tion (IREF) system for indoor 3-D tracking of fish based on
the effect of strong absorption of near infrared (NIR) range
light by water. This system is not affected by illumination
conditions; the hardware installation and the debugging are
conveniently designed. However, the tracking performance
is greatly affected by occlusion interference, and the track-
ing accuracy is not high. Voesenek et al. [18] presented
a morphology-based method to track a fish in 3-D space
by reconstructing its position, orientation and body curva-
ture from multiple cameras. Their method can obtain mul-
tiple motion parameters of the object, which is beneficial to
behavior analysis. However, it has high requirements regard-
ing the image resolution, and only a single object can be
tracked, which limits the application scenarios. Saberioon
and Cisar [19] presented a tracking system which used the
structured light (SL) emission sensor to monitor multiple fish
activities in 3-D space. This system uses a depth camera to
track the object. The hardware installation and the debugging
are simple, and multiple objects can be tracked. However, the
tracking performance is susceptible to appearance similarity
and occlusion. Wang et al. [20] proposed a 3-D tracking
method of multiple fish based on a master-slave camera setup
from three views. Their method uses two-view fusion to
achieve 3-D tracking, which is currently a better tracking
mode, but the tracking accuracy is not high because the
motion direction of the object is not considered.

Unlike the usual multi-object tracking scenario, the fish
is characterized by a large number of individuals, a high
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level of similarity between individual appearances as well as
frequent occurrence of occlusions. These factors make it a big
challenge to track the fish. When it comes to 3-D tracking,
uncertainty in stereo matching is another problem that needs
to be addressed. Although the above methods can obtain the
fish school’s 3-D motion trajectories, these problems are not
solved very effectively. Accurate and robust 3-D tracking of
fish remains a real challenge.

In order to enhance the performance of multiple fish 3-D
tracking and reduce the tracking difficulties brought about by
occlusion and stereo matching, this paper proposes a skeleton
based multiple fish 3-D tracking method. This method first
adopts skeleton analysis to simplify the object into feature
points that include head position and moving direction for
description; then it sets up the metric function of motion
continuity for the feature points of the consecutive frames in
the top view and carries out local optimization association
according to this function to obtain the top-view motion tra-
jectories of the objects; at last, it brings the top-view tracking
results into stereo matching with the feature points in the
side view by means of the epipolar constraint and motion
continuity constraint, obtaining the motion trajectories of the
objects in 3-D space. The contribution of this paper lies in the
following aspects:

(1) The accuracy of the data association of occluded objects
in the top view is improved by combining the information of
the side view in the data association of the top view.

(2) The continuity and integrity of the tracking results is
enhanced by using the trajectory connection to process the
top view trajectories.

(3) The accuracy of the trajectory is improved by using the
main skeleton points to achieve stereo matching of occluded
objects in the side view.

III. THE PROPOSED METHOD
Two synchronization cameras are used to record videos of
objects motion in the rectangular container from the top
and side view vertical to the water surface. First, the main
skeletons for moving regions are extracted and the feature
points that are most expressed in the skeletons are obtained.
Next, feature points in neighboring frames are associated in
the top view and 2-D tracking results are acquired. Finally,
3-D motion trajectories are reconstructed by matching
top-view tracking with features points in the side view.
Fig. 1 shows an overview of the proposed tracking method.

A. OBJECT DETECTION
Fish assumes a strip structure in two view images. Inspired by
this observation, a skeleton analysis is performed to simplify
objects from the 2-D region to the 1-D curve. Next, the feature
points which consist of the skeleton endpoints and motion
direction are obtained to represent the object.

1) MOVING REGION SEGMENTATION
In the laboratory environment, the video images usually con-
sist of moving objects and nearly static background, and each

FIGURE 1. An overview of the proposed method.

object stays only for a short time in an area. Thus, moving
regions can be segmented from the difference between the
current frame and a background image.

