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ABSTRACT Integration of ocean monitoring networks with artificial intelligence has become a popular
topic for researchers. Artificial intelligence plays an important role in underwater image processing. For
optical images captured in an underwater environment, the light scattering and absorption effect caused
by the water medium results in poor visibility, such as blur and color casts. A novel approach is proposed
herein to enhance the single underwater image with poor visibility. Similar to other image enhancement
strategies built on fusion principles, our method also generates two input channels from the original degraded
image, and these two channels are modulated by their corresponding weight measures. However, the main
innovation of our method is that we propose a new multilevel decomposition approach based on lp-norm
(p = 0, 1, 2) decomposition. According to the different sparse representation abilities of lp-norm to an
image’s spatial information, our approach decomposes the image into three levels: detail level, structure
level, and illuminance level. Thus, these three levels can be manipulated separately. Because this new
decomposition approach is based on image structural contents, rather than direct per-pixel downsampling
that is utilized in traditional multi-resolution pyramid decomposition, it is more accurate and flexible.
Additionally, according to specific underwater imaging conditions, we carefully select two input channels
and their three associated global contrast, local contrast, and saliencyweightmeasures. Ourmethod generates
output with more accurate details and a better illuminant dynamic range. Generally, we are the first to impose
an lp-norm-based decomposition strategy on underwater image restoration and enhancement. Extensive
qualitative and quantitative evaluations demonstrate that our strategy yields better results than state-of-the-art
algorithms.

INDEX TERMS Image enhancement, lp-norm, multilevel decomposition, underwater scene.

I. INTRODUCTION
Optical imaging technology is important in marine resource
exploration and utilization (e.g., ocean scientific research,
underwater environmental monitoring, underwater engineer-
ing construction and maintenance) [1]. In particular, owing to
the integration of ocean networks with artificial intelligence,
and the progression of artificial illumination technologies and
high-quality sensor technologies [2], [3], marine observation
techniques including underwater robots [4] are widely used,
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and research on underwater image processing has attracted
more attention than before.

In underwater vision tasks, floating particles in the water
attenuate light [4] owing to the scattering and absorption
characteristics of the underwater environment. The scattering
effect causes changes in the direction of light propagation,
while the absorption effect reduces the energy [5]. Therefore,
unlike images captured in the air, underwater images suffer
from poor visibility: the fraction of light scattered from the
water medium weakens the image contrast, and the absorp-
tion effect primarily causes chromatic casting. In such cases,
typically used image features such as colour, intensity, and
contours are not well characterized. In practice, when the
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FIGURE 1. Primary framework of our lp-norm-based decomposition
algorithm. The original image is the picture that needs to be enhanced.
Input1 is the histogram normalization colour-balanced version, and
Input2 is derived through classical contrast local adaptive histogram
equalization on Input1. Weight1 and Weight2 are Gaussian-normalized
weight maps derived from weight measures of global contrast, local
contrast, and saliency. Then, in both channels, the weight and input are
multiplied within each level, and the results of the two channels are
added together at corresponding levels. Finally, pyramid reconstruction is
deployed by stacking all three levels after interpolation at lev.2 and lev.3.

sight distance is more than 10 m in common seawater, objects
are almost unperceivable, and colors are substantially faded
as light wavelengths are cut selectively [6].

To obtain better visibility in underwater images, we pro-
pose a novel single underwater image enhancement strategy
based on a two-channel multilevel lp-norm(p = 0, 1, 2)
decomposition. According to the different sparse expressive
characteristics of l0, l1 and l2 norm terms to the image’s
spatial information, we decompose the two input channels
of a degraded underwater image into three levels: detail
level, structure level, and illuminance level. We are the first
to introduce this strategy into the restoration of underwater
images. This approach outperforms the state-of-the-art algo-
rithms, especially in terms of detail and illuminant dynamic
range restorations. The primary framework of our lp-norm-
based decomposition algorithm is shown in Fig.(1), and the
pseudocode is shown in Table(2).

The remainder of this paper is arranged as follows. In the
rest of section I, the base knowledge of underwater light
propagation and techniques that are related to underwater
image enhancement are reviewed in detail. Then, our research
work and innovation are briefly introduced. In Section II,
we introduce our new single image lp-norm decomposition-
based dehazing technique in detail. Section III describes the
experiments and analysis to illustrate the dehazing effects of

our strategy. Section IV briefly summarizes and concludes
our approach. Finally, our acknowledgements are presented
in section V.

A. UNDERWATER LIGHT PROPAGATION
For the underwater scene, light strength, colour and direc-
tion are significantly affected by the water medium due to
absorption and scattering [6]. Because the absorption effect
varies with light wavelength, water-induced shortwavelength
light (green and blue) casts more than longwavelength light
(red). In practice, the attenuation and colour loss also depend
on the total distance between the observer and the scene.
Meanwhile, the scattering effect results in poor contrast of
underwater scenes and render the image obscure and misty.

Based on the research of McGlamery [7] and Jaffe [8],
in such underwater degraded scenes, only part of the reflected
light can reach the camera lens, and the total irradiance inci-
dent on the pixel point of an image plane in a camera contains
three primary components: a direct component, forward scat-
tering, and back-scattering. Practically, the back-scattering
effect is the principal source of image structure (contrast) loss
and colour casting in underwater scenes.

At each pixel point x of an underwater image, the direct
component is

Id (x) = Iobj(x)e−ηd(x), (1)

where Iobj(x) is the intensity of light radiance from the target
object, d(x) is the distance from the object to the camera, and
η is the attenuation coefficient of the underwater medium.
The exponential term e−ηd(x) is known as the transmission
of the underwater medium and depicts the amount of light
transmitting from the target object to the camera.

