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ABSTRACT Location estimation of heterogeneous smart devices is needed for the Internet of Things (IoT)
based location services. Device orientation and heterogeneity are the bottlenecks in accurate location
estimation, which are not addressed together in the existing methods. Also, most of the state-of-the-art
Received Signal Strength (RSS) based localization methods consider a single Gaussian model instead of
a mixture of Gaussians. In this paper, we propose to solve both these issues with a combination of multistage
linear regression and Gaussian Mixture Model (GMM) method. Additionally, the proposed method detects
the malicious data in the IoT network and estimates the location in case of sensor faults. The performance
of the proposed method is tested using Wi-Fi signals in an indoor environment.

INDEX TERMS Device heterogeneity, device orientation, localization, IoT.

I. INTRODUCTION

Cloud-based IoT location services find applications in areas
such as health, security, transport, automation, weather, and
agriculture monitoring contributing to the implementation
of smart cities [1]-[7]. Global Positioning System (GPS)
enabled systems are viable solutions for outdoor localization,
but for indoor positioning, the localization accuracy degrades.
It is because of the unavailability of the satellite signals
and Non-line-of-sight (NLOS) propagation of radio signals.
Additionally, GPS consumes high power and is costly to
equip in every smart device [8]. Hence, we need methods
for indoor localization, which use Wi-Fi, Bluetooth, geomag-
netic, visible light, acoustic, FM radio, and RFID signals due
to their pervasive nature in an indoor environment [9].

A. MOTIVATION AND RELATED WORK

RSS based localization methods do not require any sep-
arate infrastructure or hardware equipment. They use
already existing signals such as Wi-Fi or Bluetooth to
name a few for location estimation, thereby reducing the
cost [8]-[13]. The heterogeneity of smart devices in the
IoT network affect the indoor localization as discussed
in [14]-[17]. Most of the state-of-the-art localization methods
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assume that the homogeneous devices are used for con-
structing the offline fingerprinting map as well as the online
location estimation. In the IoT environment, heterogeneous
devices record different RSS values at the same location,
thereby providing high localization error. Orientation diver-
sity is another issue which increases the localization error
due to the orientation mismatch during offline and online
phases. The human body also reflects and blocks the Wi-Fi
signals [18]. Hence, users holding the smart device closer to
the body in different orientations, cause a difference in the
Wi-Fi RSS measurements. Also, a variation of 2.5-10 dBm
is observed when a user changes its direction from fac-
ing the access point. Most of the state-of-the-art localiza-
tion methods address device heterogeneity, but there are
limited works on orientation issues [19]-[23]. The existing
orientation compensation techniques are mainly based on
fingerprint matching and do not establish any relationship
among the orientations. Therefore, these methods are prone
to performance degradation if the RSS data from exact test
orientations do not exist in the offline database. Hence,
the orientations and heterogeneity of the smart devices create
RSS diversity, which is a bottleneck for localization in IoT
networks.

In order to address these issues, various calibration meth-
ods are proposed such as least squares, histogram equal-
ization, machine learning and navigation states from dead
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FIGURE 1. Wi-Fi RSS distribution following mixture of Gaussians instead
of single Gaussian.

reckoning (DR) [14], [20], [24]-[26]. In the literature, several
calibration-free methods such as differential RSS (DRSS),
pairwise differential, ZU-mean, Mean Differential Finger-
printing (MDF) and regression [15], [16], [27]-[29] are also
proposed. However, as discussed in [30], most of these meth-
ods suffer from RSS variations due to variable power of
access points even after considering the ratio or difference
of RSS values. Another issue with these methods is that they
do not address both the heterogeneity and orientation issues
together. In DR based methods, the accumulated error in
sensor measurements of human activities further increases
the localization error. Further, the existing methods do not
provide any relationship between the RSS of heteroge-
neous smart devices with different orientations. In order to
address the device heterogeneity, transformation methods
such as [14], [15], [31], [32] are also proposed. A drawback
of these methods is the requirement of the prior knowledge
of the device type. The device type information is utilized
to develop a pairwise relationship (only two devices at a
time). Hence, at a time, only two devices are used, which
increases the storage demand of the smart device. For cases
where the device type is unknown, the method fails. Addi-
tionally, these transformation methods do not address the
orientation diversity issue.