Rt = {(x, y) ∈ I | |median(x, y)− It (x, y)| > Tg} (1)

where Rt stands for the obtained moving regions, It (x, y) for
the t-th frame image, Tg for the segmentation threshold, and
median(x, y) for the background image which consists of the
median image of the first N frames in each view. In order
to minimize interference from the moving region’s coarse
edge during subsequent extraction of the skeleton, we first
perform a morphologic operation on the moving region, fill
in the holes within the region, and delete small interfering
regions. The moving region is then smoothed using median
filter.

2) SKELETON EXTRACTION
Many skeleton extraction algorithms exist at present,
which are mostly used for object matching and recogni-
tion [21], [22]. However, most of such algorithms cannot
provide support for the tracking process due to considerable
change of the skeleton and frequent occlusion of the objects.
Considering its ability to enormously reduce the difficulty in
object analysis, the skeleton is particularly used in this paper
to simplify the object’s appearance and structure. Moreover,
the large population of the objects underscores the need to
guarantee tracking speed by maximizing skeleton extraction
efficiency. Therefore, the augmented fast marching method
(AFMM) [23] based on the level set is chosen to extract
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FIGURE 2. The obtained skeleton results of the moving region with
different Tu.

skeleton from the motion region. In addition to efficiently
extracting skeleton of certain regions in the image, it can self-
define skeleton structure and effectively eliminate interfer-
ences from small branches like burrs without compromising
skeleton integrity. First, an arrival timeU is set for each point
at the edge of the region, and then the value ofU for the entire
region is obtained by iteration of the fast marching method.
Based on the distribution of U , the skeleton points can be
defined as:

s = {(i, j)|max(|ux |, |uy|) > Tu}

ux = U (i+ 1, j)−U (i, j), uy=U (i, j+ 1)−U (i, j) (2)

This equation shows that, for a given point(i, j), we regard
this point as the skeleton point when the larger of ux and
uy is larger than threshold Tu, where ux and uy denote the
difference of U between this point and its neighbor in the x
and y directions. In the skeleton extraction process, Tu refers
to the capacity of skeleton to describe the object structure.
Smaller Tu and more skeleton branches mean the stronger
capacity to describe the details of object; larger Tu and less
skeleton branches reveal the greater capacity to describe
the major structure of object. Fig. 2 shows the skeleton
extraction results of the object under different Tu. It can be
seen from the figure that the increasing Tu is accompanied
by less small branch structures, such as the burrs in skele-
tons. In object detection, a larger Tu is set for the decrease
in skeleton analysis difficulty and increase in detection
performance.

3) FEATURE POINT REPRESENTATION
The main skeleton of fish usually has two endpoints only, one
at the head and the other at the tail. Based on this observation,
we simplify the object’s structure from the skeleton curve to
the feature point.

Assume the skeleton endpoint is se, where an endpoint
segment es = {(xi, yi)|i = 1, . . . ,K } consists of K
skeleton points closest to se. The direction of the end-
point segment can be calculated based on the least squares
method.

θ = arctan

(∑
xi
∑
yi − K

∑
xiyi

(
∑
xi)2 − K

∑
x2i

)
(3)

The position p of skeleton endpoint se and the direction θ
are combined into a feature point F(p, θ ), where the feature

FIGURE 3. Feature points in different views. (a) Top view. (b) Side view.

FIGURE 4. Feature point in occlusion scene. (a) Top view. (b) Side view.

point is used to represent the object, as shown in Fig. 3. This
representation has the following advantages: (1) Less data:
only one point is necessary to effectively represent the object,
thus improving the tracking efficiency, (2) Direction informa-
tion: reduces the difficulty of stereo matching and effectively
improves the accuracy of data association, and (3) Occlu-
sion handling: even if an occlusion exists between objects,
the occluded objects can still be represented effectively (see
Fig. 4), thereby greatly improving the ability of occlusion
tracking.

The fish body in the top view becomes thinner from head to
tail. Based on the characteristic, we draw a circle with each
feature point in the top view as the center, and the shortest
distance between the center and the edge is the radius r . The
fish body width located at this point can be approximated
as 2r . Let wh and wt denote the width of the feature points
in the head and tail of the fish body, respectively. Based on
the shape of the fish body in the top view, it is observed that
wh > wt , as shown in Fig. 3(a). Therefore, the tail feature
point can be eliminated by comparing the width. The position
and direction of the object is represented by the head feature
point.