The back-scattering component is

Ibs(x) = Vbs(x)(1− e−ηd(x)), (2)

where Vbs(x) is the colour vector known as back-scattering
light.

For each pixel point x, the total irradiance incident light
intensity I (x) is primarily described by these two additive
components:

I (x) = Id (x)+ Ibs(x)

= Iobj(x)e−ηd(x) + Vbs(x)(1− e−ηd(x)) (3)

B. RELATED WORK
Underwater image enhancement is a fundamental process
for underwater vision tasks. The existing restoration and
enhancement techniques can be categorized into hardware-
based and software-based methods:
First, an important class of enhancement approaches

uses specialized hardware [1] (e.g., light field cameras,
polarization-based methods, and lidar imaging (UWLI) sys-
tems). In [9], D. G. Dansereau et al. demonstrated the poten-
tial use of light field cameras in underwater dehazing. Based
on the light field camera, Skinner and Johnson-Roberson [10]
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proposed a physical model in which image structural infor-
mation was embedded. It recovered the dehazed image
and estimated the range-dependent transmission. In [11],
a polarization filtering approach that restored visibility
while adaptively suppressing noise was proposed. Partial
polarization-based techniques use several images of differ-
ent degrees of polarization; they are effective in recovering
distant regions but not applicable to dynamic scenes. In [12],
the divergent-beam UWLI system was used to capture turbid
underwater images. Generally, these hardware acquisition
systems are complex, expensive, power consuming [6], and
difficult to operate, especially in an underwater environment.

Software-based strategies can be separated into single- or
multi-image methods. A single input image strategy contains
light propagation model-based, contrast-based, statistical-
based, dark channel prior (DCP), and super-resolving (SR)
methods. The light model approach models light as the
product of the illumination and reflectance elements. The
illumination element typically contains low-frequency com-
ponents. The reflectance element includes high-frequency
information, such as edge and texture. Kimmel et al. [13]
proposed a variational low-pass filter to estimate the illu-
mination elements and achieved visually pleasing results.
Ancuti et al. [14] reconstructed the intrinsic brightness by
Koschmieder’s visibility model [15] in heterogeneous light-
ing conditions. For the contrast method, Tan [16] pro-
posed a dehazing algorithm based on observations: enhanced
images typically exhibit higher contrast and light changes
smoothly in a small local area. Their algorithm can enhance
visibility, but it assumes that the depth map must be
smooth except along edges [17]. Gu et al. developed the
image quality assessment (IQA) model and contrast changed
image database (CCID2014) and then presented the con-
trast enhancement strategy using the histogram modification
framework [18], [19]. Gu et al. [20] presented an auto-
matic contrast enhancement strategy based on the concept
of saliency preservation. For statistical analysis, Fattal [21]
employed a statistical graphical model and solved the ambi-
guity of light colour. Because scene albedo and depth are two
statistically independent components, Nishino et al. [22] pro-
posed a factorial Markov random field Bayesian defogging
algorithm. In addition, Liu et al. utilized maximum posterior
with prior propagation models and residual convolutional
neural network (RCNN) techniques to predict propagation
direction, which is more robust to unwanted local mini-
mums [23]. However, there is a lack of specialized under-
water datasets, so the performance for underwater scenes
is limited.

Several image dehazing algorithms are based on DCP [24].
Originally, the DCP method was applied for image dehazing
for airlight scenes. It defines the regions of small transmission
as thosewith largeminimal values of colours [6]. Gibson et al.
demonstrated mathematically that the DCP theory performed
well for image defogging [26]. Chen et al. [27] proposed
a dehazing method to suppress artefacts by minimizing the

gradient residual. Pei and Lei [28] and Chen et al. [29]
used the DCP theory to restore a night-time haze image and
near-infrared image, respectively. Huang et al. analyzed the
original DCP defogging algorithm for adapting to various
weather conditions and proposed an improvedDCP algorithm
with depth estimation, colour analysis, and visibility restora-
tion modules [30]. In underwater imaging conditions, Chiang
and Chen [31] separated the foreground and background
regions based on DCP and removed the haze and colour
distortion based on this segmentation. Paulo Drews et al. [32]
assumed that the primary source of underwater visual infor-
mation was from blue and green colour channels, and they
proposed an underwater dark channel prior (UDCP) method
that estimated the transmission map better than the con-
ventional DCP. In general, the DCP strategy can generate
relatively pleasing visibility, but it is usually related to an
erosion problem [17].

Another category of underwater image dehazing algo-
rithms is super-resolution (SR) descattering. Many studies
have shown that image structures and details repeat them-
selves [33]. Based on this observation, many HR images can
be restored from self-examples [34]–[36]. Zhang et al. [37]
designed an end-to-end deep neural texture transfer SRmodel
to extract more texture details from Ref images, but datasets
of underwater scenes are insufficient. Most image SR algo-
rithms are based on the ‘smoothness’ assumption that is sim-
ilar to the classic optical flow theory. These methods result in
artefacts and blurring at image edges and corners.

In general, single underwater image enhancing techniques
are commonly straightforward to implement. However, com-
pared with the more robust multi-resolution fusion strategy,
they often suffer from problems such as image structure loss,
ghosting halo artefacts, and spurious edges.

The method of multiple image restoration utilizes several
images as input. These input images are captured at the same
scene but in different conditions, such as different lighting
[38], [39], and different degrees of polarization [11]. In addi-
tion, some supplemental information about scene models can
be referenced. Kopf et al. [40] used the existing digital terrain
and urbanmodels to enhance images. These different medium
properties and conditions may provide different important
hazy image information and ultimately output pleasing vis-
ibility. However, in typical cases, the acquisition operation
for multi-view images is time consuming and difficult to
perform. Furthermore, because these images and scenemodel
information are unavailable, these methods are impractical
for general users.

