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ABSTRACT Future trains will use more computer vision aids to help achieve fully autonomous driving. One
of the most important parts of the train’s visual function is the detection of railroad obstacles. This makes
it important to identify and segment the railroad region within each video frame as it allows the train to
identify the driving area so that it can do effective obstacle detection. Traditional railroad detection methods
rely on hand-crafted features or highly specialized equipment such as lidar, which typically require expensive
equipment to be maintained and are less reliable in scene changes. RailNet is a deep learning segmentation
algorithm for railroad detection for videos captured by the front-view on-board cameras. RailNet provides
an end-to-end solution that combines feature extraction and segmentation. We have modified the backbone
network to extract multi-convolution features and use a pyramid structure to make the features have a top-to-
bottom propagation. Our model can detect the railroad without generating large numbers of regions, which
greatly increases the detection speed. Tested on a railroad segmentation dataset (RSDS) which we have built,
RailNet exhibits very good performance while achieving 20 frames per second processing speed.

INDEX TERMS Railroad detection, deep learning, segmentation.

I. INTRODUCTION
Low-speed fully autonomous trains will become a very
important means of transportation in the future. Front-view
cameras mounted on locomotives facilitate visual monitoring
of the railroad to detect obstacles. At present, the detection of
obstacles of railroadmainly relies on trackside equipment and
manual inspection.With the development of computer vision,
the camera-based obstacles detection system will replace the
original expensive method. The goal of the detection is to
fully perceive the environment in front of the train. A critical
pre-processing step of environment perception is to identify
and segment the railroad region within each video frame as
it allows the train to identify the driving area so that it can
do effective obstacle detection. As such, performing accurate
camera-based railroad detection is a key enabler of fully
autonomous trains.

Several existing works have been reported to detect and
segment the railroad from a given image using the lin-
ear features of a railroad image [6], [7], [34]. The perfor-
mance of these traditional methods, however, may suffer
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due to varying lighting conditions and complex backgrounds.
Recently, Saux et al. [1] and Gilbert et al [2] proposed to use
the convolutional neural networks (CNN) for railroad track or
track elements detection. These demonstrate the effectiveness
of the CNN structure in extracting railroad or basic track ele-
ments. In view of recent progress using deep neural networks
for object detection and segmentation, the CNN approach has
shown great promise.

In this paper, we propose RailNet, which is an end-to-end
deep learning-based railroad track segmentation algorithm.
This algorithm consists of a feature extraction network and
a segmentation network. The feature extraction network uses
a pyramid structure to propagate features from top to bottom
to obtain a hybrid feature vector. The segmentation network
is a convolutional network for generating the segmentation
map of the railroad. We also developed a Railroad Seg-
mentation Dataset (RSDS), which consists of 3000 images.
These images are derived from the actual train operating
environment.

Using the RSDS dataset, we compare the performance of
RailNet against that of modified version FCN [16] andMask-
RCNN [3]. We observe that RailNet achieves the best perfor-
mance in terms of both the accuracy metrics (pixel accuracy,
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mean intersection over union ratio, F-measure value) and
efficiency (frame rate).

The rest of the paper is organized as follows: In section II,
related works are reviewed. The main idea and details of the
RailNet algorithm are developed in Section III. Experimen-
tal implementation and results are presented in Section IV.
In Section V, conclusion and future works are discussed.

II. RELATED WORK
To our best knowledge, there have few methods that using
learning algorithms to detect railroad and few related works
can be directly compared to our work. In fact, RailNet is
a specialized segmentation network designed for railroad
detection, including railroad feature extraction and railroad
segmentation. There are several aspects of previous works
related to this paper, as discussed below.