The shape variation of fish in the side view is complicated
and it is challenging to recognize the head feature point
from all feature points. Hence, all feature points are first
used to represent the object, and an effort is made during
the stereo matching process to determine the head feature
point.
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B. OBJECT TRACKING
1) TOP-VIEW TRACKING
The object’s motion in the top view has the following charac-
teristics: (1) The shape changes are relatively small compared
to the side view, and (2) The motion states of the objects has
good consistency between neighboring frames, which can be
expressed as: the changes of position and direction are small
for the same object, and the changes are large for different
objects. According to these cues, we construct an association
cost function for the objects based on the method proposed
in [24].

Assume F topi,t = (ptopi,t , θ
top
i,t ) is the head feature point of

an arbitrary object i in the top view in frame t , ptopi,t and
θ
top
i,t denote the position and direction of the feature point,
respectively. The association cost function can be defined as:

cv(F topj,t−1,F
top
i,t ) = ω1

(
pc(ptopj,t−1, p

top
i,t )

pcmax

)

+ (1− ω1)

(
dc(θ topj,t−1, θ

top
i,t )

dcmax

)
(4)

where pcmax and dcmax denote the maximummotion distance
and the maximum deflection angle of the object in neighbor-
ing frames, respectively. pc(ptopj,t−1, p

top
i,t ) and dc(θ

top
j,t−1, θ

top
i,t )

represent the position change and direction change between
F topj,t−1 andF

top
i,t , respectively.ω1 and 1-ω1 stand for the weight

of change of position and direction in metric function respec-
tively, a setting that allows the dynamic adjustment of the
importance of position and direction in association to bring
itself in line with the motion state of objects in different
views.

Suppose m objects in frame t − 1 are to be associated
with n objects in frame t . A matrix of m × n can be set
up according to Equation (4) to express the function value
of motion continuity between objects in two frames. Data
association means the process of matching the objects with
the most similar motion continuity iteratively searched in the
matrix. The association model can be defined as:

z=min
m∑

jt−1=1

n∑
it=1

cv(F topj,t−1,F
top
i,t )xjt−1it

s.t.



m∑
jt−1=1

xjt−1it = 1 (it=1, . . . , n)

n∑
it=1

xjt−1it = 1 (jt−1=1, . . . ,m)

xjt−1it =1 or 0 (jt−1=1, . . . ,m; it=1, . . . , n)

(5)

where xjt−1it = 1 means the feature point F topj,t−1 is associated
with the feature point F topi,t ; xjt−1it = 0means the feature point
F topj,t−1 is not associated with the feature point F topi,t .
The greedy algorithm can be used to solve this equation

and to obtain the local optimal association of all objects.
To improve performance, if the inter-object distance is larger

FIGURE 5. An illustration of the association cost function in the top view.

than pcmax, the association is abandoned. Fig. 5 shows the
association process of feature points. If the state of the object
F topi,t in frame t coincides with that in frame t-1 in the associ-
ation process, F topi,t is not detected due to head occlusion, and
the object is labeled as Otopi,t .

2) STEREO MATCHING
The purpose of stereo matching is to determine the third coor-
dinate for each feature point in 2-D trajectories of top-view
tracking. In many binocular vision-based stereo matching
methods, the number of matched objects is typically reduced
first via the epipolar constraint. Next, the object is confirmed
based on appearance similarity. However, this strategy is
not feasible in the proposed method because the large angle
between cameras causes the shape of the object to vary
greatly between any two views,making it impossible tomatch
objects based on appearance similarity. In order to address
this problem, we match feature points from the top view
to side view subject to the epipolar constraint and motion
consistency constraint.

a: EPIPOLAR CONSTRAINT
Assume F sideq,t = (psideq,t , θ

side
q,t ) is the feature point of an

arbitrary object q in the side view in frame t , and lsidei,t is
the corresponding epipolar line of F topi,t in the side view.
The association probability is determined by the Euclidean
distance from psideq,t to lsidei,t , and the result of the epipolar
constraint can be expressed as:

ec(F topi,t ,F
side
q,t ) =

d(psideq,t , l
side
i,t )