Among these different image enhancement and restoration
approaches, multi-resolution pyramid decomposition and
fusion is a typical strategy. It is based on direct downsampling
at a pixel scale [6]. This method can weaken the halo and
artefact effects and yield relatively good restoration results.
However, it causes the loss of spatial structure information,
especially textures and details, which are of key importance
to the enhancement of underwater images.
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FIGURE 2. Comparison of different processes of the two input channels. (a) The original degraded image needs enhancement. (b) is the final output
when the first input channel is white balanced; apparently, it is too white. (c) is the final output when the first input is colour-balanced, and
the second input channel is bilateral filtered; compared to (b), colour visibility is improved conspicuously. (d) is the final output derived from the
colour-balanced version of the first input and version of the second input that removed the bilateral filter. (d) exhibits almost the same colour
appearance as (c) but with more details.

C. OUR METHOD AND INNOVATION
We propose a novel two-channel multilevel decomposition
approach based on the lp-norm (p = 0, 1, 2). According
to different sparse expressive traits of the l0, l1 and l2
norm terms to spatial information such as edges and struc-
tures, we decompose both input channels derived from one
degraded underwater image into three levels: detail level,
structure level, and illuminance level. The downsampling
process was performed only on the structure level and illu-
minance level, which are not sensitive to spatial resolution
(see Fig.(5)(b)(c) and (e)(f)).

We are the first to introduce this lp-norm-based decom-
position strategy into underwater image enhancement. The
Lp-norm decomposition method was used for tone mapping
to compress the dynamic brightness range in [41]. Inter-
estingly, we discover that this strategy not only improves
illuminance appearance can also extract detail and structure
information. Therefore, we introduce this lp-norm to our
research work. However, its simple and direct implementa-
tion is insufficient, so we generate the first histogram normal-
ization colour-balanced input and the second contrast local
adaptive histogram equalized input from a degraded single
underwater picture as the two input channels. Additionally,
we carefully select features such as global contrast, local
contrast, and saliency as the weight measures to modulate
these two input channels. We removed the chromatic weight
but placedmore emphasis on the contrast information. Our lp-
norm-based decomposition strategy includes two procedures:
rough decomposition and refined decomposition. Therefore,
it is more accurate than traditional pyramid decomposition.
Furthermore, our decomposition method is only performed at
the grey channel, and it is simpler than the traditional pyramid
approach that executes at all the R, G, and B channels. The
detailed contents are presented in the following sections.

II. LP -NORM(p = 0,1,2) DECOMPOSITION-BASED
UNDERWATER ENHANCEMENT
The fundamental idea of the decomposition algorithm is to
combine several inputs that are tailored by corresponding

weights. To obtain good visibility of the final output image,
the first procedure for designing a decomposition algorithm
is to select appropriate inputs and weights. Inputs and weight
maps are chosen to maintain the most significant features of
the original image, and they are application dependent.

The second key step is to decompose andmerge thesemod-
ulated inputs. We introduce a novel multilevel decomposition
strategy that does not resort to deriving the inputs based on
the scene physical model and naive multi-resolution pyra-
mid model. Instead, we aim for a lp-norm-based multilevel
decomposition technique in accordance with the different
sparse expressive capacities of the l0, l1 and l2 norm terms
to image spatial information. The detailed discussion and
analysis are depicted as follows:

A. INPUTS AND WEIGHT MAPS
1) THE TWO INPUT CHANNELS
Our approach exploits two input channels (please refer to
Fig.(1)) that are derived from the single degraded under-
water image. For the first input, we resort to the colour
correction technique to depress the effect of colour casting
in a water medium. The colour correction technique aims to
enhance image visibility by discarding unwanted colour casts
caused by light attenuation and various illuminant conditions
in underwater scenes. We choose a histogram normalization
colour balance strategy that is based on histogram normal-
ization. Compared to our work, the authors of [6] performed
a white balancing correction. However, the result of white
balancing correction tends to appear too white in general.
Thus, gamma correction was implemented to increase the
difference between darker and lighter regions. Although this
strategy is effective, it is slightly more complex than our
methods. Furthermore, our method can enhance chromatic
visibility while avoiding the gamma correction’s drawback of
losing contrasts in under-/over-exposed regions. Fig.(2)(b) is
the final output derived from thewhite balanced version of the
first input channel. It is obviously too white. (c) demonstrates
that the simple colour balancing approach yields notably
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better colour visibility than the white balanced approach
(b) and decreases the gamma correction disadvantage of
losing contrasts.

In the first input channel, we discarded the colour shift.
However, in the turbid water medium, underwater scenes still
present significant noise and lack of contrast owing to light
absorption and scattering. Therefore, the second input is
designed from this first input to enhance the contrast.

In [5], the author chose the temporal bilateral filter
to denoise and smooth the underwater image. However,
we found that this bilateral filter indeed reduced the noise
level, but at the cost of losing many small details. This
weakens the defuzzification effect of our enhancement
approach. As shown in Fig.(2)(c) and (d), the final output
image generated from the colour-balanced first input and sec-
ond input with no bilateral filter presents more detailed infor-
mation than (c). Additionally, with an acceptable noise level
owing to the denoising benefit of our lp-norm decomposition
strategy, we decided to remove the bilateral filter.