Most of the discussed RSS based localization methods
assume a single Gaussian distribution of RSS data. The state-
of-the-art RSS localization methods [33]-[37] show that a
single Gaussian distribution can not model the RSS data.
It is because of the multipath, device heterogeneity, and
device orientation issues in the indoor environment. However,
the RSS data distribution follows a mixture of Gaussian [38],
which is also evident from Fig. 1 for the RSS data observed
in our experimental setup. Therefore, single Gaussian can not
provide accurate location estimation, and we need a multi
Gaussian based method for localization [39]. Now, the fin-
gerprinting pattern matching can be performed with two
methods, namely probabilistic and non-probabilistic meth-
ods [12], [13]. Further, the probabilistic pattern matching
algorithms utilize a RSS probability distribution function
from the training RSS data, and then the Maximum Like-
lihood (ML) method is used for smart device localization.
On the contrary, the non-probabilistic methods do not require
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creating a parametric model and are suitable for an indoor IoT
environment as it has small training sets [40], [41].

Finally, the RSS values can be affected by the malicious
and erroneous smart devices in the IoT network [42]-[45].
Most of the existing methods that address device heterogene-
ity and orientation do not test the localization performance
in the presence of erroneous RSS values. In this paper, it is
shown that the proposed method’s performance is robust to
these faults and the multiple Gaussian method outperforms
the single Gaussian method in terms of the localization error.

B. CONTRIBUTIONS

In this paper, a localization system using multistage regres-
sion and GMM is proposed, that addresses the device het-
erogeneity and orientation diversity issues. Additionally,
the method is robust to erroneous RSS data. The main contri-
butions of this paper are summarized as follows

1) A multistage regression method that addresses the
device heterogeneity and orientation issues for smart
device localization in an indoor loT environment.

2) Investigating the effect of the choice of the dependent
variables, that is, device type and orientation, for a
regression method to compensate the device hetero-
geneity and orientation effect.

3) Leveraging multiple Gaussian instead of a single Gaus-
sian method resulting in high localization accuracy.

4) The proposed method is robust to malicious RSS data.

The remainder of the paper is organized as follows: Section II
presents the proposed multistage regression and GMM local-
ization method to address both the device heterogeneity and
orientation issues. Section III describes the experimental
setup and results of the proposed method. Finally, Section IV
concludes the paper with future research challenges.

Il. GMLOC: MULTISTAGE REGRESSION METHOD FOR
SMART DEVICE LOCALIZATION

In the first stage, the data is collected and stored at a cloud
server where the device information such as Media Access
Control (MAC) address is available. Fig. 2 explains the
overview of the proposed method for location estimation in
an indoor environment. Missing RSS values due to hardware
issues or connectivity failure can lead to a high localization
error. We address this issue by estimating the missing values
using a regression method. Further, a two-stage regression is
performed on orientations and smart devices respectively to
obtain a transformed RSS vector. Finally, the GMM param-
eters are estimated using the transformed RSS vectors for
localization. The GMLoc method is explained in detail in the
ensuing subsections.

A. HANDLING DEVICE HETEROGENEITY AND
ORIENTATION ISSUES

1) DEVICE HETEROGENEITY

Consider a Redmi Note 5 Pro for building the offline
fingerprinting map, and in the online phase, the user has
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FIGURE 2. Overview of the proposed indoor localization method when device types and multiple orientations are known/unknown at the
cloud server. GMM = Gaussian Mixture Model, AIC = Akaike Information Criterion, BIC = Bayesian Information Criterion.
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FIGURE 3. Histogram of RSS data for different (a) smart devices.
(b) orientations.

Moto G Turbo. We demonstrate the device diversity challenge
using recorded experimental dataset, as shown in Fig. 3(a).
Itis observed that at a particular location, in terms of variance,
there is a difference of approximately 14 dBm from one
smart device to another. Hence, it increases the localization
error. Also, signal processing operations such as shifting
and scaling do not provide higher localization accuracy as
smart devices of the same characteristic also perform differ-
ently [46]. The primary reasons for this variation are different
receiver antenna designs of variable size, chip design mate-
rials with different absorption coefficients for RF signals,
linear and non-linear receiver circuit design and support for a
different number of frequency bands [47].

2) ORIENTATION DIVERSITY

The RSS data is much affected with device orientations also.
We collected the RSS data in four orientations, namely, 0°,
90°, 180° and 270° at the same location. Fig. 3(b) shows
the histogram for four different orientations. A maximum
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FIGURE 4. RSS data between two different (a) orientations. (b) smart
devices.

variance of 13 dBm is observed between multiple orien-
tations. This variation leads to a higher localization error.
It is also discussed in [48], [49] that there is a variation
of approximately 2.5 — 7.6 dBm due to the change in the
orientation of the smart device. In order to develop a relation-
ship between multiple orientations and devices’ RSS data,
we use a two-stage multiple regression method instead of
the regression technique used in [15] that considers only two
smart devices at a time. The advantage of multiple regression
is that it models the relationship between many independent
variables and a dependent variable by linear modeling of the
observed RSS data.