Te
(6)

where d(psideq,t , l
side
i,t ) represents the Euclidean distance from

psideq,t to lsidei,t , and Te denotes the maximum matching distance
under the epipolar constraint (see Fig. 6). If ec(F topi,t ,F

side
q,t )

is less than 1, the feature point q subjects to the epipolar
constraint. If there is only one object under the epipolar con-
straint, stereo matching is performed successfully. The frame
for which the epipolar constraint will suffice to complete the
stereo matching is selected as the starting frame. If the stereo
matching fails, the starting frame is processed using manual
calibration. If there is more than one object, we use motion
consistency constraint to reduce matching ambiguity.
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FIGURE 6. An Example of the epipolar constraint. The dotted line
indicates the epipolar line.

b: MOTION CONSISTENCY CONSTRAINT
If there are k feature points of possible matching
(F side1,t , . . . ,F

side
k,t ) for F topi,t in the side view subjected to

the epipolar constraint. According to Equation (4), motion
consistency constraint can be expressed as:

mc(F topi,t ,F
side
q,t ) = cv(F sidei,t−1,F

side
q,t ) (q = 1, . . . , k) (7)

where F sidei,t−1 denotes the matching of the feature point F topi,t−1
in frame t-1.
The result of stereo matching can be expressed as:

sm(F topi,t )=argmin
q

[
ω2ec(F

top
i,t ,F

side
q,t )

+ (1−ω2)mc(F
top
i,t ,F

side
q,t )

]
(8)

where ω2 and 1-ω2 stand for the weight of the epipolar
constraint and motion consistency constraint in stereo match-
ing respectively. This equation indicates that if the feature
point of it has the best matching value under the epipolar
constraint and motion consistency constraint, then matching
is performed successfully. Fig. 7 shows an example of stereo
matching. If the moving direction of the object in the side
view is perpendicular to the camera, there is only one feature
point detected with the loss of direction information. Under
such circumstances, the object could only be subject to stereo
matching with top-view trajectory through position informa-
tion, which may reduce the matching accuracy. As the time
for the moving direction of object to stay perpendicular with
camera is very short, the tracking performance is thus less
affected.

3) OCCLUSION PROCESSING
For data association, the tracking performance is most signif-
icantly influenced by missed detections. Thus, reducing the
missed detection rate is the most effective way to improve
the tracking performance. In the single view, the missed
detection of occluded objects is inevitable, independent from
the detection method used. In order to solve this problem,
the information of the side view is integrated to reduce the

FIGURE 7. An Example of stereo matching. An object in the top view can
find k candidates on corresponding epipolar line at frame t . The matching
object is determined by the epipolar constraint and motion consistency
constraint.

FIGURE 8. An example of stereo matching for the occluded object in the
top view.

missed detection rate of the top view. Assuming object i
in frame t is labeled as Otopi,t in the top view, the epipolar
constraint is used to find the point for which the skeleton point
in the region pcmax best matches with the skeleton endpoint
in the side view.

oa(Otopi,t ) = argmin
s

ec(s,F sidei,t ) (9)

where s represents the skeleton point within the circle with
F topi,t−1 as its center and pcmax as the radius in the top view
(see Fig. 8).

If the objects are occluded under the side view, the top-
view trajectoriesmay fail in stereomatching. Either of the two
methods can be adopted in this context: under the epipolar
constraint, match the major skeleton of the occluded objects
with the top-view objects; or, postpone the matching pro-
cess until the occluded objects appear again. To improve
the accuracy of the tracking trajectory, the former method is
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FIGURE 9. An example of stereo matching for the occluded object in the
side view.

employed to complete the stereo matching of the occluded
objects. In particular, when an object is occluded in the side
view, thematching result on themain skeleton in the side view
based on the top view trajectory is used as the detection result
of the occluded object (see Fig. 9). Therefore, the problem of
locating occluded objects in the side view can be solved, and
the accuracy of the trajectory can be improved.

