
Received September 4, 2019, accepted September 23, 2019, date of publication October 4, 2019, date of current version October 17, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2945622

Architectural-Space Exploration of
Heterogeneous Reliability and Checkpointing
Modes for Out-of-Order Superscalar Processors
BHARATH SRINIVAS PRABAKARAN 1, (Student Member, IEEE),
MIHIKA DAVE2, FLORIAN KRIEBEL1, SEMEEN REHMAN3,
AND MUHAMMAD SHAFIQUE 1, (Senior Member, IEEE)
1Institute of Computer Engineering, Technische Universität Wien (TU Wien), 1040 Vienna, Austria
2Department of Computer Science, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
3Institute of Computer Technology, Technische Universität Wien (TU Wien), 1040 Vienna, Austria

Corresponding author: Bharath Srinivas Prabakaran (bharath.prabakaran@tuwien.ac.at)

This work is supported in part by the German Research Foundation (DFG) as part of the priority program ‘‘Dependable Embedded
Systems’’ (SPP 1500 - http://spp1500.itec.kit.edu), and in part by the TU Wien Bibliothek for financial support through its Open Access
Funding Program.

ABSTRACT State-of-the-art reliability techniques and mechanisms deploy full-scale redundancy, like
double or triple modular redundancy (DMR, TMR), on different layers of the computing stack to detect
and/or correct such transient faults. However, the techniques relying on full-scale redundancy incur sig-
nificant area, performance, and/or power overheads, which might not always be feasible/practical due to
system constraints such as deadlines and available power budget for the full chip (or a processor core).
In this work, we propose a novel design methodology to generate and explore the architectural-space of
heterogeneous reliability modes for out-of-order superscalar multi-core processors. These heterogeneous
modes enable varying reliability and power/area trade-offs, from which an optimal configuration can be
chosen at run time to meet the reliability requirements of a given system while reducing the corresponding
power overheads (or solving the inverse problem, i.e., maximizing the reliability under a given power
constraint). Our experimental results show that a pareto-optimal heterogeneous reliability mode reduces
the core vulnerability by 87%, on average, across multiple application workloads, with area and power
overheads of 10% and 43%, respectively. To further enhance the design space of heterogeneous reliability
modes, we investigate the effectiveness of combining different processor state compression techniques like
Distributed Multi-threaded Checkpointing (DMTCP), Hash-based Incremental Checkpointing (HBICT) and
GNU zip, such that the correct processor state can be recovered once a fault is detected. We reduced the
checkpoint sizes by a factor of ∼6× using a unique combination of different state compression techniques.

INDEX TERMS Reliability, multi-cores, heterogeneity, fault-tolerance, AVF, hardening, microprocessors,
superscalar, resilience, design space exploration, checkpointing, out-of-order, architecture.

I. INTRODUCTION
Aggressive transistor scaling has led to an increased suscepti-
bility towards several reliability problems, such as soft errors,
at the hardware layer [1]. Soft errors are transient faults in
the hardware that cause bit-flips in the micro-architecture,
which may propagate to the application output and corrupt
its state, or may terminate the application’s execution [2], [3].
The rate of occurrences of these soft errors is expected to
increase with each new generation of microprocessor being

The associate editor coordinating the review of this manuscript and

approving it for publication was Cristian Zambelli .

released, due to aggressive shrinking of the transistor’s fea-
ture sizes and imperfection in the fabrication process [4], [5]
(see Section II).

Plenty of research works focusing on techniques like full-
scale redundancy and checkpointing have been proposed
towards prevention, detection, and/or mitigation of soft errors
across the computing stack, i.e., the hardware and software
layers [6], [7]. Reliability at the hardware layer is ensured
through redundancy of execution paths and/or hardening of
pipeline components, i.e., full-scale Double or Triple Mod-
ular Redundancy (DMR, TMR). Software-layer techniques
realize full-scale spatial/temporal redundancy by executing

145324 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0003-0557-2166
https://orcid.org/0000-0002-2607-8135
https://orcid.org/0000-0001-8755-0504


B. S. Prabakaran et al.: Architectural-Space Exploration of Heterogeneous Reliability and Checkpointing Modes

multiple redundant instructions or threads of an applica-
tion, thereby ensuring a reliable output [8]–[10]. However,
these full-scale redundancy techniques incur significant per-
formance and energy overheads (e.g., in case of temporal
redundancy), and area/power/energy overhead (e.g., in case
of spatial redundancy).

Therefore, we propose to investigate the individual prop-
erties and requirements of an application workload to deter-
mine the component-level vulnerabilities of an out-of-order
superscalar processor at design-time, i.e., enabling reliability
provisions at a much finer granularity. Based on this anal-
ysis, we develop a wide range of heterogeneous reliability
and checkpointing modes that enable efficient control over
the achieved reliability and the incurred overhead, especially
when considering the diverse resilience properties of differ-
ent executing applications at different run time instances.
Our previous work [11] provides an initial proof-of-concept
of this work and preliminary results for the feasibility of
reliability-heterogeneous cores. In this work, we significantly
extend this concept, and provide a systematic methodology
to integrate such reliability heterogeneous modes on a chip
along with other different types of reliability mechanisms like
checkpointing and state compression to expand the space of
design trade-offs for reliability vs. overhead.

In a nutshell,wemake the following novel contributions:

(1) Component-Level Vulnerability Analysis: We leverage
the Architectural Vulnerability Factor (AVF) metric
to perform a comprehensive vulnerability analysis for
different pipeline components of a single-core and
quad-core out-of-order superscalar processor when
executing diverse application workloads.

(2) A Methodology for Architectural-Space Generation
and Exploration: We propose a novel methodology
that:

(a) analyzes the architectural vulnerability of an out-
of-order superscalar microprocessor;

(b) generates a wide range of heterogeneous relia-
bility modes, such that each mode deploys dis-
tinct reliability measures in different pipeline
components;

(c) enables reliability-power trade-offs that can be
used to optimize the applications’ reliability
requirements under the given power constraint,
or vice-versa, minimize the power consumption
under the given reliability constraints.

(3) A Run-Time System: We evaluate the run-time ben-
efits of our heterogeneous reliability modes by
executing various application workload mixes on
our heterogeneous multi-core processor. We propose
an evaluate two task mapping heuristics, namely,
Vulnerability-Constrained Power Minimization and
Power-Constrained Vulnerability Minimization.

(4) Efficient State Compression: To further enhance
the processor reliability and to increase the design
space, we analyze and investigate combinations of

state-of-the-art compression techniques to effectively
reduce the storage requirements of checkpointing data.

(5) Evaluation & Discussion: We evaluate the effective-
ness of our heterogeneous reliability modes under
diverse application workloads using a modified ver-
sion of the cycle-accurate simulator gem5 to offer the
required functionality.

Fig. 1 illustrates an overview of our contributions in
a design-flow for developing heterogeneous multi-core
processors.

FIGURE 1. An overview of our contributions (highlighted boxes) in the
processor design flow.

Paper Organization: Section II presents the preliminar-
ies and background information required to understand our
proposed contributions. We discuss the system models in
Section III. Section IV presents our methodology for gen-
eration and exploration of the architectural-space of hetero-
geneous reliability modes, including results that illustrate
the benefits of the proposed approaches. Section V presents
the related work on state-of-the-art reliability techniques and
heterogeneous reliability approaches, followed by the conclu-
sion presented in Section VI.

II. PRELIMINARIES AND BACKGROUND
A. SOFT ERRORS
In the era of nanometer technology nodes, reliability threats
like manufacturing-induced process variation, device aging,
and transient faults are increasingly challenging the func-
tional correctness and safety-critical aspects of the systems
where these electronic devices are deployed [1]. These elec-
trical disturbances that disrupt the normal operation of a cir-
cuit are called Single Event Effects (SEEs). It can be caused
by the passage of a single ion through a circuit node. These
disturbances can be either destructive or non-destructive.
An example of a non-destructive SEE is Single-Event Upsets
(SEUs). These errors can be single-bit or multi-bit depending
upon various factors like the particle’s energy, transistors
dimensions, and electrical properties, operating scenarios
(e.g., altitude of the device under usage), etc. These SEUs
are transient faults (e.g., soft errors), which have emerged
as a serious threat to the reliability of a digital system. These
soft errors are generated at the hardware layer, due to four key
factors, namely,
(1) Alpha Particles, which are positively charged com-

posite particles emitted during radioactive decay.

VOLUME 7, 2019 145325



B. S. Prabakaran et al.: Architectural-Space Exploration of Heterogeneous Reliability and Checkpointing Modes

These particles travel through the semiconductor
device thereby disturbing the electron distribution of
the transistor [12].