3) MULTISTAGE LINEAR REGRESSION METHOD

We establish a relationship to address both the device het-
erogeneity and orientations. It is observed that there exist a
linear pattern between multiple orientations as well as het-
erogeneous smart devices. Fig. 4 shows the RSS values of
one orientation with another and similarly one smart device
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FIGURE 5. Multistage linear regression method to compensate device heterogeneity and orientation.

with another. A linear relationship is observed through these
plots.

Fig. 5 shows the proposed two-stage linear regression
method. Let us consider three smart devices for illustration.
It can be observed from Fig. 5 that the smart devices SD1,
SD, and SD3; have multiple orientations Oq, Oy, ..., Oy
each respectively. In the first stage, a relationship is derived
using regression between RSS of multiple orientations to
generate a RSS vector for the three smart devices repre-
sented as RSSo1,p1, RSSo1,p2 and RSSp1,p3 respectively,
considering orientation 1 as dependent variable. The RSS
vector RSSp; p1 for first smart device with 7 samples can
be obtained from Equation 1.

Y7x1 = X7xm X @px1 + €rxi

T
Y71 = [RSSo1.p1, RSSo1,pi7 |

1 RSSe2,p1, RSSowi—1),p1,

I RSSo2,p1, RSSowm—1,p1,
Xrxm = | . : .

1 RSSo2.pi, RSSowm —1y,p17

ayx1 = [ao ... Ol(Mfl)]TQ erxi = [eo ... ET]T (h

Further, Equation 2 is the generalization of Equation 1 where
RSSo; pk, represents RSS value of the ith (i € {1, 2, .-, M})
orientation selected as dependent variable from kth smart
device and ¢t € {1,2,---,T} represents the index of the
set of T samples of the ith orientation where T > M.
k € {1,2,---, K} represents the index of the total K smart
devices with T > K. a; denotes the regression coefficient for
Jjth orientation and € is the residual term with distribution as
N0, 0?), representing the difference between the observed
and modeled RSS observation.

M
Z ajRSSo; pi, + & 2
=Ll

RSSoi,pr, =

The regression coefficient using least square method can be
estimated as
& = (RSSo;,pr,” RSSo;.k,)

-1
RSSoj.or, | RSSoipk, [50].
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Therefore, we estimate RSS/Oi\,Dk, using the estimated regres-
sion coefficient vector &.

Further, in the second stage the device heterogeneity is
addressed usirﬁguation 3 with the estimated orientation
RSS vector RSSp; px, obtained at the first stage as

K

> BRSSoipj + v 3)
J=Lj#k
Here, RSSpy, is the tth RSS value of the kth smart device
selected as dependent variable. B; denotes the regression
coefficient for jth smart device and y is the residual term
with distribution as N(0, o%) representing the difference
between the observed and linear modeling of RSS data.
We estimate the regression coefficient of smart devices ,3
using the least square met/hﬂ discussed before. Finally,
the estimated RSS vector RSSpy, is obtained using the esti-
mated regression coefficient for smart devices given as ﬁ =

— T — -1 — T
(Rsso,-,D,-, Rsso,-,Dj,) RSSoip, RSSpy,

RSSpi, =

4) SELECTION OF DEPENDENT VARIABLE

FOR MULTISTAGE REGRESSION

In order to improve the localization accuracy, we choose
the orientation and smart device as the dependent variable.
Therefore, the RMSE is evaluated between RS?OE)I{[ and

2
RSSoi.px, for ith orientation as \/ T RSSO' D;’ RSSoi, Dk’)
The orientation for which least RMSE is obtained is cho—
sen as the dependent variable. Same procedure is fol-
lowed for choosing the smart device wpendent vari-
able by computing the RMSE between RSSpy, and RSSpy, .
Algorithm 1 explains the proposed multistage regression
method for handling the device heterogeneity and orientation
issues.

B. FINGERPRINTING BASED LOCALIZATION

Multipath propagation and shadow fading effects occur due
to the human movements in an indoor environment along
with the reflections and scattering due to the furniture and

144357



IEEE Access

A. Pandey et al.: Handling Device Heterogeneity and Orientation Using Multistage Regression for GMM Based Localization

Algorithm 1 Multistage Regression Method to Compen-
sate Heterogeneity and Orientation Effect
Data: RSSOI,DI,» RSSOZ,Dl,v cee
RSSo1.p2,, - --» RSSom.px,
Result: RSSpy,
begin

,RSSom ,p1,,

1) Estimate the missing data using linear
regression method for a particular smart device
and orientation if any.