A. RAILROAD DETECTION
There are many methods of railroad or rail extraction in
recent years. In [5], an algorithm that uses dynamic pro-
gramming in railroad environments to extract the training
course and railroad track in front of the train. They made
this method in three steps: First, the method uses the Sobel
operator to compute the gradient of the input image. Next,
a Hough transform process is applied to the binary image
for the detection of rail line. Finally, it use Dynamic Pro-
gramming to extract the railroad. Qi et al. [6] proposed to
use the HOG features and establish integral images, and
then extracted railway tracks by region-growing algorithm.
Nassu and Ukai [7] introduced an approach that performs rail
extraction bymatching edge features to candidate rail patterns
modeled as sequences of parabola segments. Purica et al. [8]
proposed a railroad detection algorithm useHough Transform
to detect lines and perform a line clustering in the Rho
and Theta space. Teng et al. [9] proposed a visual railway
detection method based on super-pixels rather than pixels.
This method uses the support vector machine (SVM) to
classify the features transformed by TF-IDF(term frequency-
inverse document frequency) and uses intracellular decision
scheme to make decisions on a super-pixel by using pre-
dictions of features within the super-pixel. Other proprietary
algorithms [10], [1], [11] have been developed to incorporate
other sensing modalities such as Laser, Lidar or remote sens-
ing data to detect the railroad tracks.

B. METHODS OF USING MULTI-FEATURES
In a deep neural network, features are extracted at every
layer except the final fully connected classification layers.
For object detection and image segmentation, features from
multiple network layers are leveraged to yield better results.
For example, in FCN [16], sums of partial scores of each
category on multiple scales are incorporated for the pur-
pose of segmentation. In [21], a feature pyramid network
is used to improve the feature extraction performance in
several applications. Other methods such as Laplacian pyra-
mid [22], U-Net [23], etc. also draw on this idea to use

multi-scale features. Mask RCNN [3] uses the pyramid struc-
ture features to help achieve the state of the art in instance seg-
mentation and human pose estimation on the COCO dataset.
Many papers have shown that using multi-features can sig-
nificantly improve the performance of the model.

C. SEGMENTATION
Similar to the lane detection [24] problem, railroad detection
requires the segmentation of the region that contains the rail-
road from the rest of the video frame. Shelhamer et al. [16]
proposed a fully convolutional network (FCN) to perform
image segmentation. SegNet [25] uses Encoder-Decoder
architecture to improve the resolution of segmentation.
Yu et al. [26] uses dilated convolutions to systematically
aggregate multi-scale contextual information without losing
resolution. Chen et al. [27] proposed an atrous spatial pyra-
mid pooling (ASPP) method based on dilated convolution to
robustly segment objects at multiple scales. Zhao et al. [29]
proposed a pyramid scene parsing network (PSPNet) that
uses global context information. Xu et al. [28] presented
a dynamic video segmentation network (DVSNet) for fast
and efficient semantic video segmentation. Another series of
solutions [30], [31] for semantic segmentation improved the
performance of the model.

III. RAILNET
Traditional methods that use the line or edge features to
detect railroad maybe have a good performance in one fixed
scene but performance decrease fast after scene change. Espe-
cially in the course of the train driving, the background is
constantly changing, and the hand-crafted features cannot
meet the requirements. We convert the railroad detection
task from railroad line detection or edge detection problems
to segmentation problems. Our railroad detection Network,
called RailNet, is an end-to-end training network. RailNet
combines the ResNet50 backbone network with a fully con-
volutional network to compute segmentation. We built an
independent multi-level feature extraction network outside
the backbone network to make full use of the features in the
network without changing the network mainframe structure.
Figure.1 shows the structure of the RailNet. The further
explanation is as follows.

FIGURE 1. RailNet structure.

A. RAILROAD FEATURE EXTRACTION
Like image classification and recognition tasks et al, railroad
detection also needs to extract the high and low-level features
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of the image. The purpose of a feature extraction network is to
leverage the powerful feature extraction capability of a convo-
lution neural network trained on the dataset. VGG16 [19] and
ResNet50 [20] have been quite popular choices of backbone
feature extraction networks for various computer vision tasks.
In this work, we choose ResNet50 because it has demon-
strated stronger feature extraction capabilities. It also has
fewer parameters and hence is computationally efficient.

Our model takes an arbitrary size image as input and
outputs feature maps through the backbone network. These
feature maps come from different network layers and have
different sizes and dimensions. The multi-level features bring
the benefits of local and global perception due to multiple
receptive filed sizes. The ResNet50 layers are grouped into
5 stages, namely, stage1, stage2, stage3, stage4, and stage5.
Each stage contains several convolutional layers and batch
normalization layers. These stages bring richer features for
further processing. It is reported [16] that features from lower
layers (closer to the input) are related to low-level visual
features; while from higher layers, features extracted are
often linked to global, abstract concepts. In order to make the
best use of these richer features, we design an independent
structure outside the backbone network to process the fusion
of multiple features. Figure.2 shows this structure on topol-
ogy. And we borrowed the ideas from the feature pyramid
network [21] to use the feature propagation from top to
bottom. For the feature extraction network, our modifications
on the ResNet50 can be described as following:
• We cut off all layers beyond stage5, including the fully
connected layer, average pooling layer, classification
layer, which are useless for our task.