(2) Cosmic Rays, which are a flux of energetic neu-
trons that are constantly emitted by the solar system
[13], [14].

(3) Thermal Neutrons, which are neutrons that have
attained thermal equilibrium after dissipating all kinetic
energy [15].

(4) Internal Factors such as random noise, signal
integrity issues, cross-talks, and electromagnetic
interference [3].

FIGURE 2. The three phases of the soft error Phenomenon (adapted
from [2]).

Soft errors cause temporary bit-flips either in the con-
trol or data path of a micro-architecture, or in the on-chip
memory cells, which may propagate to the application out-
put (incorrect output), or may crash (incorrect instruction
execution), hang (application enters an unresponsive state),
or terminate the application execution [2]. Fig. 2 illustrates
the soft-error phenomenon, which can be broken into three
phases.
(1) First, in the ion-track formation phase (phase-I), a high

energy particle (such as the cosmic rays discussed ear-
lier) strikes the transistor to generate multiple electron-
hole pairs, which in turn increase the concentration of
carriers along the ion’s path.

(2) In phase-II (current pulse generation), the ions col-
lected at the depletion region form a ‘‘temporary’’
channel that funnels the current from source to drain,
which could toggle the transistor state for tens of
picoseconds. This can result in a bit flip in (i) the
memory cell, which can be latched to the incorrect
value until and unless it is overwritten by another value;
or (ii) the logic gate that can potentially propagate to the
final output of the circuit, thereby corrupting the output
of the circuit.

(3) In the ion diffusion phase (phase-III), for tens or
hundreds of picoseconds, the charges diffuse into the
depletion layer, thereby disintegrating the temporary
channel.

B. INCREASING SOFT ERROR RATES
In the earlier generation technology nodes, the transistor
dimensions were large enough that a temporary channel could

FIGURE 3. Increase in soft-error rate of a chip for Multiple Technology
Nodes (adapted from [5]).

not funnel the current from source to drain. Furthermore, due
to reducing transistor dimensions, the rate of soft error occur-
rences is increasing with each new generation of processors
being released into the market, due to their fabrication using
continuously smaller technology nodes [4], [5] (see Fig. 3).
This is a major threat to the current world infrastructure,
which heavily relies on electronics for all activities, such
as work, communication, transportation, socializing, internet,
etc. Even the day-to-day devices and services that people
use, e.g., wearable devices such as smart-watches and fitness
trackers, mobile computing platforms such as mobile phones
and laptops, and on-demand cloud services offered by large-
scale data centers, heavily rely on the reliability of electronic
devices. This becomes even more crucial for safety-critical
application domains like aerospace, automotive, healthcare,
industry 4.0, smart grids, smart homes, etc.

C. PROCESSOR HARDENING
Reliability at the hardware layer is typically ensured by the
use of full-scale redundancy, which involves instantiating
multiple instances of the hardware unit with the same set of
inputs, to generate outputs that can be compared with each
other to detect (in DMR) or correct errors using a voter circuit
(in case of TMR), which we refer to as hardware hardening.
Besides these hardware redundancy measures, techniques
like software-level redundancy, application checkpointing
and rollback, shadow latches, etc. (see Section V for an
overview of the related work) can be also used to detect and
mitigate soft errors.

An overview of these hardware-level redundancy tech-
niques is presented in Fig. 4. DMR and TMR incur significant
area and power overheads caused by the redundant hardware
units and the additional circuitry used to detect or correct
errors. Furthermore, since the additional hardware compo-
nents execute in parallel, the throughput of the system is not
affected, with a minimal gate-level increase in delay caused
by the voter circuit. Typically, to ensure very high reliability,
the entire processor pipeline (full-scale) is hardened, i.e., all
the pipeline components are instantiated thrice with the same

145326 VOLUME 7, 2019



B. S. Prabakaran et al.: Architectural-Space Exploration of Heterogeneous Reliability and Checkpointing Modes

FIGURE 4. An overview of the redundancy techniques at the hardware
layer.

set of inputs and a voter circuit to elect the majority output,
as illustrated by Gaisler’s completely hardened LEON3-FT
microprocessor that deploys redundancy in the register file
and cache memory [16]. Fig. 4 also illustrates the gate-level
implementation of the voter circuit, and how, in the case of
soft errors, the majority output is elected and generated as
the final output. Note, this leads to the possibility of the
voter circuit becoming a single point of failure, which is
mitigated by triplicating the voter circuit as well, and has been
deployed, for example, in the Saturn Launch Vehicle Digital
Computer [17], [18]. In this work, without the loss of gener-
ality, we advocate the enabling of fine-grained reliability at
different component level that can facilitate the instantiation
of different hardening modes for different processor cores,
thereby providing a wide range of reliability-power trade-
offs. As a proof of concept, we will showcase an example
of using component-level TMR with a single majority voter
circuit. However, any other reliability mechanism can be
deployed as a knob at the component level.

D. OUT-OF-ORDER SUPERSCALAR PROCESSORS
Besides transistor scaling, architectural innovations such as
deep pipelining, instruction-level parallelism, out-of-order
execution, speculative execution, branch prediction, etc. have
tremendously increased the computing capabilities of micro-
processors. Almost all the current generation microproces-
sors are designed with such functionalities to ensure high
system performance. For example, superscalar processors
exploit an application’s instruction-level parallelism to exe-
cute multiple instructions in parallel during the same clock-
cycle onmultiple different execution units [20].Out-of-Order
processors execute instructions out-of-order, as opposed to
the typical sequential execution, by exploiting the interde-
pendency, or the lack thereof, of program instructions and
the data processed by them [21]. This allows for execut-
ing ‘‘independent’’ instructions in clock-cycles that would
be otherwise lost in pipeline stalls caused by control- or
data-flow dependencies. Fig. 5 illustrates the control- and
data-path of the ALPHA 21264 out-of-order superscalar

FIGURE 5. ALPHA 21264 out-of-order superscalar processor architecture
(adapted from [19]).

microprocessor [19], which is widely used in the architecture
research community.

Alpha 21264, or Alpha 7, is a four-issue, seven pipeline
stage superscalar processor architecture that is capable of
executing up to six (four integer and two floating-point)
instructions per cycle (IPCs) while sustaining four instruc-
tions simultaneously. During a program’s execution, the pro-
cessor can accommodate up to 80 instructions in the pipeline,
which is kept track of using the processor’s re-order buffer
(ROB). The Alpha 7 processor also includes two cache lev-
els, i.e., the primary and secondary caches. The processor
uses a modified Harvard architecture that implements sepa-
rate primary instruction (I-cache) and data caches (D-cache),
typically of size 64KB each. The D-cache is dual-ported
to allow simultaneous read and write on both rising and
falling edge of the clock. This feature allows for reducing
the area and power overheads associated with duplicating
the cache, as in the Alpha 21164 microprocessor. The sec-
ondary cache, or B-cache, is usually a direct-mapped cache
that is located off-chip and shared by all processor cores.
Typically, L2-cache has a maximum capacity of 16MB and is
constructed using synchronous static random access memory
(SSRAM), which is accessed using a dedicated 128-bit high-
bandwidth bus [22]. Branch prediction in this microprocessor
is implemented using a hybrid two-level branch prediction
algorithm called tournament prediction, with a minimum
branch misprediction penalty of 7 clock-cycles [22]. The
processor was built using 15.2 million transistors, roughly
40% of which was occupied by the core processing unit and
the rest of which was consumed by the caches and branch
history tables [23].

III. SYSTEM MODEL
A. ARCHITECTURE MODEL
To cater for different application workloads with varying reli-
ability requirements, we envision a reliability-heterogeneous
multi-core processor (HMC):

HMC = {PC1,PC2, . . . ,PCM }

VOLUME 7, 2019 145327



B. S. Prabakaran et al.: Architectural-Space Exploration of Heterogeneous Reliability and Checkpointing Modes

where PCj denotes the jth processor core, such that, j ∈
{1, 2, . . . ,M}, with a total ofM processor cores in the HMC .
Each processor core has L different architectural components,
denoted as:

PCj = {C(j,1),C(j,2), . . . ,C(j,L)}

where C(j,k) denotes the k th component in the jth pro-
cessor core. Each architectural component (like re-order
buffer, register file, instruction queue, etc.) in each proces-
sor core (C(j,k)) can be hardened by using mechanisms like
TMR, DMR, Checkpointing, and Rollback, Error-Correcting
Codes, or Razor latches. We denote the ith reliability tech-
nique of the component C(j,k) as:

RT (C(j,k)) = i

Without loss of generality, in this work, we explore the appli-
cability of TMR for designing the heterogeneous reliability
modes. This leads to i = {0, 1}, whereRT (C(j,k)) = 0 denotes
the unprotected component without any type of hardening
and RT (C(j,k)) = 1 denotes a component that has been
hardened by triple modular redundancy, thereby enabling
heterogeneous hardening.