Although we have handled the occluded objects as much
as possible, there are still a few occluded objects being omit-
ted during the tracking process. Such omission may cause
trajectory break. In order to guarantee trajectory continu-
ity, the broken trajectories are connected to form complete
trajectories. Note that trajectory connection is dependent on
spatial-temporal relationships between trajectories. Consider
trajectory Ti with an ending time Ti(et) and ending position
Ti(ep); and trajectory Tj with a starting time Tj(st) and starting
position Tj(sp). The following constraint is established:

tl(Ti,Tj) =


1, |Ti(ep)− Tj(sp)| < (pcmax ∗ fo)
& Ti(et) < Tj(st)
0, otherwise

(10)

where fo denotes the number of occluded frames between
two trajectories. According to the above equation, the two
trajectories satisfying the spatial and temporal constraints
at the same time should be connected (see Fig. 10). If one
trajectory has several qualified candidates to connect with,
the candidate with the best continuity is selected based on
Equation (4) for connection.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. DATASETS
In order to evaluate the proposed method, we choose
zebrafish as the tracking object. The length of zebrafish is
1-3 cm. They were placed in a 20×20×20 cm container
with a water depth of about 18 cm. Two Flare 4M180-CL
synchronized cameras were installed in the top-view and
side-view directions. Video images were recorded at a rate

FIGURE 10. An example of trajectory connection. If two trajectories meet
both the spatial and temporal constraints, they will be connected as a
continuous trajectory.

of 90 fps and with a resolution of 2048×2040 pixels. Given
the different object quantity, two groups video data (10 fish
and 15 fish) are shot with each video length accounting to
5 minutes. 2000 consecutive frames with active objects in
each of the video have been chosen as the testing datasets
and named as D1 for 10 fish and D2 for 15 fish respectively.

B. PARAMETERS SETTING
Eight parameters need to be set for tracking, which are Tg,
N , Tu, ω1, ω2, pcmax, dcmax and Te respectively. Tg mainly
influences the integrity of object segmentation. Smaller Tg
brings about more integral segmentation results and is more
sensible to such interference as noise and water wave. As we
simply need to obtain the main skeleton of the object and
do not have high requirement for the integrity of segmen-
tation results, it is reasonable to set a relatively large Tg. N
affects the quality of the background image, it can be set in
accordance with the motion state of objects in the datasets.ω1
mainly reflects the importance of the change of position and
direction in data association. With smaller object quantity,
the change in position plays a dominant role in association.
The increasing object quantity and constantly strengthening
occlusion frequency heighten the role of change in direction
in association. Similar to parameterω1,ω2 mainly reflects the
importance of the epipolar constraint and motion continuity
constraint in stereo matching. The increase in object quantity
is accompanied by the greater uncertainty of stereo matching
under the epipolar constraint and larger weight of motion
continuity constraint in stereo matching. Te shows the error
range of the epipolar constraint and allows dynamic adjust-
ment according to the calibration error of the camera. pcmax
and dcmax can be set in accordance with the motion state of
object in adjacent frames of video sequence.

In order to set the detection and tracking parameters,
we select 300 frames from each view as parameter samples.
The tracking results obtained under different parameters are
compared with the ground-truth generated by visual exami-
nation to determine the optimal setting. The final setting of
parameters is shown in Table 1.

C. EVALUATION METRICS
The detection performance is evaluated using the following
two metrics:

precision = TP/(TP+ FP)

recall = TP/(TP+ FN ) (11)
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TABLE 1. Parameters setting in the test process.

TABLE 2. Detection performance on the testing datasets.

where TP, FP, FN denote the number of true positives, false
positives and false negatives, respectively.

The tracking results are analyzed with the several widely
used performance metrics [25].

(1) Mostly Tracked Trajectories (MT): The number of
ground-truth trajectories which are successfully tracked for
more than 80%.

(2) Mostly Lost Trajectories (ML): The number of ground-
truth trajectories which are successfully tracked for less than
20%.

(3) Fragments (Frag): The number of times that a ground-
truth trajectory is interrupted by the tracking trajectories.

(4) Identity Switches (IDS): The number of times that a
tracking trajectory changes its matched ground-truth identity.

Lager value of MT indicates better tracking performance;
smaller values of ML, Frag and IDS indicate better tracking
performance.