2) Evaluate RSSo; px, using the estimated
regression coefficient & in Equation 2.

3) Choose the appropriate orientation asdependent
Varlable based on least RMSE by comparing
RSS(), Dk, With RSSo;, Dk;-

4) Compute @Q using B in Equation 3.

5) Choose the smart device as dependent/vaiiable
based on least RMSE by comparing RSSpy,
with RSSpy, .

end

building structure. It affects the performance of location
estimation methods [1], [2], [8], [9]. There are two phases
in the fingerprinting method, namely, the offline training
and online location estimation phases. The user records RSS
data from the multiple training locations, and then the online
phase compares the RSS data of an unknown location to the
recorded fingerprinting map, thereby estimating the unknown
location using the nearest fingerprint [12].

~>
Il

arg max P (RSStrain , |RSSteS[)

= argmaXP (RSStra1n1 HP Rsslestk|RSSlramk1) 4
k=1

where ] is the estimated location corresponding to the RSSg;,
RSSirain, represents the offline training RSS values at loca-
tion [, RSSyyin,, denotes the offline training RSS values
from the kth smart device at location I, P(.) represents the
probability density function. Further, as we use the Gaus-
sian method for fingerprinting, P(RSStestk|RSStrainkJ) =
1 < (RSStesy, —12.1)*
exp By
/Znak ! k1
mean and variance of RSS values from the kth smart device
at the particular location / in the offline database.

Therefore, to analyze the effect of device diversity on
this fingerprinting method, it is considered that at the same
location there are two sets of test vectors RSSie,, and
RSSes, ,, from two smart devices at location /. We denote the
device diversity effect as RSS2 arising because of the two
smart devices’ RSS vectors at the same location /. The
new estimated location index using this device diversity
is denoted as [* and is represented by the following

) where i ; and akz, are the
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equation

= arg maxP (RSStrainlJ)
1
K

< [TP ((RSStest;, + RSS1.2.1) IRSSuain; ;) (5)
j=1

Hence, to compensate the bias RSS2 ; because of the
device heterogeneity, we use the regression method. The
regression between the smart devices’ RSS values RSSye, ,
and RSSie,, gives a single output RSS . Results show
that using the RSS{., localization error is reduced. Hence,
the new location index [+* using the regression RSS values

can be computed as

K
I —argmaxP (RSSuain,,) [ [ P ((RSS;

test;

|RSStrain1 1 )
j=1

(6

The results show that /** is close to the actual / as the diversity
is addressed with the regression output RSS;,, in Equation 6.
A similar analysis can be shown for orientation diversity
affecting the estimated location index l.

C. GMM BASED LOCALIZATION

GMM, as compared to single Gaussian, is a better fit
for the probability distribution modeling of the RSS
values that contain a weighted mixture of Gaussian,
as shown in Fig. 1. A GMM for the Wi-Fi RSS finger-
prints, contains the superposition of Q Gaussian densi-
ties [51] with x as a D-dimensional RSS values given by
Z WCXP (%(x — )T Z o — Mm)>
each Gaussian "aensity is denoted as a component of the
mixture with mean u,, and covariance X,,. ¢, the mixing
coefficient is given as Zm:l cn = 1, where 0 < ¢, < 1.
The model parameter for location [ is then given by ; =
{cl,m; lms El,m}. Therefore, using the Maximum Likeli-
hood parameter estimation method, the model parameters U
at a location [ are learned through the Equation 4. Further,
for optimizing the parameters, the Expectation-Maximization
(EM) algorithm is used [52]. The number of GMM com-
ponents are estimated using AIC and BIC criteria using the
Elbow method discussed next.

where

ELBOW METHOD FOR THE SELECTION OF NUMBER OF
GAUSSIAN COMPONENTS USING AIC AND BIC

AIC provides the measure of goodness of fit of a statistical
model such as GMM [53]. The AIC is defined as AIC =
2h — 21In(L) where h is the number of parameters and L
is the likelihood function. The model with the lowest AIC
score is preferred. BIC helps to choose between two different
models with different numbers of parameters by selecting
the one which gives the lowest BIC score given as BIC =
In(N)h — 21n(L) where N is the number of RSS data points.
The elbow test is a heuristic method that helps in determining
the values for AIC and BIC, after which the decrease in
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Algorithm 2 GMM Based Localization