The area of each processor core is denoted as A(PCj),
which is the summation of area of all the processor
components, including the overhead of hardening certain
components. Note, only a selective subset of the different het-
erogeneous reliability modes can be activated at run-time due
to the total power constraint of a system while considering
the application’s reliability requirement. An overview of the
symbols used in this work and their denotations have been
presented in Table 1.

B. APPLICATION MODEL
The applications are modeled as a set of task graphs {T ,E}
containing task and dependency information for all applica-
tion workloads. T is denoted as T = {T1,T2, . . . ,TZ } for a
set of Z tasks. E is defined as E = {Exy | (Tx ,Ty) ∈ T } for the
set of task dependencies. For the given processor core (PCj)
each task Tq has the following execution properties:
• P(Tq,PCj), which denotes the peak power consumption,
• L(Tq,PCj), which denotes the average performance in
terms of execution time, and

• FPVF(Tq,PCj), which denotes the full-processor vul-
nerability factor.

C. RELIABILITY MODEL
The Architectural Vulnerability Factor (AVF) of a hardware
component is defined as the probability of a fault to propa-
gate to the final output resulting in an execution error [24].
We compute the AVF of a component C(j,k) as the fraction
of bits vulnerable in each cycle (Vulnerable-Bits) to the total
number of output bits (TotalBits) generated by component
C(j,k) for a duration of N cycles. AVF of a component C(j,k)
is ‘0’ if the component is hardened, or produces no architec-
turally incorrect bits [24]. Note, all bits of a branch predictor

TABLE 1. Symbols and denotations.

are always architecturally correct, therefore a branch predic-
tor’s AVF is always ‘0’. Similarly, all bits of the program
counter (PC) are always vulnerable, therefore the AVF of a
PC is always ‘100’ [24]. AVF is estimated using the following
equation:

AVFC(j,k) =

∑N
n=0 VulnerableBits(C(j,k))

TotalBits× N
× 100

To study the impact of component hardening on the full-
processor, we extend the AVF to define the Full-Processor
Vulnerability Factor (FPVF) for a given application work-
load. We define FPVF as the ratio of the total number of
vulnerable bits (VulnerableBits) in the processor pipeline
for the duration they are vulnerable (VulnerableTime) to the
total number of bits in the processor pipeline (TotalBits) for
the total duration of application execution (TotalTime). It is
computed using the following equation:

FPVF(Tq,PCj)

=

∑
∀C(j,k)

VulnerableBits(C(j,k))×VulnerableTime(C(j,k))∑
∀C(j,k)

TotalBits(C(j,k))×TotalTime(C(j,k))

×100

145328 VOLUME 7, 2019



B. S. Prabakaran et al.: Architectural-Space Exploration of Heterogeneous Reliability and Checkpointing Modes

FIGURE 6. Overview of our architecture-space generation and exploration methodology for hardening out-of-order superscalar
heterogeneous multi-core processors.

IV. HETEROGENEOUS RELIABILITY MODES OF
OUT-OF-ORDER SUPERSCALAR CORES
A. METHODOLOGY OVERVIEW
Fig. 6 presents an overview of our methodology for
designing and exploring heterogeneous reliability modes for
out-of-order superscalar multi-core processors. Our method-
ology targets two approaches for designing heterogeneous
reliability modes: (1) Redundancy, and (2) Checkpointing.
To ensure reliable execution at the hardware layer, we propose
hardening the processor’s highly vulnerable pipeline compo-
nents. These pipeline components are selected based on the
initial fault-injection experiments, or on the AVF values that
are estimated based on the number of vulnerable bits and
vulnerable time of each component (see model description
in Section III). Furthermore, we ensure reliability by investi-
gating state compression techniques that can reduce the size
of checkpoint data. Before moving on to our fault-injection
and vulnerability analyses, we will present our experimental
setup for better understanding.

B. EXPERIMENTAL SETUP
To evaluate the vulnerability, power and area requirements of
the proposed heterogeneous reliability modes, we have mod-
ified the well-established open-source tools like the cycle-
accurate system simulator, gem5 [25] and HP’s power and
area estimator tool McPAT [26]. Our extensions to these
toolchains provide the following functionality: (1) estimate
the vulnerability of all pipeline components by determin-
ing their AVFs [24], (2) support for heterogeneous relia-
bility modes by hardening key pipeline components using
component-level redundancy [11], but not full-scale pipeline

triplication all the time, and (3) checkpoint processor states
using mechanisms like Distributed Multi-Threaded Check-
pointing (DMTCP) [27], [28] and Hash-Based Incremental
Checkpointing Tool (HBICT) [29], [30]. Due to its high
customization capability, we use the Alpha 21264 four-issue
out-of-order superscalar core [19] as our target platform.
We use the primitive Linux kernel 2.6 that is available with
the default installation of gem5 as the operating system for
our ALPHA 21264 micro-processor.

FIGURE 7. Overview of our experimental setup.

Furthermore, we extend the concept of AVF towards the
FPVF metric (see Section III) to evaluate the impact of
component hardening on the reliability mode, for a given
application workload. To account for a wide range of appli-
cations, we evaluate the proposed heterogeneous reliability
modes using theMiBench application benchmark suite. Fig. 7
presents an overview of our experimental setup.

C. VULNERABILITY ANALYSIS
We evaluate the vulnerability of an O3 superscalar Alpha
21264 core components [19] for the Bit-counts, SHA,

VOLUME 7, 2019 145329



B. S. Prabakaran et al.: Architectural-Space Exploration of Heterogeneous Reliability and Checkpointing Modes

Dijkstra, and Patricia application workloads [31].
We analyze the vulnerability of the following key pipeline
components:
• Re-order Buffer (ROB),
• Issue Queue (IQ),
• Load Queue (LQ),
• Store Queue (SQ),
• Integer, Floating Pt. Register Files (RF),
• Rename Map (RM),
• Integer ALU (Int. ALU),
• Floating Point ALU (FP ALU),
• Integer Multiply/Divide (Int. MD), and
• Floating Point Multiply/Divide (FP MD).

FIGURE 8. Differences in AVF of Alpha 7 Pipeline components under (SHA
and Bit-counts Workloads).

FIGURE 9. AVF distribution of Key Pipeline components in single- and
Multi-Core Alpha 7 processors.

The results of our vulnerability analyses are presented
in Figs. 8 and 9.

From the results obtained, we make the following key
observations:

FIGURE 10. Overview of the Fault Injection Methodology for analyzing
processor component Vulnerabilities.

• The AVFs of the different pipeline components vary for
different application workloads.

• We have identified three key pipeline components (Inte-
ger ALU, Store Queue, and Re-order Buffer) that are
more vulnerable during the execution ofSHAwhen com-
pared to Bit-counts.

• Similarly, the re-order buffer is 27% and 46% less vul-
nerable to soft errors during the execution ofPatricia
and Bit-counts, when compared to workloads like
SHA and Dijkstra.

• Similar differences in component-AVFs can be observed
when varying multi-threaded application workloads,
from the PARSEC benchmark suite, are executed on a
multi-core processor, as shown in Fig. 9.

These components have different AVFs because of the type
of instructions being executed and their application-specific
properties (compute or memory-intensive, instruction-level
parallelism, cache hit/miss rate, etc.). For example, compo-
nents like the Re-order Buffer and the Store Queue are more
vulnerable in SHA because of higher levels of instruction-
level parallelism and more store instructions.

Based on this analysis, we can infer that hardening cer-
tain components of the pipeline increase the reliability of a
core more than hardening the other components. Therefore,
we generate a wide range of reliability-heterogeneous Alpha
cores, and explore this architectural-space in terms of relia-
bility, power, and area, to select a configuration that increases
the reliability of application executions while decreasing the
area/power overhead.

D. FAULT INJECTION
Fault injection techniques are typically used to study, ana-
lyze and evaluate the behavior of a system susceptible to
faults [32]–[34]. The fault model for the ALPHA core com-
ponents is based on single- and multi-bit transient faults.

145330 VOLUME 7, 2019



B. S. Prabakaran et al.: Architectural-Space Exploration of Heterogeneous Reliability and Checkpointing Modes

FIGURE 11. Error rate of three Pipeline components (L2 Cache, ALU, instruction Queue) in the Alpha 7 Processor.