Subsequently, to achieve an optimal contrast level after the
first input component, the second input is designed through
classic contrast local adaptive histogram equalization. Gen-
erally, the typical global operators can be applied [5], but
they must be either specified by the user or estimated from
an input image. Furthermore, the improvements acquired by
these operators are at the expense of the remaining regions.
Therefore, we choose the local adaptive histogram. This
technique functions automatically with minor distortions.
The contrast between adjacent structures is portrayed max-
imally such that it occupies a larger portion of the inten-
sity range than the original image. As shown in Fig.(3),
after the colour correction, chromatic appearance of the
first input channel (a) achieved significant improvement
compared with the original image (d). (b) is the contrast-
enhanced image using the local adaptive histogram con-
trast equalization method after the chromatic operator of
the first input channel (a). It exhibits a similar colour as
(a) but with a signal-highlighted contrast. Therefore, (b) is
defined as the second input channel of our decomposition
strategy.

2) WEIGHT MAPS
Because of the absorption and scattering phenomena of
light propagating in turbid water, underwater images often
appear obscure and colour cast. Therefore, weight measures
such as chromatic, contrast, and luminance are strongly
correlated with image restoration in underwater scenes [6].
For every corresponding pixel point in those two input
channels, a relatively higher weight value appears in the
final image with a larger proportion. We utilized simple
colour balance correction to adjust the chromatic features
on both input channels, so it is unnecessary to choose
the chromatic weight. Therefore, in comparison with a
previous study [6], we emphasize contrast and luminance
weights such as local contrast, global contrast, and salience
features.

FIGURE 3. Demonstration for the two input channels. (a) is the first input
channel with a histogram normalization colour-balanced
approach. Compared with the original image (d), the colour appearance
of (a) is improved. (b) is the second input channel using the classic
contrast local adaptive histogram equalization method (a). Hence,
(b) exhibits similar colour appearance as (a), but with highlighted
contrast. (c) is the finally dehazed output image.

a: GLOBAL CONTRAST WEIGHT
This weight measures the global contrast of the input. It com-
putes the absolute value of the Laplacian filter on each input
luminance channel. The Laplacian filter is a high-pass filter
that can extract edges and textures and assign high values to
them. However, this global Laplacian contrast weight cannot
effectively distinguish between a ramp and a flat region.
Thus, using only this weight is insufficient for recovering
the contrast of dim and obscure underwater scenes. To fully
describe the structure information, we select the local contrast
weight as another weight factor.

b: LOCAL CONTRAST WEIGHT
The local contrast weight demonstrates each pixel and its
average neighborhood’s variation that is primarily sensitive
to the transitions between the highlighted and shadowed
regions. Therefore, this weight measure can enhance the
local contrast of the underwater image. It is computed as
the standard deviation between the pixel luminance level and
the mean value of its local surrounding region:

WLC = ‖I k − I kωhc‖, (4)

whereWLC represents the local contrast weight, I k represents
the luminance channel of the input image, and I kωhc denotes
the low-pass version of I k [5].
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c: SALIENCY WEIGHT
Based on image features such as intensity, colour, or ori-
entation, the saliency weight map estimates the contrast of
the image regions relative to their surroundings and assesses
whether a certain object is more prominent than the remaining
images. To improve visibility of the objects that lose their
prominence in underwater scenes, we exploit this saliency
weight. We opted for the biological centre-surround inspired
and computationally efficient approach of Achanta et al. [42].
In general, this spatial structure and illuminance sensitive
saliency map enhances the large regions, estimates uniform
values for the whole salient regions, and increases the contrast
in highlighted and shadowed regions.

For the two input channels discussed previously, we let
the normalized weight values W̄ k

= W k/(
∑K

k=1W
k ) by

constraining
∑K

k=1 W̄
k
= 1, where K = 2 denotes the two

input channels. W 1 and W 2 represent the sum of the global
contrast weight, local contrast weight, and saliency weight
derived from both input channels.

B. LP -NORM(p = 0,1,2) BASED DECOMPOSITION
1) NAIVE MULTI-SCALE METHOD
The single-scale fusion approach directly fuses the inputs
with the corresponding normalized weight maps to conserve
the most significant features. However, this method creates
undesirable halo artefacts primarily in locations character-
ized by strong transitions of the weight maps. Subsequently,
multiscale decomposition, such as [5], [43]–[45], is selected.
Among them, the Laplacian pyramid decomposition is the
typically used method:

Rl(x, y) =
K∑
k=1

{
Gl
{
W̄ k (x, y)

}
Ll
{
I k (x, y)

}}
, (5)

where l represents the different levels of the fusion, typically
l = 5. R(x, y) is the enhanced image version, (x, y) is the
pixel point coordinate, and k is the index of the two inputs:
I k (x, y), k = 1, 2. W̄ k (x, y) is the normalized weight maps,
Gl{W̄ k (x, y)} is the Gaussian filtering for weight W̄ k (x, y) at
the lth level, and Ll{I k (x, y)} is the Laplacian filtering output
for I k (x, y).
For the Laplacian term Ll{I k (x, y)}, the Laplacian pyramid

filters the input image I k (x, y) using a low-pass Gaussian
kernel at the lth level and downsamples the filtered image by a
factor of two. It subsequently subtracts from the original input
I k (x, y) with an upsampled version of this low-pass image,
such that the high-pass image components remain. Therefore,
it approximates the (inverse of the) Laplacian and uses the
decimated low-pass image as the input for the subsequent
(l + 1)th level of the pyramid. The resulting representation,
i.e., the Laplacian pyramid, is a set of quasi-bandpass versions
of the image.

Similarly, for each normalized weight map W̄ k (x, y),
a Gaussian pyramid is computed. Considering that both
the Gaussian and Laplacian pyramids have the same num-
ber of layers, combining the Laplacian input images and

Gaussian-normalized weights is independently performed at
each level, and yields the fused pyramid depicted in Eq. (5).