Data: RS/§E[ vector after multistage regression
Result: Estimated location [ of RS/S\Dk, vector.

begin

o Input the @, vectors for training the GMM.
o Estimate the number of Gaussian components
using the AIC and BIC criteria.

e Determine the GMM parameters { g, X, Ck }-
o Evaluate the probabilistic location for online RSS
vectors using fingerprinting (Equation 6). .
e return Estimated location index | of the RSSpx,
vector.

end

values are small so that after this point adding another Gaus-
sian component does not help in minimizing the AIC/BIC
scores [54], [55]. Using the values of AIC and BIC, we find
the number of Gaussian components in the mixture. Algo-
rithm 2 summarizes the localization method after the orienta-
tion and device diversity are addressed through the regression
method.

D. LOCALIZATION WITH DIFFERENT USER CASES

The location of the smart devices is estimated for three pos-
sible user cases, as shown in Fig. 2. In the first case, both
the orientation type, as well as device type or MAC ID, are
known. Second, when only the device type is available but
not the type of orientation. For scenarios where orientation
is not known, we propose to detect the orientation leverag-
ing the accelerometer sensor of the smart device along with
a windowing threshold of RSS data. As the accelerometer
sensor may provide erroneous orientation information due to
the accumulation of gyroscope errors [56], we use windowing
threshold of RSS data to confirm the orientation change.
In this method, the moving average is computed using a slid-
ing window, where the mean of the samples for a particular
length of the sliding window is computed. The orientation
change is detected using the moving average RSS,,, =
zlv Zf’z 1 RSS;, where i = 1 to N (sliding window size).
We define

ARSS; = RSSavg, — RSSnew,; )

where RSSey, is the next RSS value due to the new or
existing orientation of the smart device for the sliding window
after N samples. We test the proposed orientation detection
method with a sliding window size of the unit sample (N = 1)
and then keep appending the detected orientations into the
sliding window to create the RSS fingerprints. A threshold
value of £4.5 dB is computed from the offline database
as most of the orientation change is observed for a mini-
mum change of +4.5 dB. Also, as discussed in [19], [49]
due to change in the orientation the RSS values vary from
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2.5 — 7.6 dBm. Therefore, the detection Ay is defined as

if ARSS; > Th

Ay — 1 — Orientation change
4= if ARSS; < Th

0 — No change

Hence, using the proposed method along with the accelerom-
eter sensor information from the smart device provides an
accurate information about the orientation change.

Finally, the proposed method is tested for the scenario
where neither device type nor its orientation is known. In this
case, the localization error is higher than the previous two
cases. In order to reduce the localization error, device iden-
tification is performed using the GMM method. The RSS
vector received at the smart devices is fed to the GMM, which
classifies the input RSS vector received from different smart
devices using mean, variance, and mixing coefficient as fea-
tures corresponding to a particular smart device, as explained
in Section II. Further, when the smart device is identified,
the proposed orientation detection method is applied. There-
fore, the localization error is reduced when both the device
type and orientation are detected.

E. ROBUSTNESS OF THE PROPOSED GMM METHOD

RSS values in a smart device are also affected by chipset
degradation, noise in the IoT environment or router malfunc-
tioning, and hence, this can affect the localization perfor-
mance of the system. The RSS data may encounter an error
in measurements such as precision degradation, offset, stuck-
at-fault, and missing data [43]-[45], [57]. We analyze the
performance of the proposed method for these type of faults.
The first two faults can be modeled as RSS;,, = RSS,+ 8+,
where RSS;, shows the measured RSS value (erroneous)
from a smart device, RSS, is the actual RSS value from
the smart device without any fault, 8 is the additive offset
constant and 7 is the external noise. Precision degradation
fault can occur because of the chipset failure in the smart
device, thereby increasing the noise. This failure is modeled
with B = 0 and the Gaussian noise parameter n [45].
The offset fault arises due to the calibration errors in the
sensors, thereby generating the sudden deviations from the
normal data with an additive constant 8. We model it with
n = 0. Stuck-at-fault arises due to device failures, external
attacks, or connection failures, and the device generates a
constant reading with no variation over a period of time.
Fig. 6 represents the type of faults induced in the normal
RSS vectors to test the proposed GMLoc method. Finally,
missing data is a common problem where, for a certain
duration, no data is received in a network. This is mainly
due to the packet drop or configuration mismatch. In this
paper, the missing data issue is addressed using the same
regression method, where a regression model is developed
when the data is available (not missing). Hence, we obtain
the regression model between RSS values’ time index and
corresponding RSS values. Therefore, when a missing value
is detected at a particular time index, the previously obtained
regression model is used to estimate the missing RSS data.
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Finally, localization is performed using the proposed method B. THE CROSS-VALIDATION METHOD AND
on the complete RSS data obtained after replacing the missing PERFORMANCE METRIC