The soft error rate for each component is defined as the
product of error rate and the component’s AVF. The soft
error rate of the processor’s pipeline components have been
derived from the works presented in [35], [36]. To account
for a component’s spatial vulnerability (NFI ), the number
of faults injected in a pipeline component is proportional
to its on-chip area. We define Pflip as the probability that
a high-energy particle strike leads to a change in the logic
state of a pipeline component. Furthermore, to facilitate fast
simulation, the faults are injected in the region of inter-
est, the components, registers, and cache lines used by the
application. The application output is classified into 3 major
categories, namely, (1) correct output, (2) incorrect output,
and (3) program failures (Nerror ), which comprise of multiple
scenarios such as unaligned instruction, unmapped address,
and segmentation fault. The error rate (Perror ) of a transient
fault in the component leading to an error in the application
execution is defined as follows:

Perror = Pflip ×
Nerror
NFI

(1)

An overview of the methodology used to inject and analyze
faults in various pipeline components is presented in Fig. 10.
Based on the vulnerability and fault models presented in
Section III and the configuration of the target processor,
including its pipeline components, we generate a list of
fault files, that is provided as an input to the fault injection
engine. This is used to insert faults/bit-flips into the target
processor platform during the application’s execution using a
cycle-accurate simulator, i.e., gem5. Though 1-bit and 2-bit
faults are common, we tried to evaluate our techniques under
multiple fault cases to study the efficacy of the proposed
contributions. For instance, 4 MBUs are indeed rare and may
only occur when a very high energy particle strikes a nano-
scale transistor at high altitude. However, besides our fault
cases, we used this aggressive case in our fault injection
experiments as well to identify the criticality of pipeline
components in extreme cases, i.e., the components that are
highly vulnerable to soft errors and to observe the error rates

TABLE 2. Processor parameters for vulnerability analyses experiments.

and types when injecting single- vs. multi-bit faults, and
whether a similar fault trend is observed. The architectural
parameters for the Alpha processor and the fault injection
experiments are illustrated in tables 2 and 3. We study the
output obtained from these simulations, which contains a
list of correct and erroneous outputs. These outputs are then
compared against the golden execution to estimate the type of
error and the frequency of these error occurrences for various
pipeline components. A subset of the results obtained from
this experiment is illustrated in Fig. 11.

The results in Fig. 11 depict the error rate of three pipeline
components, namely, Level-II Cache, Integer Arithmetic
Logic Unit, and Instruction Queue. Faults injected in the
L2-cache lead to four major types of error and correct out-
put. The rest of the types are classified into the ‘‘others’’
category. The four major error categories are: (1) incorrect
output, (2) unaligned instruction, (3) unknown instruction,
and (4) out of memory. The label A depicts the applications
with a higher percentage of correct output when compared to
the others. On average, the Bit-counts and SHA applica-
tions produce a correct output more than 80% of the time,
whereas Dijkstra and Patricia, on average produce
a correct output less than 70% and 60% of the time. The
changes in L2-cache vulnerability can be attributed to two
factors, i.e., the amount of data being accessed and the

VOLUME 7, 2019 145331



B. S. Prabakaran et al.: Architectural-Space Exploration of Heterogeneous Reliability and Checkpointing Modes

TABLE 3. Parameters for fault injection experiments.

number of load/store instructions in the application. The
reduced vulnerability of the L2-cache, in the applications
depicted by label A, can be attributed to the decreased amount
of data being accessed from the L2-cache and the lower num-
ber of load/store instructions in the Bit-counts and SHA
applications. This directly corresponds to a higher number of
L1-cache hits, thereby reducing the criticality of the data
present in the L2-cache and reducing its architectural vul-
nerability. Therefore, the probability of a soft error in
L2-cache leading to an error during the execution is higher
in an application with a relatively higher number of load
and store instructions, and the amount of data accessed from
L2, as compared to the others. Similarly, the label B depicts
the percentage of fault injection experiments that lead to
an unmapped address. As explained in the earlier exam-
ple, due to the higher number of load and store instruc-
tions in Dijkstra and Patricia, the large number of
unmapped addresses can be attributed to the corruption of bits
during address generation. Similarly, due to their compute-
intensive nature, a higher number of incorrect outputs are
generated by faults injected in an ALU during the execution
of applications like bit-counts and SHA. Faults injected
in the Instruction Queue cause three major types of error,
namely, (1) unknown instruction, (2) invalid instruction, and
(3) segmentation fault.

E. HETEROGENEOUS RELIABILITY
MODES FOR ALPHA CORES
As discussed in Section IV-C, the AVF of the pipeline compo-
nents varies for the different application workloads. Hence,
we propose to harden a combination of the key pipeline
components in out-of-order superscalar processors, instead
of employing full-scale TMR across the complete pipeline,
to increase core reliability while reducing the area and power
overheads of full-scale TMR. This generates a design space
of multiple heterogeneous reliability modes (RM), nine of

TABLE 4. Proposed heterogeneous reliability modes.

which are illustrated in this work (and unprotected core).
Table 4 presents our list of nine proposed heterogeneous RM
and the components that are hardened in these modes using
TMR. Hardened components have three instances with the
same inputs, and a voter circuit at the output to determine the
majority. An overview of the proposed heterogeneous relia-
bility modes for Alpha 7 processor is presented in Fig. 12.
We evaluate the vulnerability of our heterogeneous reliabil-

ity modes by executing applications from the MiBench appli-
cation benchmark to estimate the FPVF for each scenario.We
also evaluate the area and power overheads incurred by each
reliability mode. These results are illustrated in Fig. 13.

From the results obtained, we make the following key
observations:
• Different heterogeneous reliabilitymodes can reduce the
full-processor vulnerability to different extents depend-
ing upon the properties of the executing application.
For example, reliability modes like RM2, RM6, and
RM9 reduce the processor vulnerability of SHA by more
than 50%, but not of Dijkstra, even though they have
similar vulnerabilities in all other reliability modes.

• Hardening specific components in the pipeline can sig-
nificantly reduce the overall processor vulnerability. For
example, key components like Rename Map (RM) and
Reorder Buffer (ROB) effectively reduce the FPVF for
all applications, as shown by the heterogeneous relia-
bility modes RM4, RM7 and RM8. However, utilizing
these hardening modes incurs significant area and power
overheads.

• Certain heterogeneous reliability modes are very effec-
tive in reducing the FPVF by a large margin for very
small area/power overhead. For example, RM2 and
RM6 reduce the FPVF by more than 50% for <75% area
and power overheads when executing SHA.

• Hardening all pipeline components without hardening
the most highly vulnerable component of the system
introduces very high overheads without reducing the
vulnerability of the system significantly. This is illus-
trated by the reliability mode RM9, in which the ROB is
not hardened. This reliability mode has area and power
overheads close to∼200% with insignificant reductions
in FPVF when compared to RM4, which significantly
reduces the FPVF for comparatively lower overheads.

145332 VOLUME 7, 2019



B. S. Prabakaran et al.: Architectural-Space Exploration of Heterogeneous Reliability and Checkpointing Modes

FIGURE 12. The Heterogeneous reliability modes and their Micro-architectural configurations.

FIGURE 13. Full-Processor vulnerability factor (FPVF) and Power/Area Trade-off of Our Heterogeneous reliability modes for different MiBench
applications.

Using the data gathered from the simulation of our designs,
we perform a design space exploration that trades-off FPVF,
area, and power overheads to extract the pareto-optimal
designs that suit the target application best. The pseudo-
code of the pareto-frontier extraction algorithm is presented
in Algorithm 1. The corresponding results are illustrated
in Fig. 14. The x-axis denotes the FPVF, whereas the
y- and z-axes denote the power and area overheads, respec-
tively. The design labeled U in all applications is the unpro-
tected core that is highly vulnerable to soft errors. As it
does not deploy any redundancy measures, it has zero area
and power overhead, and hence lies on the pareto-front.

TABLE 5. Pareto-optimal reliability modes for MiBench applications.

The pareto-optimal reliability modes for the applications are
presented in Table 5. RM4 is pareto-optimal for all appli-
cations except SHA. The register file is highly vulnerable
to soft errors during the execution of SHA and needs to be

VOLUME 7, 2019 145333



B. S. Prabakaran et al.: Architectural-Space Exploration of Heterogeneous Reliability and Checkpointing Modes

FIGURE 14. Design space exploration of our heterogeneous reliability modes for MiBench applications.