This procedure is iterated successively for each lth pyramid
level in a bottom-up manner. The final merged image R(x, y)
is reconstructed by summing the resulting inputs from Eq. (5)
at all lth levels of the pyramid:

R(x, y) =
∑
l

Rl(x, y)
xd , (6)

where
xd is the upsampling operator with a factor of

d = 2l−1.
This naive multiscale fusion is motivated by the human

visual system. This system is highly sensitive to sharp
transitions in smooth image patterns but less sensitive to
variations/artefacts occurring on edges and textures [6].
Benefitting from this fusion strategy at every scale level,
the potential halo artefacts owing to the sharp transitions can
be minimized. However, this direct pixel scale downsampling
strategy results in the loss of spatial resolution and thus,
the loss of image information. Therefore, we introduce the
lp-norm-based decomposition approach. Indeed, the concep-
tion of the lp-norm has been implemented for image tone
mapping in [41]. However, it is interesting that the lp-norm
term has the extractive capability to structure and detail
information of an image in addition to compressing the illu-
minance dynamic range. A detailed discussion is presented
in the following sections.

2) SPARSE TRAITS OF LP -NORM(p = 0,1,2)
A sparse regularization operator can remove some features
with useless information by learning, i.e., automatic feature
selection and dimension reduction. Based on sparse dimen-
sion reduction, the original model can be easier to understand.
In psychology research [46], [47] as an example, it was found
that human vision is more sensitive to structural information
such as edges and textures. This visual mechanism facilitates
capturing the primary semantic information of the scene.
Therefore, in intrinsic decomposition [48], [49], it is typically
assumed that the structural information in the reflectance
layer (a concept similar to the detail layer) is sparse [41].
The lp-norm (p = 0, 1, 2) is a method for achieving sparse
regularization. The l0-norm refers to the number of non-zero
elements in the matrix. If a parameter matrixW is normalized
with its l0-norm, it is desirable for its elements to be zero. The
l1-norm refers to the sum of absolute values of each element
in a matrix, which is also called the Lasso regularization.
l1-norm is the optimal convex approximation of the l0-norm.
The l2-norm is the sum of the squares of each element in the
matrix, followed by its square root. We apply the minimized
rule term of l2-norm ‖W‖2 such that every element of W is
small and close to zero.

Compared with the l2-norm, the l1-norm tends to pro-
duce fewer features, and other features are zero. The l2-
norm selects more features that are close to but not equal
to zero. Therefore, the l1-norm is highly useful in feature
selection. The l2-norm is often used for regression (or fitting).
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It can restrict the model space, thereby avoiding the under-
fitting or over-fitting problem and improving the model’s
generalization ability. In addition, for optimization or the
numerical calculation question, the l2-norm can address the
matrix processing difficulty when the condition number is
not sufficient. The l1-norm sparsity term exhibits the outlier-
rejection nature. It preserves the edges with large gradients in
an image, and its piecewise smoothness nature results in rel-
atively weak structural information. In contrast, the l0-norm
term has piecewise flattening effects, and it can force small
textural gradients of the detail layer to be zeros while leaving
the primary detail gradients intact. It is noteworthy that the
piecewise flattening property of the l0-norm term has denois-
ing effects to some extent. Therefore, the l0-norm gradient
sparsity term is used to model the detailed information, which
is enhanced. Additionally, to reduce the halo artefacts, a
l1-norm gradient sparsity term is imposed to preserve the
edges.

Consequently, the lp-norm(p = 0, 1, 2) based multilevel
decomposition [41] is introduced to our research work. Our
multilevel algorithm decomposes the image into three levels:
detail level, structure level, and illuminance level. Hence,
different attributes of a single image can be denoted by
different layer levels with the lp-norm and can, therefore,
be manipulated differently to yield a more flexible and
effective enhancement strategy. Generally, our lp-norm-based
decomposition framework involves two steps: rough-level
and refined-level decompositions. The l2-norm is applied
to force the base layer to be close to the input image and
avoid the over/under regression problem. For the rough-level
decomposition, the l0-norm term is imposed on the detail
layer tomodel the detail prior, and an l1-norm term is imposed
on the base layer to preserve structures and reduce halo
artefacts. For the rough-level decomposition, structure and
illuminance information are relatively weaker spatial features
than detailed information. Therefore, we impose the l1-norm
term to separate structure information with the local mean
brightness, i.e., illuminance information.

3) ROUGH-LEVEL DECOMPOSITION
According to the traits of the lp-norm(p = 0,1,2) analyzed
in the last section, rough-level decomposition is performed
based on the following model:

B̂1 = arg min
B1

∑
k

{
‖I − B1‖22 + θ1‖OB1‖1 + θ2‖OD1‖0

}
,

(7)

where I denotes the original input image, B1 is the base layer
and D1 represents the detailed layer of the rough decompo-
sition. k is the index of every pixel point of I , and O is the
derivative operation at pixel k(x, y). This derivative operation
utilizes gradient information to depict detailed information
such as edges and textures. ‖I − B1‖22 is a l2-norm term that
constrains the base layer B1 to be close to the original image

FIGURE 4. Output of the first rough-level decomposition based on L0, L1,
and L2 norms. (a) and (c) are the corresponding detail layers of the two
input channels, (b) and (d) are the corresponding base layers. Owing to
space limitation, images (a) and (c) may not be sufficiently clear. Please
refer to Fig.(5) (a) and (d) for clearer versions.

I . The term ‖OB1‖1 is the l1-norm of layerOB1, and ‖OD1‖0
represents the l0-norm of layer OD1.