data values. It is observed that the proposed method is robust In order to evaluate the performance of the proposed method,
to such errors and can provide accurate location of the smart the cross-validation method is used to calculate the localiza-
device even in such adverse scenarios. tion error of the test RSS data. The collected RSS samples

are divided into two parts. One part is used as the training
IIl. PERFORMANCE EVALUATION set to learn the model parameters for the GMM localization
In this section, we discuss the experimental setup for Wi-Fi ~ method. The second part contains test RSS vectors from an
RSS collection. The performance of GMLoc is discussed for ~ unknown location whose location is to be estimated [59].
both muliple and single Gaussian. Therefore, for 10-fold cross-validation method, the Wi-Fi

RSS dataset is partitioned into ten equal size samples. One
A. DATASET PREPARATION part is used for validation purpose, and the rest nine parts are

used for training. Further, this same procedure is repeated ten
times randomly to cover the whole dataset. Finally, the results
of all the folds are averaged. The advantage of the method
is that it uses the complete dataset randomly for both the
training and testing purpose and avoids overfitting.

The performance of any localization algorithm is based
on the localization error, which is the Euclidean dis-
tance between the actual and the estimated smart device’s
location. Therefore, the localization error is calculated as
Localization Error = +/(Yp — Y4)2 + (Xp — X4)?> where
(Xp, Yp) are the estimated coordinates and (Xy4, Y4) are the
actual coordinates of the smart device location.

Fig. 7(a) shows the experimental setup for the data collection.
The data is collected in an indoor environment considering
reflections, scattering, and absorptions from furniture, walls,
and human bodies. The setup is as per [58], because collec-
tions of RSS values for single grid points train the algorithm
better and linear regression method can be used at a partic-
ular location. In order to consider the device heterogeneity,
three different types of smartphones, namely Moto G Turbo,
Xiaomi Note 5 Pro and Xiaomi Note 4 are used. Further,
the RSS data is also collected in four orientations with 0° (fac-
ing towards the access point), 90°, 180° (facing opposite to
the access point) and 270° [21] as shown in the Fig. 7(b). The
other orientations can also be considered. An Android-based
application is used to collect the data for each orientation. The C. EXPERIMENTAL RESULTS

experimental dataset consists of a RSS vector with parameters This subsection presents the results for the estimated
T=181,K =3and M = 4. Gaussian parameters, the effect of regression on orientation

144360 VOLUME 7, 2019



A. Pandey et al.: Handling Device Heterogeneity and Orientation Using Multistage Regression for GMM Based Localization

IEEE Access

Predicted values

-52
-54 Moto G Turbo 0
(a)

Redmi Note 4

(b)

RSS values (dBm)

RSS values (dBm)
A
=]

4

2
0 Orientations

(d)

2
0 Orientations

©

FIGURE 8. (a) The plane formed after the linear regression for three smart devices. (b) Comparison of RMSE for different types of regression models. LR =
Linear regression, PR = Polynomial regression, Log R = Logarithmic regression, Exp R = Exponential regression and Deg = Degree. (c) The plot of RSS
values for multiple orientations. (d) The plot of transformed orientation after regression.

and device diversity, and the performance of multiple Gaus-
sian method over single Gaussian.