Algorithm 1 Pareto-Frontier Extraction
Input: {FPVF,A,P}∀RM∀i∈[1,K ]
Output: OptimalReliabilityModes (ORM )
1: TempSignal = 0;
2: TempArray(3,K ) = 0;
3: TempArray2(3,K ) = 0;
4: B = [FPVF,Area,Power];
5: for k← 1 to 3 do
6: j = 0;
7: temp = B(k, :);
8: for i← 1 to 3 do
9: if i! = k then

10: j = j+ 1;
11: TempArray2(j, :) = temp− B(i, :);
12: end if
13: end for
14: if TempArray2(1 : j, :) < 0 then
15: TempSignal = TempSignal + 1;
16: TempArray(TempSignal, :) = temp;
17: end if
18: end for
19: if TempSignal >= 1 then
20: ORM = TempArray(1 : TempSignal, :);
21: end if

hardened to reduce its vulnerability. The reliability mode
RM7 is pareto-optimal for all four applications and reduces
the FPVF on average by 87% with average area and power
overheads of 10% and 43%, respectively.

A super-set of the pareto-optimal reliability modes for all
these applications can be selected to design a heterogeneous
multi-core processor. We can build the chip by selecting the
reliability modes from this super-set such that the form-factor
and cost constraints are adhered to. At run-time, the required
reliability modes can be switched-on/-off depending upon the
power constraints of the system.
Overhead Analysis: The design-time methodology for

architecture-space exploration is, fundamentally, a heuristic
and is very fast in identifying a design-time configuration
of the microprocessor, typically in terms of minutes. The
run-time system is also a very simple heuristic and there-
fore requires only a few hundred cycles to reach a run-time

solution, where the exact time depends upon the number of
cores in the system, number of protected components, types
of reliability modes, and number of executing applications.

The simulation time (different from the simulated cycles
of the processor in gem5) of each experiment is in the order
of several tens of minutes, and since we execute numer-
ous fault injection campaigns, the overall time of testing is
over multiple weeks. Note, the computations and simulations
performed inside gem5 also depend on the computational
resources of the host platform, the number of simultaneous
tasks executing on the host, and resources dedicated to the
simulation environment.

TABLE 6. Workload mixes and their application compositions.

F. RUN-TIME SYSTEM
Although this work focusesmostly on the design-time aspects
of achieving heterogeneous reliability in out-of-order super-
scalar processors and studying their reliability vs. power/area
trade-offs. In this sub-section, we present a brief overview
of a run-time system for our proposed heterogeneous multi-
core processor that aims at selecting the set of Pareto-optimal
modes for cores such that the vulnerability of their respective
applications can be minimized while satisfying their power
constraints. For evaluation, we consider a 10-core proces-
sor that is composed of all the 10 heterogeneous reliabil-
ity modes discussed in sub-section IV-E. We illustrate the
benefits of our reliability modes by executing 5 application
workload mixes, the compositions of which are presented
in Table 6, on the 10-core heterogeneous processor to evaluate
the power-overheads and FPVF of the multi-core system for
each workload mix. The task-to-core mapping can be done
using one of the following heuristics:

145334 VOLUME 7, 2019



B. S. Prabakaran et al.: Architectural-Space Exploration of Heterogeneous Reliability and Checkpointing Modes

FIGURE 15. Flowchart illustrating the vulnerability-constrained power
minimization task-to-core mapping policy.

FIGURE 16. Flowchart illustrating the power-constrained vulnerability
minimization task-to-core mapping policy.

(1) Vulnerability-Constrained Power Minimization: In
this technique (see Fig. 15), we impose a vulnerability
constraint on each task in the mix, i.e., each task is
only mapped sequentially to a core that can success-
fully execute the task under the imposed vulnerability
constraint. If a convenient core (one that satisfies vul-
nerability constraint) is not available, then the task is
not scheduled immediately. The goal of this approach
is to minimize the power overhead of the complete
processor.

(2) Power-Constrained Vulnerability Minimization:
This approach (Fig. 16) imposes a constraint on the
maximum power overhead of the whole processor,
i.e., the task-to-core mapping is stalled when the power
constraint is exceeded, which is an overhead of 100%
for each task in the mix. The goal of this task mapping
policy is to minimize the FPVF.

The results of this evaluation are presented in Fig. 17,
in which we make the following key observations:
• The proposed reliability modes can be deployed in a
heterogeneous multi-core processor to reduce the power

FIGURE 17. Run-time task mapping analysis of HMC.

overheads of the executing application workloads, based
on the application’s workload requirement.

• The proposed reliability modes can either be used to
minimize the power overhead or the full-processor vul-
nerability factor as illustrated by the two task mapping
policies.

Although 100% task mapping is not achieved as in the
un-protected or full-protected case, this can be resolved by
efficiently selecting the reliability modes to be deployed in
the HMC considering the potential application workloads
and/or by using a task mapping algorithm that can efficiently
schedule the tasks to processor cores.

G. STATE COMPRESSION TECHNIQUES
Checkpointing and Rollback is an effective way of guaran-
teeing reliability at the software layer by means of providing
both spatial and temporal redundancy. A checkpoint is a snap-
shot of the processor state at any instant in time. Checkpoints
allow the system to roll back to the previous safe states in case
a failure is detected and re-execute instructions.

Fig. 18 presents an overview of the methodology that we
use for checkpointing and state compression. Checkpoints are
typically inserted intermittently into the target application for
periodic state retention and, if required, rollback to an earlier
processor state, i.e., in case of faulty execution. Typically,
the collected processor’s state information is stored in the
main memory or off-chip non-volatile memory, which can
still be used for a rollback in case of power-off. In our
case, to reduce the size of checkpointing data, we introduce
another stage of state compression, that utilizes state-of-the-
art compression techniques to generate a wide range of com-
pressed checkpoint variants. The optimal compressed variant
can be selected based on the system’s resource constraints and
available on-/off-chip memory. In case a fault is detected in
the current processor state, during the application execution,
the previous safe-state is decompressed and rolled back to
ensure the correct execution of the application.

The standard checkpointing mechanism deployed by
gem5 comes with certain caveats. This technique does not
preserve cache and pipeline states in a checkpoint because

VOLUME 7, 2019 145335



B. S. Prabakaran et al.: Architectural-Space Exploration of Heterogeneous Reliability and Checkpointing Modes

FIGURE 18. Overview of the methodology for checkpointing and state
compression.

of which frequent restoration from such checkpoints results
in a performance loss if deployed in real-world systems.
Therefore, we explore techniques like DMTCP [27], [28]
that implement checkpoints in the Linux process to store the
processor state as well as data present in the cache hierar-
chy. The backend checkpointing mechanism of DMTCP is
accessible to the programmer via numerous APIs. These APIs
can be used in conjunction with the front-end gem5 pseudo-
instructions for checkpoint creation/recovery. Since these
software-based checkpoints are often large, the checkpoint
is compressed using gzip and HBICT to save memory.
HBICT [29], [30] provides DMTCP support for delta-
compression (relative to the previous compression), which is
further compressed using gzip (a combination of lossless data
compression algorithms like LZ77 and Huffman coding).

We investigate the effectiveness of these techniques in all
possible combinations, by applying them one after the other,
on applications from the MiBench application benchmark
suite by simulating them on the ALPHA core using gem5.
The results of this experiment are presented in Fig. 19. From
these results, we make the following key observations:
• the combination of DMTCP and gzip is highly success-
ful in reducing the checkpoint size by ∼ 6×

• the combination of DMTCP, HBICT, and gzip tech-
niques reduce the checkpoint size by ∼ 5.7×.

HBICT, which utilizes delta-compression, requires all pre-
vious checkpoints for efficient rollback. Since the base file

FIGURE 19. Effectiveness of state compression techniques in reducing
state size.

size of HBICT+DMTCP is 1.03× larger than the file size
of DMTCP, the effectiveness of the combined state com-
pression technique (DMTCP+HBICT+gzip), with respect to
DMTCP, is reduced.

V. RELATED WORK
Reliability is a major research challenge that is being tackled
by the community at large via global initiatives like the NSF’s
Variability Expedition1 and DFG’s SPP 1500 Priority Pro-
gram.2 Research works from the academia and industry alike
have addressed the challenges associated with technology
scaling across the layers of the computing stack.

A. MITIGATION STRATEGIES
The work in [38] presents the Razor approach, which can be
used to dynamically detect and correct timing errors by mon-
itoring the error rate at run-time to tune the circuit’s supply
voltage. The adaptive approach presented in [39] enables per-
core dual modular redundancy (DMR) through the means of
DVFS to offer a stable soft error rate (SER). An OS-level
dynamic reliability management system for heterogeneous
architectures for achieving an optimal trade-off between reli-
ability (lifetime) and power/performance efficiency is pre-
sented in [40]. A software-level technique is presented in [9],
which is used to detect errors by duplicating instructions
during compile time by using different variables and registers
for new instructions. A software-controlled fault-tolerance
scheme is proposed in [41] that allows programmers and
designers to trade-off between performance and reliability
based on the system’s requirement. Luo et al. [42] quantify
the tolerance of application to memory errors to propose sev-
eral new hardware/software heterogeneous-reliability mem-
ory systems to reduce their vulnerabilities and data-center
costs. A hardware-software co-design approach for soft error
mitigation in embedded systems has been proposed in [43],
which includes a generic software hardening environment
that is used to generate a ‘‘hardened’’ code variant and a hard-
ening infrastructure called FTUnshades in FPGAs, which
is used to access the reliability of the complete hardware-
software stack of the embedded system.