The right side of Eq. (7) can be written as

arg min
B1

∑
k

{
(I − B1)2 + θ1

∣∣∣∣ ∂B1∂(x, y)

∣∣∣∣+ θ2Iind( ∂D1

∂(x, y)

)}
,

(8)

where ∂ is the partial derivative operation of pixel point k
along the directions of coordinate axes x and y. Iind (x) is
the function that indicates whether the independent variable
belongs to the group. In our case, if x 6= 0, the dependent
variable is one; otherwise, it is zero.

In Fig.(4) that is generated from this first rough decom-
position model, (a) and (c) are the l0-norm related detail
layers D1. D1 is calculated by D1 = I − B1 and con-
tains the primary texture information. (b) and (d) are the
base layers B1 that correspond to the l1-norm and contains
information on the structure and illuminance. Additionally,
(a) and (b) are generated from the colour-balanced first
input channel in Fig.(3)(a). (c) and (d) are derived from the
colour-balanced and contrast-equalized second input channel
in Fig.(3)(b). Obviously, only this rough-level decomposi-
tion cannot effectively classify the structure and illuminance
information. Therefore, we propose the refined decomposi-
tion strategy on base layer B1 in the next section to more
accurately extract different components of the underwater
image.
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4) REFINED-LEVEL DECOMPOSITION
In refined-level decomposition, we aim to separate struc-
ture and illuminance information from the base layer that is
generated from the rough decomposition. The structure and
illuminance levels are relatively weaker spatial scales than the
detailed information. Additionally, considering the piecewise
smoothness characteristic of the l1-norm and the piecewise
flattening characteristic of the l0-norm, we decide to choose
the l1-norm as the model of refined-level decomposition:

B̂2 = arg min
B2

∑
k

{
‖I − B2‖22 + θ3‖OB2‖1

}
(9)

= arg min
B2

∑
k

{
(I − B2)2 + θ3

∣∣∣∣ ∂B2∂(x, y)

∣∣∣∣}. (10)

Fig.(5) demonstrates that after decomposition with Eq. (8)
and Eq. (10), both the first colour-balanced input channel and
the second contrast-equalized channel include three levels:
the detail (or texture) level shown in Fig.(5)(a) and (d),
the structure level shown in Fig.(5)(b) and (e), and the
illuminance level shown in Fig.(5)(c) and (f). Furthermore,
(a) and (d) contain the texture detail elements similar to
Fig.(4)(a) and (c), while the structure and illuminance infor-
mation disassembled from the single base layer of the rough-
level decomposition in Fig.(4) are also depicted herein
separately.

The derived detail level, structure level, and illuminance
level can be denoted by Dt , St , and Il , respectively. Subse-
quently, to adjust (including stretch or compress) these three
components according to different underwater scenes, we add
three coefficients: ξd , ξs, and ξi on three levels separately.

Lp
{
I k (x, y)

}
=

{
ξdDkt , ξsS

k
t , ξiI

k
l

}
, (11)

where k is the index of the two inputs: I k (x, y), k = 1, 2.
Lp{I k (x, y)} is the three level lp-norm based decomposition
for I k (x, y).

5) FUSION
After the lp-norm-based decomposition of the two input chan-
nels, the fusion process is necessary for achieving the final
clear underwater image. We adopted the following method as
the fusion strategy:

Rl(x, y) =
K∑
k=1

{
Gl
{
W̄ k (x, y)

}
Lp
{
I k (x, y)

}}
, (12)

where l represents the different fusion levels, here, l = 3.
R(x, y) is the enhanced output, (x, y) is the pixel point coor-
dinate, and k is the index of the two inputs: I k (x, y), k = 1, 2.
Gl{W̄ k (x, y)} is the Gaussian filtering for the normalized
weight W̄ k (x, y) at the lth level, and Lp{I k (x, y)} is the three
level lp-norm based decomposition for I k (x, y).

In Fig.(5), (g), (h), and (i) are Gaussian-normalized weight
maps of the colour-balanced first input at the three different
levels, and (j), (k), and (l) are Gaussian-normalized weight

maps of the contrast-equalized second input at three levels.
Three levels of the two inputs are both 1/2 down sampled
stepwise from the bottom (g) and (j) to the top (i) and (l).
Additionally, the structure level (b) and (e) and illuminance
level (c) and (f) are not as sensitive to the image spatial
resolution as the detail level (a)and (d). Thus, 1/2 down-
sampling is adopted on the structure and illuminance levels.
We magnified (a), (b), (c), (d), (e), and (f) deliberately to
depict the small textures more clearly; in fact, (a), (d), (g),
(j), (b), (e), (h), (k), (c), (f), (i), and (l) are of the same sizes.

6) MODEL SOLUTION
Model (7) can be solved by the alternating direction method
of multipliers (ADMM). ADMM is an optimization method
for constrained problems. By decomposing the coordination
process and using the alternating solution, the large global
problem is decomposed into several small and easy-to-solve
local subproblems to obtain the solution to the large global
problem by coordinating the subproblems.

The matrix-vector form of Eq. (7) is

arg min
b

∑
k

{
‖i− b‖22 + θ1‖Ob‖1 + θ21

>Iind (Od)
}
, (13)

where i, b, andd,∈ RN are the concatenated vector forms of
I , B, and D in Eq. (7), respectively. 1 ∈ R2N is a vector of
all ones. The resultant augmented Lagrangian function in our
model is

L(b, c1, c2, y1, y2)

=
1
2
‖i− b‖22 + θ1‖c1‖1 + θ21

>Iind (c2)+ (c1 − Ob)>y1

+ (c2 − Od)>y2 +
ρ

2
(‖c1−Ob‖22+‖c2−Od‖

2
2), (14)

where c1, c2 ∈ R2N are introduced to replace Ob, andOd
respectively. yi, andi = 1, 2 are the Lagrangian dual vari-
ables. At iteration step m, the function (14) is optimized by
minimizing several primal subproblems and maximizing the
dual problems alternatively:

1. For bm+1:
We solve bm+1 through an FFT transformation by split-

ting vector c1, c2, y1, andy2 into (∗)m+1(∗,1) and (∗)m+1(∗,2), and
transform the objective function with respect to bm+1 into a
quadratic programming problem.