1) MULTISTAGE REGRESSION TO MITIGATE THE EFFECT OF
DEVICE HETEROGENEITY AND ORIENTATION

As discussed in the methodology section, multistage regres-
sion compensates the device and orientation diversity.
Fig. 8(a) shows the regression output obtained between the
three smart devices considering Redmi Note 5 as the depen-
dent variable. The transformed RSS data is used as the input
to the GMM localization method. Fig. 8(b) shows the Root
Mean Square Error (RMSE) values for goodness fit of the
RSS data values. It is observed that the linear model produces
the least RMSE, and hence, there exist a linear relationship
between the orientations as well as devices’ RSS values.
Fig. 8(c) shows the original data with orientation diversity and
Fig. 8(d) shows the transformed orientation using the linear
regression method. Fig. 9(a) shows the AIC and BIC scores
computed for a particular location. It is observed from the
elbow diagram that the number of Gaussian in the mixture
is two as the difference between two consecutive AIC/BIC
remains almost constant after two Gaussian. The Gaussian
parameters estimated at a particular location are given as
u1 = —51.62, o = —=52.72, ¥ = 0.057 and X, = 0.46
with mixing coefficient ¢y = 67 and ¢, = 33. These results
are shown for illustration purpose, and similarly, the GMM
parameters are obtained for other locations. This is in accor-
dance with the number of Gaussian components obtained
with the heuristic AIC/BIC criteria. The regression coeffi-
cients obtained at a particular location are Sy —40.54,
B1 = 0.012 and B> —0.15 respectively with a RMSE
of 0.19. In a similar way, the regression coefficients at other
locations are estimated. It is observed that the RMSE obtained
is low and desirable for establishing a model; hence, the linear
regression model is most suitable.

2) CHOICE OF DISTANCE METRIC, CROSS-VALIDATION
FOLDS AND DEPENDENT VARIABLE

It is important to use the correct distance metric in finger-
printing based localization. Fig. 9(b) shows the error for the
different type of distance metric used for the fingerprinting
method. We observe that the minimum localization error
of 0.57 m is obtained for the Euclidean distance metric
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and a maximum of 1.35 m for the Cosine distance met-
ric. Hence, the Euclidean distance metric is chosen for the
localization. This is also suggested in [60] that for higher
dimensional dataset Mahalanobis and Euclidean distance are
preferred. Further, the cross-validation method with least
localization error is also analyzed. It is observed that the
10-fold cross-validation method gives the least localization
error of 0.57 m, as shown in Fig. 9(c). It is shown in Fig. 10
that a random selection of the dependent variable leads to a
higher RMSE, which further leads to a higher localization
error. It is observed that for our experimental RSS data, orien-
tation 3 as a dependent variable provides least average RMSE.
Hence, in the proposed method, we choose O3 as the depen-
dent variable for multiple regression, as shown in Fig. 10(a).
Similarly, Fig. 10(b) shows that SD; should be chosen as the
dependent variable as the RMSE is least for SD;. The effect
of the choice of the dependent variable on localization error is
shown in Fig. 10(c). It is observed that orientation 3 provides
the best localization error of 0.27 m. Further, for the user case,
when the device type is not known, smart device detection is
performed as it helps in better location estimation. Fig. 10(d)
shows the accuracy of the smart device detection. We find that
the multiple Gaussian method detects the type of smart device
with a high accuracy of 94% as the RSS data from multiple
smart device follows a mixture of GMM.

3) LOCALIZATION ERROR PERFORMANCE

Fig. 11(a) shows that error in distance estimation of the smart
device from the access point using multiple Gaussian method
is 0.25 m as compared to 0.49 m of single Gaussian consider-
ing orientation 3. Further, it can be observed from Fig. 11(b)
that multiple Gaussian method outperforms the single Gaus-
sian for all the four orientations. Also, the localization error
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FIGURE 12. (a) Comparison of CDF of localization error for single and
multiple Gaussian method. (b) Comparison of CDF of localization error for
two different orientations as the dependent variable.

is least for orientation 3 as the RMSE is least for the same.
Cumulative distribution function (CDF) plot of localization
error is shown in Fig. 12(a). It is observed that in terms
of localization error, for all the locations, multiple Gaus-
sian method outperforms the single Gaussian method. This
is because the RSS data from smart devices with multiple
orientations in an IoT network follows a multi Gaussian
model instead of a single Gaussian. Further, the localization
error is computed for the three user cases. It is observed
in Fig. 12(b) that when the system has the prior knowledge of
the type of orientation and smart device, it provides the least
localization error of 0.27 m with the dependent variable as
orientation O3.

The CDF plot shows that for more than 90% of the test RSS
samples, the localization error is 0.3 m. Also, when the base
orientation is not chosen with least RMSE, for example with
the dependent variable as O the localization error increases
to 0.7 m. This result clearly shows the importance of the
choice of the dependent variable. We also evaluate the per-
formance of GMLoc when a different number of orientations
are detected using the proposed threshold method.
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FIGURE 13. (a) Results of localization error with different number of
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FIGURE 14. (a) The actual and estimated locations for test RSS values
using GMLoc. (b) Comparison of the proposed GMLoc with neural
networks. MLR = Multi level regression.