• Inside the stage2 to stage5, we connect the output of
each convolution layer using a convolution layer with a
kernel size of 1 × 1 and a depth of 64. Since the size of
the features does not change inside each stage. We can
concatenate these several outputs as the output features
of each stage and obtain the feature sets {S2, S3, S4, S5}

In this way, we make full use of the features from most
convolution layers. It covers from high-level abstract features
to low-level specific features. But even so, we still isolate the
features of different level, {S2, S3, S4, S5} represent the dif-
ferent dimensions features obtained in the process of forward
propagation.We can’t merge them into a joint feature directly.
Then we add a Top-down pathway to make the feature have a
backward propagation. As shown in Figure. 3. This pyramid
structure feature [21] has been proved to improve the effect
of feature extraction significantly. Details are as following:
• Four 1× 1-256 convolution layers, denoted by {C2, C3,
C4, C5}, are attached to {S2, S3, S4, S5} respectively.

• From top to bottom, the features {C2, C3, C4, C5} are
connected to an up-sampling layer and merged with the
features of the previous layer respectively.

Each stage of the network has a scaling step of 2, so we
up-sampling the feature maps by a factor of 2. After adding
these two aspects of the independent structure to the back-
bone network, we obtained the final fused feature maps

FIGURE 2. Feature extraction network architecture of RailNet. The input
of the network is one image or a batch of images with arbitrary size, and
the output is the hybrid features {S2, S3, S4, S5}. In stage2, stage4 and
stage5 have a similar structure to stage3.

FIGURE 3. The top-down pyramid structure of feature processing.

{P2, P3, P4, P5}. Since C5 is at the top layer, it cannot be
backpropagated and merged with the features of the upper
layer, so P5 is C5.

Our goal is to use this hybrid features for railroad segmen-
tation. We still need a fully convolutional network to make
pixel-level predictions for feature maps. In the next section,
we will introduce a segmentation network that connects the
feature extraction networks.

B. RAILROAD SEGMENTATION
In order to separate the railroad pixels from the other parts,
we built an underlying network of the RailNet for railroad
segmentation. This network is trained to output a binary

143774 VOLUME 7, 2019



Y. Wang et al.: RailNet: Segmentation Network for Railroad Detection

segmentation map, that indicate which pixels belong to the
railroad area and which do not. Most popular detect-and-
segment methods (e.g. Mask R-CNN, SegNet) are not suit-
able for railroad segmentation. Since bounding box detection
is suitable for compact objects, the railroad does not. And
these detect-and-segment algorithms perform global image
detection, generating thousands of proposals for classifica-
tion and segmentation. This makes a lot of computing time
spent on the unused proposals. For RailNet, we use a fully
convolutional network to compute segmentation that is not
for the regions but for the entire image. This can significantly
reduce the computing time spent on regions.

We need to convert the features to a fixed size before send-
ing the features to the segmentation network. Unlike detect-
and-segment networks, our model does not generate regions.
We can’t use RoIPool [18] or RoIAlign [3] to complete
this step directly. Based on the characteristics of the output
features, we have proposed a method that takes into account
two situations. Define the output feature size as n × n − d ,
and the converted size is m × m − d . If n/m ≥ 2 then
consider the feature map as one region and use the method
similar to RoIPool [18] to reduce feature size. If n/m < 2,
use bilinear interpolation [32] to calculate new feature values.
See Figure. 4 for details.

FIGURE 4. Example of feature size transformation. (Here, the feature size
of 5 × 5 is converted to 4 × 4) Each small square represents a pixel, and
the center point of the square represents the value of the pixel. We can
calculate a new value from four adjacent pixels use bilinear interpolation
for the new feature maps.

After several layers of Conv and Deconv, the features will
be calculated as a one-dimensional matrix, called Seg-map,
each value represent the probability of belong to the railroad
area. We can get the final railroad segmentation map by
adjusting the threshold.