2. For c1m+1:
c1m+1 can be solved through soft shrinkage:

c1k+1 = 0λ1/ρm (Ob
m+1
− y1m/ρm), (15)

where 0(x) is the soft thresholding function.
3. For c2m+1:
The objective function with respect to c2m+1 can be solved

in a per-entry manner. We denote by subscript j the jth entry
of a vector. The solution at entry j is

cm+12,j =

 0, if (fjm)2 ≤
λ2

ρm
;

fjm, otherwise.
(16)
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FIGURE 5. Different decomposition levels and the corresponding Gaussian-normalized weight maps.
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FIGURE 6. Comparison of different values of parameters (ξd , ξs, ξi ) in Eq. (11). To demonstrate clearly, we use two images, which are shown in the top
and bottom rows. ξd adjusts the detail level, ξs adjusts the structure level, and ξi affects the illuminance level. (a) are the two original degraded images
that require enhancement. (b) shows the output pictures when (ξd , ξs, ξi ) are set to (1.0, 0.4, 0.7). In (c), the detail level is amplified twice that of (a).
Obviously, the textures and details suffer from overboosting effects. (d) shows the case of (1.0, 1.5, 0.7), in which the structure level is amplified nearly
four times. Thus, the restored images are blurred, and many details are lost. In (e), the illuminance level parameter ξi is set to 0.3, and the derived
outputs are dark and obscure.

where

fjm = (O(i− bm+1)− y2m/ρm), j = 1, . . . , 2N . (17)

4. Dual ascent for Lagrangian multipliers.
5. Update ρm+1 as ρm+1 = 2ρm.
After b is obtained, d can be calculated by d = i− b.

For Eq. (9) and Eq. (10):

B̂ = arg min
B

∑
k

{
‖I − B‖22 + θ1‖OB‖1

}
= arg min

B

∑
k

{
(I − B)2 + θ1

∣∣∣∣ ∂B
∂(x, y)

∣∣∣∣},
where we use θ2 = 0 in Eq. (13), and the solving procedures
are similar.

III. EXPERIMENTS AND ANALYSIS
In this section, experiments to verify the performance of our
lp-norm-based underwater image restoration algorithm are
described. First, we demonstrate how the parameters ξd , ξs,
and ξi of Eq. (11) are set. Subsequently, we compare our
dehazing approach with state-of-the-art enhancement tech-
niques in underwater scenes through both visual validation
and quantitative evaluation.

As shown in Eq. (11), ξd , ξs and ξi modulate (includ-
ing stretch and compress) the detail level, structure level,
and illuminance level, respectively, according to different
attenuations in various underwater scenes. We apply two
typical degraded underwater images that are rich in texture
and structure information, and they are exhibited in two rows
in Fig.(6). Column (a) shows these two original underwater
images whose visibility requires improvement. In column (c),
the value of the detail level parameter ξd is assigned with
2.0 and ξs, ξi with 0.4 and 0.7, respectively. As shown,
the textures and details of the two outputs are overenhanced.

For column (d), the structure level ξs is amplified by almost
four times to 1.5, and ξd , ξi are equal to 1.0 and 0.7,
respectively. The restored images are vastly indistinct, and
numerous details and textures are lost. In column (e), the illu-
minance level parameter ξi is set to 0.3, and ξd , ξs are 1.0 and
0.7, respectively. The derived results indicate apparently dark
and obscure images.

Finally, we set the values of ξd , ξs, ξi to (1.0, 0.4, 0.7),
and the restored outputs are shown in (b). As shown,
the images of (b) demonstrate better perceptual quality com-
pared to (a). Thus, the following validations are based on
ξd , ξs, ξi of (1.0, 0.4, 0.7), respectively.
To assess our enhancing technique more accurately,

we performed a quantitative evaluation based on visual
validation. We implemented indicators such as the mean
gradient (MG), standard deviation (SD), and contrast
ratio (CR) [52] in Tab. (1). The index of the MGmeasures the
greyscale changing ratio on the edges and small details, and
it is used to characterize the clarity of the image. The larger
the MG, the higher the image clarity. Conversely, the less
the image hierarchy and the more blurred the image. The SD
denotes the greyscale discreteness of the image. The larger
its value is, the more vivid the image colour. Furthermore,
the CR depicts varying grades from completely black to
completely white. The larger it is, the more the grade changes
from black to white occur, and consequently, themore colour-
ful and delicate the image appears.

In Fig.(7), (b) shows the results of the outdoor dehazing
approaches of He et al. [25]. This method performs poorly
for underwater scenes, especially for hue rendition. As men-
tioned previously, although light propagation in hazy air and
in degraded underwater scenes seems very similar, the under-
water dehazing problem is more challenging. Owing to the
absorption effect for underwater light, deeper seas induce
more shorter-wavelength light (green and blue) casts than
longer-wavelength light (red). Thus, an underwater image
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FIGURE 7. Comparison of recent dehazing techniques. Apart from the original hazy images in this figure, the results of He et al. [25], Ancuti et al.
[5], Huimin et al. [51], Cho and Kim [50], and our technique are shown.

generally appears greenish or blueish, rendering it more dif-
ficult to restore using outdoor dehazing techniques. Tab. (1)
shows that indicators of the MG, SD, and CR in (b) are gen-
erally lower compared with underwater specialized enhance-
ment methods of Ancuti, Lu and Cho. The discrepancies
are more obvious compared with our proposed underwater
specialized method. Fig.(7) also presents similar results.