Fig. 13(a) shows that the proposed method estimates the
location with an error of 1.35 m with the knowledge of a
minimum of only two orientations. Further, Fig. 13(b) shows
the comparison of localization error for three different user
cases. It is observed that when no prior information of device
type and orientation is available (BU case), the method yields
a comparatively high localization error of 3 m. For such cases,
the proposed method provides an improved localization error
of 1.35 m by identifying the device type and orientation. Also,
when we have the prior knowledge of the device type and
orientation with the appropriate dependent variable, the pro-
posed method achieves the least localization error of 0.27 m.
Hence, the proposed method is suitable for all type of user
cases in [oT network.

Finally, Fig. 14(a) shows the performance of the pro-
posed algorithm for the test RSS vectors. The black dots
show the actual location, and the red dots show the esti-
mated location with the average localization error of 0.39 m.
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FIGURE 15. (a) Performance of GMLoc for anomaly detection. (b) Localization error comparison of single and multiple Gausssian method for normal and
erroneous RSS values. (c) CDF comparison of localization error on normal and erroneous RSS values. SGF = Single Gaussian on erroneous data and
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Gaussian on missing data and SGn, for single Gaussian.

The performance of GMLoc is compared with machine learn-
ing methods such as neural networks where the data is fed
without any regression, knowing the device type and the
orientation. Fig. 14(b) shows that GMLoc outperforms the
neural network classification method. Therefore, it is con-
cluded that multistage regression with GMM addresses the
device and orientation diversity issues better than the state-
of-the-art single Gaussian and neural network method.

4) PERFORMANCE OF GMLOC ON ERRONEOUS RSS VALUES
The performance of GMLoc is also evaluated when the
system encounters the attack, or the smart devices’ sensors
generate erroneous RSS readings. First, anomaly detection
is performed with the proposed method. Fig. 15(a) shows
the performance of the proposed method on the faults. The
detection accuracy is high for stuck-at fault and the offset
fault and marginal for the precision degradation fault. Further,
the performance of the single Gaussian method over multiple
Gaussian is compared for the erroneous data. In order to
test the robustness of the proposed method, a maximum of
20% of the RSS values are made erroneous with n = 5
and B = 10. It is observed that the proposed method is
still robust for erroneous RSS data and multiple Gaussian
method outperforms single Gaussian. Fig. 15(b) shows the
comparison of the GMLoc on normal and erroneous data
for single and multiple Gaussian methods. It is concluded
that the multiple Gaussian method outperforms the single
Gaussian. This is because the erroneous data also follows a
mixture of Gaussian instead of the single Gaussian; therefore,
the location estimation is better with the multiple Gaussian
method even in the case of erroneous RSS values.

Fig. 15(c) shows the variation in the Cumulative Distribu-
tion Function (CDF) of the localization error. We find that
90% of the test RSS samples are located with an error of
1.2 m and more than 60% of the test RSS vectors are located
within 1 mrange. On the contrary, the single Gaussian method
can locate 90 % of the test RSS vectors with approximately
2 m error. Further, Fig. 15(d) shows the performance of the
proposed method on the RSS test data that contain missing
data. We evaluated the performance of the proposed method
with 15% missing data and imputed the RSS values using
a linear regression method. It is observed that the multiple
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Gaussian method provides approximately the same results
as on the normal RSS samples. Therefore, we conclude that
the localization with multiple Gaussian method addresses the
faulty data with higher accuracy than the single Gaussian
method. The experiments are performed using Intel Core
i5 processor having 8 GB RAM. It is observed that the
multiple Gaussian method takes 0.35 seconds more than the
single Gaussian method.

IV. CONCLUSION AND FUTURE RESEARCH CHALLENGES
The paper proposed a novel method to address both device
heterogeneity and orientation issues in the IoT network using
a multistage regression and GMM method. The effect of
the choice of the dependent variable for orientation and
device type on localization is also investigated. The results
obtained using the GMM method achieve better localization
as compared to single Gaussian methods. Also, the proposed
method is robust to erroneous RSS data in the IoT network.
Additionally, the proposed method detects the device type
with an accuracy of 95%, which improves the localization
error to 1.35 m even when both the device type and orientation
are unknown. The future work includes the development of a
mobile application for the proposed method.

A low complexity localization algorithm which is accurate,
handles device diversity and orientation, and uses oppor-
tunistic signals is desirable for time-vayring IoT networks.
The localization method needs to be robust to environment
changes and the type of signals. Further, new methods using
deep neural networks can be used to increase the localiza-
tion accuracy for time-varying IoT networks. Channel State
Information (CSI) based device-free localization method in
the presence of fading effect is a potential future work for a
smart environment.
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