1http://www.variability.org/
2http://spp1500.itec.kit.edu

145336 VOLUME 7, 2019



B. S. Prabakaran et al.: Architectural-Space Exploration of Heterogeneous Reliability and Checkpointing Modes

B. RELIABILITY MODELING
The work in [44] demonstrates the concept of Program
Vulnerability Factor, which captures the architecture-level
fault-masking properties of the underlying program while
exhibiting workload-driven changes in the AVF for all archi-
tectural components. Li et al. [45] analyze the correlation
between the soft error rate and the energy consumption
behavior of on-chip data caches. This involves analyzing
(1) the leakage energy optimizations on soft errors, and (2) the
energy overheads of protecting on-chipmemories against soft
errors. A software-level technique proposed in [46] intro-
duces transient fault tolerance in a multi-core system by
exploiting process-level redundancy (PLR) to create multi-
ple application threads and compare them to ensure correct
execution of the application. A software-level approach to
enable self-adaptive reliability for multi-/many-core systems
is proposed in [47] by activating redundancy measures based
on the application’s dependability requirements. A simulta-
neous and redundantly threaded (SRT) processor is presented
in [48], which provides transient fault tolerance with signifi-
cantly higher performance. Redundant copies of the program
threads are executed simultaneously on the SRT to ensure
accurate application execution. Kriebel et al. [49] analyze
and present the reliability issues of on-chip memory systems
to propose a reliability-aware reconfigurable last-level cache
architecture that adapts the cache parameters to concurrently
execute multi-threaded workloads at run-time to minimize
their vulnerabilities. A soft error-aware cache architectural
space-exploration methodology is presented in [50] for vary-
ing the application workloads and cache parameters for the
complete cache hierarchy. An adaptive soft-error resilience
(ASER) approach is presented in [51] by proposing and
managing reliability-heterogeneous dark silicon many-core
processors (darkRHPs). The proposed darkRHPs deploy
redundancy at the architecture level, i.e., hardening either
the full-processor pipeline of an in-order LEON3 proces-
sor and/or caches. The work in [52] presents an approach
that exploits the on-chip dark-silicon to synergistically mit-
igate reliability and variability challenges associated with
transistor technology scaling. An overview of different het-
erogeneous fault-tolerance schemes for both hardware and
software layers is presented in [11], which also provides an
initial proof-of-concept of this work.

This work, on the other hand, focuses on generating and
exploring a wide range of heterogeneous reliability modes
using two key approaches, i.e., (1) Redundancy, by hardening
different combinations of the pipeline components for an
out-of-order superscalar processor, and (2) Checkpointing,
by reducing the size of the checkpoint data using efficient
compression techniques.

VI. CONCLUSION
In this work, we presented a novel architectural-space gen-
eration and exploration methodology that is used to develop
a wide range of heterogeneous reliability modes for out-of-
order superscalar processors. By analyzing the architectural

vulnerability of key pipeline components, we have observed
that the pipeline components have varying architectural vul-
nerability factors for different application workloads. Based
on this observation, we propose to harden the pipeline compo-
nents in multiple different combinations with varying levels
of reliability to cater to the application’s requirement while
minimizing the power/area overhead. We have also extended
the AVF metric to define the Full-Processor Vulnerability
Factor (FPVF), which can be used to estimate the processor’s
vulnerability as a whole, for a given application workload,
instead of analyzing the vulnerability of each component.
The pareto-optimal reliability mode RM7 is successful in
reducing the FPVF by 87% on average, with area and power
overheads of 10% and 43%, respectively. We have also illus-
trated the benefits of our proposed approach at run-time by
evaluating two simple task-mapping strategies, which can
be used to either minimize power or processor vulnerability
based on the system’s constraints. To further enhance our
design space for heterogeneous reliability, we also investigate
effective state-compression techniques to reduce the data size
of a checkpoint by∼6×. Our studies illustrate that in power-
constrained scenarios, enabling reliability at a fine granu-
larity, and deploying reliability-heterogeneous super-scalar
out-of-order processors bear a significant potential for real-
world systems, especially when considering diverse vulnera-
bility profiles of different applications, which can further vary
depending upon their input workloads.

ACKNOWLEDGMENT
The authors would like to thank Arun Subramaniyan, Segnon
Jean Bruno Ahandagbe, and Hariharan Sivaraman for the
initial technical discussions.

REFERENCES
[1] J. Henkel, L. Bauer, N. Dutt, P. Gupta, S. Nassif, M. Shafique, M. Tahoori,

and N. Wehn, ‘‘Reliable on-chip systems in the nano-era: Lessons learnt
and future trends,’’ inProc. 50th Annu. Design Automat. Conf., Austin, TX,
USA, May/Jun. 2013, p. 99. doi: 10.1145/2463209.2488857.

[2] R. C. Baumann, ‘‘Radiation-induced soft errors in advanced semiconductor
technologies,’’ IEEE Trans. Device Mater. Rel., vol. 5, no. 3, pp. 305–316,
Sep. 2005.

[3] G. P. Saggese, N. J. Wang, Z. T. Kalbarczyk, S. J. Patel, and R. K. Iyer,
‘‘An experimental study of soft errors in microprocessors,’’ IEEE Micro,
vol. 25, no. 6, pp. 30–39, Nov. 2005. doi: 10.1109/MM.2005.104.

[4] S. Feng, S. Gupta, A. Ansari, and S. A. Mahlke, ‘‘Shoestring: Probabilistic
soft error reliability on the cheap,’’ in Proc. 15th Int. Conf. Architectural
Support Program. Lang. Operating Syst., Pittsburgh, PA, USA, Mar. 2010,
pp. 385–396. doi: 10.1145/1736020.1736063.

[5] S. Borkar, ‘‘Designing reliable systems from unreliable components: The
challenges of transistor variability and degradation,’’ IEEE Micro, vol. 25,
no. 6, pp. 10–16, Nov./Dec. 2005. doi: 10.1109/MM.2005.110.

[6] T. Li, R. Ragel, and S. Parameswaran, ‘‘Reli: Hardware/software
Checkpoint and Recovery scheme for embedded processors,’’ in Proc.
Design, Automat. Test Eur. Conf. Exhib., Dresden, Germany, Mar. 2012,
pp. 875–880. doi: 10.1109/DATE.2012.6176621.

[7] C.-C. J. Li and W. K. Fuchs, ‘‘CATCH-compiler-assisted techniques
for checkpointing,’’ in Proc. 20th Int. Symp. Fault-Tolerant
Comput., Newcastle Upon Tyne, U.K., Jun. 1990, pp. 74–81.
doi: 10.1109/FTCS.1990.89337.

[8] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt, ‘‘Detailed design and
evaluation of redundant multi-threading alternatives,’’ in Proc. 29th Annu.
Int. Symp. Comput. Archit., Anchorage, AK, USA, May 2002, pp. 99–110.
doi: 10.1109/ISCA.2002.1003566.

VOLUME 7, 2019 145337

http://dx.doi.org/10.1145/2463209.2488857
http://dx.doi.org/10.1109/MM.2005.104
http://dx.doi.org/10.1145/1736020.1736063
http://dx.doi.org/10.1109/MM.2005.110
http://dx.doi.org/10.1109/DATE.2012.6176621
http://dx.doi.org/10.1109/FTCS.1990.89337
http://dx.doi.org/10.1109/ISCA.2002.1003566


B. S. Prabakaran et al.: Architectural-Space Exploration of Heterogeneous Reliability and Checkpointing Modes

[9] N. Oh, P. P. Shirvani, and E. J. McCluskey, ‘‘Error detection by duplicated
instructions in super-scalar processors,’’ IEEE Trans. Rel., vol. 51, no. 1,
pp. 63–75, Mar. 2002. doi: 10.1109/24.994913.

[10] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August,
‘‘SWIFT: Software implemented fault tolerance,’’ in Proc. 3rd Int. Symp.
Code Gener. Optim., San Jose, CA, USA, Mar. 2005, pp. 243–254.
doi: 10.1109/CGO.2005.34.

[11] S. Rehman, F. Kriebel, B. S. Prabakaran, F. Khalid, and M. Shafique,
‘‘Hardware and software techniques for heterogeneous fault-tolerance,’’
in Proc. IEEE 24th Int. Symp. On-Line Test. Robust Syst. Design, Platja
d’Aro, Spain, Jul. 2018, pp. 115–118. doi: 10.1109/IOLTS.2018.8474219.