D. RESULTS AND DISCUSSION
The detection results are shown in Table 2. It can be seen from
this table that for the two groups of tests, the precision value
of the proposed method is more than 95%. This indicates
that the proposed detection method has higher accuracy. The
recall value gradually decreases for an increasing number of
objects. This is due to the fact that the frequency of head
occlusions increases with an increase in the object density,
which results in a gradual increase of the number of missed
detection objects. In addition, the detection performance in
the top view is higher than in the side view since fish appear-
ance is more stable in the top view. As a result, the main
skeleton is easier to extract in the top view. Also, since the
area occupied by the fish body is larger in the side view than
in the top view, motion occlusions are more likely to occur in
the side view.

In order to evaluate the tracking performance of the
proposed method more effectively, we compare it with
other four methods, namely Wu et al. [12], idTracker [16],

TABLE 3. Tracking performance on our datasets.

Wang et al. [20] and SK-3D [7]. The method of Wu et al.
is a general framework for 3-D tracking. Many object track-
ing methods use Wu et al.’s method as a benchmark when
conducting a performance analysis. idTracker is currently
the best method to achieve 2-D tracking of fish based on
artificial feature. The method of Wang et al. is one of the
advancedmethods for 3-D tracking ofmultiple fish at present.
Experimental results are shown in Table 3.

From ML, it can be observed that in the two groups of
test, only one invalid trajectory is obtained by the proposed
method, which demonstrates its great performance in object
tracking. MT suggests that the proposed method is able to
obtain the trajectories of most objects, but the mean value
decreases with the number of objects. The reason for such
decrease is the increased frequency of object occlusion that
causes trajectory error. Frag and IDS show the impressive
ability of the proposed method to track occluded objects
and ensure trajectory integrity by accurately finding matches
of most occluded objects. The tracking results are shown
in Fig. 11.

The method proposed by Wu et al. can track many objects
which fly very fast. In their method, each object is simplified
into a point. The multi-view information is fused for data
association and stereo matching. However, the appearance of
objects varies radically under different views and the objects
move very randomly. Representing the object with a single
point makes it more difficult to perform stereo matching
and occluded tracking. As a result, the algorithm’s tracking
performance is affected. Furthermore, the moving direction
of objects is not estimated. Location information is thus
insufficient for accurate data association.

idTracker begins with obtaining fish fingerprints by ana-
lyzing object appearances. Then, it matches these fingerprints
in different frames and determines their trajectories. In our
experiment, the objects are tracked simultaneously from the
top- and side-view directions. The tracking results of the
two views of idtracker are analyzed. In the starting frame,
the relationship between the object in the top view and the
object in the side view is established using manual calibra-
tion. During the tracking process, the tracking result of the top
view provides (x, y) coordinates, while that of the side view
provides z coordinates. In this way the 3-D position of the
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FIGURE 11. The obtained trajectories on different groups. (a) 10 fish.
(b) 15 fish.

object is obtained. In the trajectory analysis, an error in the
2-D trajectory of a certain view, is bound to result in errors
in the corresponding 3-D trajectory as well. Experimental
results indicate that idTracker does not perform effectively,
due to appearance variation of objects in the 3-D space. It is
known that, variation in locations and moving directions of
the object may cause variation in appearance of the object.
This is especially true along the side-view direction. Appear-
ance variation makes it harder to match fingerprints. Due to
these reasons, idTracker leads to many mismatches. It is also
observed from the experiment that, considering variability of
the object’s appearance, kinetics-based tracking is superior to
appearance analysis-based tracking in the 3-D space.