1) LOSS FUNCTION
For RailNet, we compute two loss values for the entire
network, which are the loss of the entire image Limage and
the railroad Loss LRailroad. As shown in Figure.5. The coor-
dinates of the railroad region box can be determined by
using the annotations of the ground truth. The railroad region

FIGURE 5. Calculation area of the two losses. The red color calculates the
loss of the entire image, and the blue color calculates the loss of the
railroad region. The coordinate ratio between the ground truth and
prediction is k:1.

box determined by ground truth can derive the actual posi-
tion of the railroad of the RailNet output Seg-map. LRailroad
is the loss between ground truth railroad region and the
corresponding area of the Seg-map. If the coordinates of
the railroad region box in the ground truth are (a, b, l, h),
and the scaling between the ground truth and the Seg-map
is k. The quantification coordinates of railroad box in the
Seg-map are ([a/k], [b/k], [l/k], [h/k]). The value repre-
sents the coordinates of the upper left corner and the length
and width of the box. For each loss, training samples can be
expressed as: {(Xn,Yn), n=1,2,. . . ,m}, where Xn denotes the
original feature tensor of the input image, Yn = {y

(n)
j , j =

1, 2, . . . , |Xn|}y
(n)
j ∈ {0, 1} denotes the label of the input

image. Yn = {y
(n)
j , j = 1, 2, . . . , |Xn|}y

(n)
j ∈ [0, 1] denotes

the output of the network. We compare the sample label Yn
with the actual output Yn of the network to calculate the loss.
We define the weight of the network as W, and calculate the
loss for each pixel:

l(Xj,W ) =

{
β logP(Xj,W ), if yj = 1
(1− β) log(1− P(Xj,W )), if yj = 0

(1)

In which β = |Y−| / |Y+ + Y−|, 1−β = |Y+| / |Y+ + Y−|,
Y+, Y− denote railroad pixels and background pixels sets,
respectively. P(Xj,W ) is computed using the sigmoid func-
tion on the activation value at a pixel j. The total loss of each
sample can be denoted asčž

Limage =
N∑
j=1

l(Xj,W ) (2)

Use the same method to get the railroad loss LRailroad.
We define the total loss function as L = αLimage+βLRailroadα
and β denote the weights of the two losses, respectively.

IV. EXPERIMENTS
In this section, we will evaluate the performance of the
RailNet for detecting railroad. In section A, we described
the railroad dataset and the annotation of this dataset. The
implementation details for training this network are described
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in section B. In section C, we discussed the evaluationmethod
and the comparison of our model with other models in our
dataset.

A. DATASET
As far as we know, there have no open-source datasets for
railroad detection. In order to train and test our network.
We built a railroad datasets for segmentation that include
3000 images, 2500 images for training, 200 images for valida-
tion and 300 images for test.We call it Railroad Segmentation
Dataset (RSDS). All images come from a real train’s driving
environment. When labeling the ground truth of the datasets,
the railroad is defined as all pixels between two rail lines.
Due to the influence of different environments, we did not
label the railway sleepers outside the two lines as the railroad.
We use VIA [33] tool to manually draw a closed polygon
region shape to define the ground truth. An example is shown
in Figure. 6. All image size is 1920 × 1080, and we made
the annotations as a JSON file. During training, we also
applied the data augmentation algorithm to enhance training
samples.

FIGURE 6. An example of ground truth.

B. IMPLEMENTATION DETAILS
The network is implemented using the Keras Library with
the Tensorflow as the backend. An NVIDIA GTX1080 GPU
is used in a desktop Linux PC to perform all training.
We initialize the weights of the entire network by two
steps: the first step is to initialize the weights of RailNet
backbone network (which is ResNet50) using the weights
trained by the ImageNet Dataset. The weights can be down-
load on Github. The second step is to randomly initial-
ize other parameters. We use the RSDS training set to
train the entire network and fine-tune the parameters in
ResNet50. During the training phase, we use the ADAM
stochastic gradient descent learning algorithm to training
the network. Hyper-parameters during training are set to:
mini-batch size = 8, learning rate = 5e-3, scheduled decay
= 0.004, β1 = 0.9, β2 = 0.999, and ε = 1e-08. After
200 epochs training we adjusted the learning rate to 1e-3.
The entire training was terminated after 300 epochs (nearly
150k iterations).