For the underwater specialized algorithms of
Ancuti et al. [5], Huimin et al. [51], and Cho and Kim [50],

shown in (c), (d) and (e). Ancuti et al.’s approach is the
multi-scale fusion method based on a Laplacian pyramid.
Lu et al.’s approach compensates for the underwater atten-
uation discrepancy and enhances the distorted colour in
turbid water in shallow regions. Cho et al. combined a
model-based and multi-band fusion-based method and pre-
sented colour-corrected image enhancement while elaborat-
ing image details. They generally exhibit better performance
than the method of He et al. [25] on both visual perception
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TABLE 1. Qualitative comparison of the nine corresponding images that are shown in Fig.(7) (with same order). MG represents the mean gradient,
SD represents the standard deviation, and CR represents the contrast ratio. A larger metric is better.

TABLE 2. Process of underwater image enhancement based on Lp-norm
decomposition.

and quantitative evaluation. Among these three approaches,
they generally have similar enhancing effects. Under further
analysis, Ancuti’s method presents better clarity on images
with fewer detail components, such as the second, third and
fifth rows, from top to bottom. However, due to the bilateral
filter, which can smooth small textures and sharpen evident
edges, this method shows worse clarity due to texture lost
over images with more detailed components, such as the

FIGURE 8. Comparison of different dehazing approaches (Ancuti and
Bekaert [6], Paulo Drews et al. [32], our approach, Galdran et al. [24], and
Emberton et al. [53]).

first, seventh, eighth and ninth rows from top to bottom. This
method also shows a more realistic chromatic appearance
over almost all images. For these images with more detailed
components, Lu and Cho’s methods show higher clarity than
Ancuti’s methods. Moreover, over almost all images, Cho’s
method shows the highest contrast due to the unreal appear-
ance of over enhancement. In general, fusion strategy-based
approaches such as Ancutis and Chos are controllable and
flexible; thus, they can generate better appearance regardless
of qualitative or quantitative evaluations.

Compared with our proposed technique, our work outper-
forms those of Ancuti et al., Lu et al. and Cho and Kim in
terms of clarity index MG and chromatic parameter SD and
CR. It is noteworthy that some outputs of Ancuti et al. (such as
the third and fourth rows from top to bottom) exhibit slightly
better visual perceptions, however, with worse indicators of
MG, SD and CR than ours. Through a closed inspection,
we deduce that this is because of the bilateral filter. Although
the bilateral filter suppresses noise, it also smooths small
textures. This method improves visibility at the cost of infor-
mation loss of details. For the first, seventh and ninth rows
of (e) from bottom to top, the contrast index CR in Tab. (1)
presents a higher value than our approach. This is because the
colour over enhancement of Cho and Kim, which results in an
unrealistic image of the underwater scene.

To enrich our visual assessment, Fig.(8) shows a compar-
ison of our work with other recent methods of Ancuti and
Bekaert [6], Paulo Drews et al. [32], Galdran et al. [24], and
Emberton et al. [53]. As shown in the red rectangular box of
rocks on the right side of the picture, our approach exhibits
more details, especially in dark zones. This is a benefit of the
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FIGURE 9. Comparison of different dehazing approaches. From the top to
bottom of each column, there are original degraded input images and
images processed separately by approaches of Jobson et al. [54], Ancuti
et al. [5], Meng et al. [55], He et al. [25], Cho et al. [56], and our group.

texture and edge enhancement and the illuminant dynamic
range depressing.

Fig.(9) presents the other four images derived sepa-
rately from our approach and those of Jobson et al. [54],
Ancuti et al. [5], Meng et al. [55], He et al. [25], and
Cho et al. [56]. Outputs of these methods are arranged from
top to bottom in each column below the first row of the
original input images. Among them, the performances of
our approach, Ancuti et al. approach, He et al. approach
and Cho et al. approach are relatively better. Compared with
Ancuti et al.’s method, the outputs of our approach demon-
strate more delicate and smoother colours, rich small details,
and higher clarity. As the outdoor dehazing method carried
out on underwater scenes, the results of He et al. and Cho et al.
both indicate high contrast on the details but slightly unreal
expression on colour. Additionally, our technique generates
a relatively better illuminant dynamic range. This makes
the dark zone slightly brighter, and the strong light regions
become soft; thus, more details can be shown.

In conclusion, our two-channel lp-norm-based decomposi-
tion and fusion operator yields good image quality in terms
of both perceptual validation and quantitative assessment
compared with state-of-art methods. The key advantage of
our method is its relatively high image clarity, mainly due
to well-restored details of small edges and textures and the
depressed illuminance dynamic range. However, the primary
limitation of our method is the relatively weak performance
caused by noise. We found it is very difficult to preserve the

small details clearly while effectively depressing noise, which
commonly exist in underwater surroundings.

IV. CONCLUSION
Wedemonstrated an alternativemethod based on two-channel
lp-norm decomposition to enhance underwater images herein.
To the best of our knowledge, we are the first to introduce
an lp-norm decomposition strategy into a single underwa-
ter image two-channel fusion restoration or enhancement
strategy. As tested on a large set of underwater images, our
approach can generate outputs with good contrast, highly
accurate details, and a relatively uniform dynamic brightness
range. In future research, we are planning to focus on how to
suppress noise while effectively recovering detailed informa-
tion about underwater images.
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