[12] T. C. May and M. H. Woods, ‘‘Alpha-particle-induced soft errors in
dynamic memories,’’ IEEE Trans. Electron Devices, vol. 26, no. 1, pp. 2–9,
Jan. 1979.

[13] G. R. Srinivasan, P. C. Murley, and H. K. Tang, ‘‘Accurate, predictive
modeling of soft error rate due to cosmic rays and chip alpha radiation,’’
in Proc. IEEE Int. Rel. Phys. Symp., Apr. 1994, pp. 12–16.

[14] T. J. O’Gorman, ‘‘The effect of cosmic rays on the soft error rate of a
DRAM at ground level,’’ IEEE Trans. Electron Devices, vol. 41, no. 4,
pp. 553–557, Apr. 1994.

[15] P. Hazucha and C. Svensson, ‘‘Impact of CMOS technology scaling on the
atmospheric neutron soft error rate,’’ IEEE Trans. Nucl. Sci., vol. 47, no. 6,
pp. 2586–2594, Dec. 2000.

[16] Gaisler. Leon3ft Fault-Tolerant Processor. Accessed: May 16,
2019. [Online]. Available: https://www.gaisler.com/index.php/products/
processors/leon3ft

[17] R. E. Lyons and W. Vanderkulk, ‘‘The use of triple-modular redundancy
to improve computer reliability,’’ IBM J. Res. Develop., vol. 6, no. 2,
pp. 200–209, Apr. 1962. doi: 10.1147/rd.62.0200.

[18] M. M. Dickinson, J. B. Jackson, and G. C. Randa, ‘‘Saturn V
launch vehicle digital computer and data adapter,’’ in Proc. Fall Joint
Comput. Conf. I, New York, NY, USA, Oct. 1964, pp. 501–516.
doi: 10.1145/1464052.1464099.

[19] R. E. Kessler, ‘‘The Alpha 21264 microprocessor,’’ IEEE Micro, vol. 19,
no. 2, pp. 24–36, Mar./Apr. 1999. doi: 10.1109/40.755465.

[20] M. Johnson, Superscalar Microprocessor Design (Prentice Hall Series
in Innovative Technology). Upper Saddle River, NJ, USA: Prentice-Hall,
1991.

[21] W. Hwu and Y. N. Patt, ‘‘HPSm, a high performance restricted data
flow architecture having minimal functionality,’’ in Proc. 13th Annu. Int.
Symp. Comput. Archit., Los Alamitos, CA, USA, 1986, pp. 297–306.
doi: 10.1145/17356.17391.

[22] C. C. Corporation. (Jul. 1999). Alpha 21264 Microprocessor Hardware
Reference Manual. Alpha 21264 Manual. [Online]. Available:
http://www.archive.ece.cmu.edu/~ece447/s13/lib/exe/fetch.php?media=
21264hrm.pdf

[23] P. E. Gronowski, W. J. Bowhill, R. P. Preston, M. K. Gowan, and
R. L. Allmon, ‘‘High-performance microprocessor design,’’ IEEE J. Solid-
State Circuits, vol. 33, no. 5, pp. 676–686, May 1998.

[24] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. M. Austin,
‘‘A systematic methodology to compute the architectural vulnerability
factors for a high-performance microprocessor,’’ in Proc. 36th Annu.
IEEE/ACM Int. Symp.Microarchitecture, SanDiego, CA, USA,Dec. 2003,
pp. 29–42. doi: 10.1109/MICRO.2003.1253181.

[25] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, ‘‘The gem5 simulator,’’
ACM SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7, 2011.
doi: 10.1145/2024716.2024718.

[26] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, ‘‘McPAT: An integrated power, area, and timing modeling
framework for multicore andmanycore architectures,’’ inProc. 42nd Annu.
IEEE/ACM Int. Symp. Microarchitecture, NewYork, NY, USA, Dec. 2009,
pp. 469–480. doi: 10.1145/1669112.1669172.

[27] J. Ansel, K. Arya, and G. Cooperman, ‘‘DMTCP: Transparent check-
pointing for cluster computations and the desktop,’’ in Proc. 23rd IEEE
Int. Symp. Parallel Distrib. Process., Rome, Italy, May 2009, pp. 1–12.
doi: 10.1109/IPDPS.2009.5161063.

[28] DMTCP. Accessed: May 14, 2019. [Online]. Available: http://dmtcp.
sourceforge.net/

[29] S. Agarwal, R. Garg, M. S. Gupta, and J. E. Moreira, ‘‘Adaptive incre-
mental checkpointing for massively parallel systems,’’ in Proc. 18th Annu.
Int. Conf. Supercomput., Saint Malo, France, Jun./Jul. 2004, pp. 277–286.
doi: 10.1145/1006209.1006248.

[30] HBICT. Accessed: May 14, 2019. [Online]. Available: http://hbict.
sourceforge.net/index.html

[31] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, ‘‘MiBench: A free, commercially representative embedded
benchmark suite,’’ in Proc. 4th Annu. IEEE Int. Workshop Workload Char-
acterization, Dec. 2001, pp. 3–14.

[32] S. K. S. Hari, T. Tsai, M. Stephenson, S. W. Keckler, and J. S. Emer,
‘‘SASSIFI: An architecture-level fault injection tool for GPU appli-
cation resilience evaluation,’’ in Proc. IEEE Int. Symp. Perform.
Anal. Syst. Softw., Santa Rosa, CA, USA, Apr. 2017, pp. 249–258.
doi: 10.1109/ISPASS.2017.7975296.

[33] H. Ziade, R. A. Ayoubi, and R. Velazco, ‘‘A survey on fault injection
techniques,’’ Int. Arab J. Inf. Technol., vol. 1, no. 2, pp. 171–186, 2004.
[Online]. Available: http://www.iajit.org/ABSTRACTS-2.htm#04

[34] S. Rehman, M. Shafique, F. Kriebel, and J. Henkel, ‘‘Reliable software for
unreliable hardware: Embedded code generation aiming at reliability,’’ in
Proc. 7th IEEE/ACM/IFIP Int. Conf. Hardw./Softw. Codesign Syst. Synth.,
Taipei, Taiwan, Oct. 2011, pp. 237–246. doi: 10.1145/2039370.2039408.

[35] S. S. Mukherjee, J. S. Emer, and S. K. Reinhardt, ‘‘The soft error problem:
An architectural perspective,’’ in Proc. 11th Int. Symp. High-Perform.
Comput. Archit., San Francisco, CA, USA, Feb. 2005, pp. 243–247.
doi: 10.1109/HPCA.2005.37.

[36] A. Dixit and A.Wood, ‘‘The impact of new technology on soft error rates,’’
in Proc. Int. Rel. Phys. Symp., Apr. 2011, pp. 5B.4.1–5B.4.7.

[37] J. Gaisler, ‘‘A portable and fault-tolerant microprocessor based
on the SPARC v8 architecture,’’ in Proc. Int. Conf. Dependable
Syst. Netw., Bethesda, MD, USA, Jun. 2002, pp. 409–415.
doi: 10.1109/DSN.2002.1028926.

[38] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N. S. Kim, and
K. Flautner, ‘‘Razor: Circuit-level correction of timing errors for low-
power operation,’’ IEEE Micro, vol. 24, no. 6, pp. 10–20, Nov./Dec. 2004.
doi: 10.1109/MM.2004.85.

[39] R. Vadlamani, J. Zhao, W. Burleson, and R. Tessier, ‘‘Multicore soft
error rate stabilization using adaptive dual modular redundancy,’’ in Proc.
Design, Automat. Test Eur. Conf. Exhib., Dresden, Germany, Mar. 2010,
pp. 27–32. doi: 10.1109/DATE.2010.5457242.

[40] A. Baldassari, C. Bolchini, and A. Miele, ‘‘A dynamic reliability manage-
ment framework for heterogeneous multicore systems,’’ in Proc. IEEE Int.
Symp. Defect Fault Tolerance VLSI Nanotechnol. Syst., Cambridge, U.K.,
Oct. 2017, pp. 1–6. doi: 10.1109/DFT.2017.8244440.

[41] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, D. I. August, and
S. S. Mukherjee, ‘‘Software-controlled fault tolerance,’’ ACM
Trans. Archit. Code Optim., vol. 2, no. 4, pp. 366–396, Dec. 2005.
doi: 10.1145/1113841.1113843.