Wang et al. determined the location of fisheye under the top
and side views usingmixedGaussianmodel andGabormodel
respectively. Next, the 3-D motion trajectories of the objects
are obtained by associating top-view tracking results with the
trajectories of two side views. In their method, multi-view
informationwas fully exploited to avoid the problem of object
omission that may arise from single-view tracking. In other
words, the objects that are not detected under certain view
will assuredly be detected under other views. It can enhance
detection performance and thus improve the accuracy of
stereomatching, an advantage that is directly related to shoot-
ing conditions and training samples. In the testing data, the
low distinction degree of the eye area characteristics of the
object determines the poor detection performance of their
method. In addition, without using the motion direction of

FIGURE 12. Tracking errors of Wang et al. (a) Association error caused by
not considering moving direction. (b) Stereo matching error caused by
misdetection.

the object during tracking, their method reduces the accuracy
of association and stereo matching (see Fig. 12). Finally,
this method involves capturing and analyzing objects under
three views, resulting in complicated equipment installation,
configuration and data association. Compared to the scheme
by Wang et al., the proposed method is able to detect objects
more robustly. By exploiting their location and direction,
the proposedmethod addresses frequent occlusions of objects
more effectively. Moreover, 3-D tracking is enabled in the
proposed method by tracking objects under two views that
greatly simplifies the tracking process.

Compared with SK-3D, the improved one employs the top
view and the side view to locate the occluded objects in a
complementary way, which better solves the most difficult
problem of motion occlusion in multi-object tracking and
further improves the tracking performance. In the process of
object motion, the likelihood that occlusion occurs in both
views is small due to the mechanism of collision avoidance
between the objects. Therefore, it is feasible to combine the
information of two views to solve the occlusion problem. In
addition, since the trajectory connection is used to process
the trajectory fragments, the tracking result of the proposed
method has better continuity.

For better analysis of the performance of the proposed
method, we choose the datasets of Wang et al. [20] for
test. For the datasets the zebrafish is placed in a container
of 15×15×15 cm and a water depth of 10 cm. The image
resolution is 2048×2040 pixels, and the frame rate is 90 fps.
According to the number of fish, two groups, namely D3
(5 fish) and D4 (10 fish), are selected from the dataset as
test data. Each group contains 1000 frames. Compared with
our datasets, Wang et al.’s datasets have higher occlusion
frequency and greater tracking difficulty. The test results are
presented in Table 4, from which, it can be seen that the
proposed method has achieved the best tracking performance
in the two groups of test. In contrast, Wu et al. and idTracker
are still low-performing in the datasets, and Wang et al. has
its tracking performance enhanced to some extent. The reason
for such results is that the distinction degree of the eye area
characteristics of the object in the datasets is higher than
that of ours, thus resulting in the certain improvement of the
detection performance of theirs. However, the failure to take
into account the moving direction of the object undermines
its accuracy in data association and stereo matching.

VOLUME 7, 2019 145057



X. Liu et al.: 3-D Video Tracking of Multiple Fish in a Water Tank

TABLE 4. Tracking performance on Wang et al. ’s datasets.

Further analysis of the experimental results reveal that the
tracking errors of the proposed method concentrate more in
top-view tracking than in stereo matching. In other words,
any error found in top-view trajectory will directly affect
the 3-D tracking results after stereo matching. With correct
top-view trajectory but erroneous side-view detection results,
only the 3-D trajectory in the current frame or in a few frames
will be influenced. Therefore, the top-view tracking results
have greater impact on the tracking performance. When the
density of objects is low, the proposed method can track
objects effectively along the top-view direction. Object occlu-
sions happen more frequently when the number of objects
increases. Location and moving direction alone are no longer
sufficient to guarantee accuratematching of occluded objects.
As a result, more matching errors occur and the method’s
tracking performance deteriorates. How to benefit top-view
tracking from more side-view information is an important
topic that will be studied in the future.

V. CONCLUSION
A skeleton-based multiple fish 3-D tracking method is pro-
posed in this paper. Experimental results show that the pro-
posed method, with sound tracking performance, can acquire
the 3-D motion trajectories of multiple fish. Since the pro-
posed detection method is based on the asymmetric strip
structure of the object, it has certain limitations. For example,
the method may not provide correct results, if the fish body
width is larger than or equal to body length, or fish with com-
plex fin and fishtail shape. Therefore, we shift our research
focus towards establishing a universal detection method that
is usingmore appearance features. In addition, with the devel-
opment of computer vision technology, deep learning has
shown a strong ability of automatic feature extraction, and
provides a new solution for multi-object tracking [26], [27].
Next, further improving the tracking performance through
machine learning is another focus of our research.
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