C. RESULTS
To evaluate the performance of the RailNet, we refer to the
metrics from common semantic segmentation evaluation such
as pixel accuracy and mean Intersection over Union (MIoU).

FIGURE 7. The figure shows the precision-recall curves for different
railroad detection methods. The X-axis is Recall, the Y-axis is Precision,
and the green curve is F-measure (2 · Precision · Recall

/
Precision+

Recall ). From bottom to top, the F-measure values range from
0.1 to 0.9 respectively. The F-measure can reflect the accuracy of the
model’s detection. Our method has achieved the highest F-measure.

FIGURE 8. RailNet results on the RSDS test set. From left to right: Original
images, output segmentation map, railroad mask.

Since the railroad detection is based on pixels, it is more like
a classification task, so we can use the evaluation metrics
in image classification: precision, recall, and F-Measure.
We define three values: pc, pm, pi, which denotes the numbers
of correct identified railroad pixels, missing identified pixels
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FIGURE 9. Some comparison results on the RSDS test set. From left to right: Original input images, ground truth, results of FCN, results of Mask
RCNN and results of RailNet.

and incorrectly identified pixels, respectively. This way we
can build the following evaluation formulas. k is the number
of test images.
• Pixel accuracy: PA =

∑
k p

(j)
c /

∑
k (p

(j)
c + p

(j)
m )

• Mean Intersection over Union :

MIoU = (1/k)
∑

k
p(j)c /

∑
k
(p(j)c + p

(j)
m + p

(j)
i )

• Precision: Pr =
∑

k p
(j)
c /

∑
k (p

(j)
c + p

(j)
i )

• Recall: Re =
∑

k p
(j)
c /

∑
k (p

(j)
c + p

(j)
m ) = PA

• F-measure: Fm = 2Pr · Re/(Pr + Re)

Currently, there have no open-source data for performance
comparison. And most of the railway detection work is to
detect and fit the two railroad line, which is quite different
from the work of this paper.

In order to compare the performance of our model,
we modified several current significant scene segmentation
algorithms to fit our detection task and tested them on the
dataset proposed in this paper. By changing the threshold
from 0 to 1, we can get different network outputs to calculate
precision and recall. Results are shown in Figure. 7 and
Table 1.

Figure.8 shows some railroad detection results. Figure. 9
shows some of the comparisons results visually. All test
images come from the test dataset of RSDS.

TABLE 1. Detection results on RSDS. All calculations are implemented on
the GPU.

D. RESULT ANALYSIS
This paper mainly considers the railroad detection task
of low-speed autonomous trains. According to the design
specifications of low-speed trains in China. The maximum
design speed is 80km/h, and the operating running speed is
less than 60km/h. Emergency brake deceleration is not less
than 1.2m/s2. Therefore, the emergency braking distance is
approximately 118 meters. Our algorithm got a processing
speed of 20 frames per second. That means the train runs
a distance of 0.83 meters after processing one frame. The
emergency braking distance ismuch larger than the train’s run
distance of processing for one frame. This means that whether
the train can stop in time is mainly determined by the braking
distance of the train and the effective detection distance.
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The algorithm proposed in this paper canmeet the application
requirements of railroad extraction accuracy. The speed of
20 frames/second can meet the basic detection requirements,
but it does not meet the requirements of real-time detection
of HD cameras. So future work will focus on improving
detection speed and obstacle detection. Thework in this paper
is the basis of future research.

V. CONCLUSION
There are few methods for detecting railroad using learn-
ing algorithms. Because there is no relevant dataset and it
is difficult to describe the railroad using a bounding box.
In this paper, we have built a dataset (RSDS) for railroad
segmentation.We propose a railroad detection network archi-
tecture that fully utilizes the features of the backbone net-
work. We have modified other segmentation methods and
compared them to our methods based on RSDS dataset. The
experimental results show that the proposed method obtains
the highest detection performance (Pixel accuracy,Mean IoU,
F-measure) compared with other methods and has the fastest
detection speed. Our method has stronger scene adaptability
than traditional methods. However, this method is currently
computationally intensive and requires a GPU to run. In the
future, we hope to improve the algorithm to run the model on
the onboard computer.
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