[42] Y. Luo, S. Govindan, B. Sharma, M. Santaniello, J. Meza, A. Kansal,
J. Liu, B. Khessib, K. Vaid, and O. Mutlu, ‘‘Characterizing appli-
cation memory error vulnerability to optimize datacenter cost via
heterogeneous-reliability memory,’’ in Proc. 44th Annu. IEEE/IFIP Int.
Conf. Dependable Syst. Netw., Atlanta, GA, USA, Jun. 2014, pp. 467–478.
doi: 10.1109/DSN.2014.50.

[43] S. Cuenca-Asensi, A. Martinez-Alvarez, F. Restrepo-Calle, F. R. Palomo,
H. Guzman-Miranda, and M. A. Aguirre, ‘‘A novel co-design approach
for soft errors mitigation in embedded systems,’’ IEEE Trans. Nucl. Sci.,
vol. 58, no. 3, pp. 1059–1065, Jun. 2011.

[44] V. Sridharan and D. R. Kaeli, ‘‘Eliminating microarchitectural dependency
from architectural vulnerability,’’ in Proc. IEEE 15th Int. Symp. High
Perform. Comput. Archit., Raleigh, NC, USA, Feb. 2009, pp. 117–128.
doi: 10.1109/HPCA.2009.4798243.

[45] L. Li, V. Degalahal, N. Vijaykrishnan, M. Kandemir, andM. J. Irwin, ‘‘Soft
error and energy consumption interactions: A data cache perspective,’’ in
Proc. Int. Symp. Low Power Electron. and Design, Newport Beach, CA,
USA, Aug. 2004, pp. 132–137. doi: 10.1145/1013235.1013273.

[46] A. Shye, T. Moseley, V. J. Reddi, J. Blomstedt, and D. A. Connors, ‘‘Using
process-level redundancy to exploit multiple cores for transient fault toler-
ance,’’ in Proc. 37th Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw.,
Edinburgh, U.K., Jun. 2007, pp. 297–306. doi: 10.1109/DSN.2007.98.

[47] C. Bolchini, M. Carminati, and A. Miele, ‘‘Self-adaptive fault tolerance in
multi-/many-core systems,’’ J. Electron. Test., vol. 29, no. 2, pp. 159–175,
2013. doi: 10.1007/s10836-013-5367-y.

[48] S. K. Reinhardt and S. S. Mukherjee, ‘‘Transient fault detection via
simultaneous multithreading,’’ in Proc. 27th Int. Symp. Comput. Archit.,
Vancouver, BC, Canada, Jun. 2000, pp. 25–36. doi: 10.1109/ISCA.2000.
854375.

145338 VOLUME 7, 2019

http://dx.doi.org/10.1109/24.994913
http://dx.doi.org/10.1109/CGO.2005.34
http://dx.doi.org/10.1109/IOLTS.2018.8474219
http://dx.doi.org/10.1147/rd.62.0200
http://dx.doi.org/10.1145/1464052.1464099
http://dx.doi.org/10.1109/40.755465
http://dx.doi.org/10.1145/17356.17391
http://dx.doi.org/10.1109/MICRO.2003.1253181
http://dx.doi.org/10.1145/2024716.2024718
http://dx.doi.org/10.1145/1669112.1669172
http://dx.doi.org/10.1109/IPDPS.2009.5161063
http://dx.doi.org/10.1145/1006209.1006248
http://dx.doi.org/10.1109/ISPASS.2017.7975296
http://dx.doi.org/10.1145/2039370.2039408
http://dx.doi.org/10.1109/HPCA.2005.37
http://dx.doi.org/10.1109/DSN.2002.1028926
http://dx.doi.org/10.1109/MM.2004.85
http://dx.doi.org/10.1109/DATE.2010.5457242
http://dx.doi.org/10.1109/DFT.2017.8244440
http://dx.doi.org/10.1145/1113841.1113843
http://dx.doi.org/10.1109/DSN.2014.50
http://dx.doi.org/10.1109/HPCA.2009.4798243
http://dx.doi.org/10.1145/1013235.1013273
http://dx.doi.org/10.1109/DSN.2007.98
http://dx.doi.org/10.1007/s10836-013-5367-y
http://dx.doi.org/10.1109/ISCA.2000.854375
http://dx.doi.org/10.1109/ISCA.2000.854375


B. S. Prabakaran et al.: Architectural-Space Exploration of Heterogeneous Reliability and Checkpointing Modes

[49] F. Kriebel, S. Rehman, A. Subramaniyan, S. J. B. Ahandagbe,M. Shafique,
and J. Henkel, ‘‘Reliability-aware adaptations for shared last-level caches
in multi-cores,’’ ACMTrans. Embedded Comput. Syst., vol. 15, no. 4, p. 67,
Aug. 2016. doi: 10.1145/2961059.

[50] A. Subramaniyan, S. Rehman, M. Shafique, A. Kumar, and J. Henkel,
‘‘Soft error-aware architectural exploration for designing reliability
adaptive cache hierarchies in multi-cores,’’ in Proc. Design, Automat.
Test Eur. Conf. Exhib., Lausanne, Switzerland, Mar. 2017, pp. 37–42.
doi: 10.23919/DATE.2017.7926955.

[51] F. Kriebel, S. Rehman, D. Sun, M. Shafique, and J. Henkel, ‘‘ASER:
Adaptive soft error resilience for reliability-heterogeneous processors
in the dark silicon era,’’ in Proc. 51st Annu. Design Automat. Conf.,
San Francisco, CA, USA, Jun. 2014, p. 1–6.
doi: 10.1145/2593069.2593094.

[52] F. Kriebel, M. Shafique, S. Rehman, J. Henkel, and S. Garg, ‘‘Variability
and reliability awareness in the age of dark silicon,’’ IEEE Des. Test,
vol. 33, no. 2, pp. 59–67, Apr. 2016. doi: 10.1109/MDAT.2015.2439640.

BHARATH SRINIVAS PRABAKARAN (S’19)
received the Bachelor of Engineering degree
in electrical and electronics and the Master of
Science degree in biological sciences from the
Birla Institute of Technology and Science (BITS),
Pilani, in 2017. He is currently pursuing the
Ph.D. degree with the Computer Architecture and
Robust Energy-Efficient Technologies (CARE-
Tech.) Research Group, Institute of Computer
Engineering, Technische Universität Wien (TU

Wien), Austria. He was a Visiting Researcher with TU Dresden for a span of
one year in 2016, where he completed his master thesis. His research interests
include fault-tolerant computing, wearable architectures, healthcare systems,
energy-efficient technologies, and embedded machine learning.

MIHIKA DAVE received the Bachelor of Engi-
neering degree from BITS-Pilani, India, in 2016,
where she secured the first rank in the Depart-
ment of Electrical and Electronics Engineering and
received a Bronze Medal in the entire batch of
students across all the Science and Engineering
Departments, and the Master of Science degree
in computer science from the University of Illi-
nois at Urbana-Champaign with a specialization
in natural language processing, in 2018. She is

currently a Software Engineer with Facebook, Inc. Her main research inter-
ests include heterogeneous fault-tolerance, machine learning, and natural
language processing. She was a recipient of several scholarships and awards,
such as the DAAD-WISE Scholarship, Michal S. Hughes Award in Software
Engineering, and BITS-Pilani Merit Scholarship.

FLORIAN KRIEBEL received the M.Sc. degree
in computer science from the Karlsruhe Institute
of Technology (KIT), Germany, in 2013. He is
currently a University Assistant with the Computer
Architecture and Robust Energy-Efficient Tech-
nologies (CARE-Tech.) Research Group, Insti-
tute of Computer Engineering, Technische Uni-
versität Wien (TU Wien), Austria. His current
research interests include dependable computing,
cross-layer reliability modeling, and optimization.

He has received the CODES+ISSS 2011 and 2015 Best Paper Awards.

SEMEEN REHMAN received the Ph.D. degree
in computer science from KIT, Germany,
in July 2015. Before that, she has been a Postdoc-
toral Researcher with the Technische Universität
Dresden (TU Dresden) and Karlsruhe Institute
of Technology (KIT), Germany, since 2015. She
is currently on a Laufbahnstelle (Tenure-Track
Assistant Professor) position with the Institute
of Computer Technology (ICT), Faculty of Elec-
trical Engineering and Information Technology,

Technische Universität Wien (TU Wien). She has coauthored one book,
multiple book chapters, and more than 30 publications in premier journals
and conferences. Her main research interests include dependable systems,
cross-layer design for error resiliency with a focus on run-time adaptations,
emerging computing paradigms, such as approximate computing, hardware
security, energy-efficient computing, embedded systems, MPSoCs, the IoT,
and CPS. Dr. Rehman has contributed key ideas that have led to various
DFG projects, such as GetSURE and GetSURE-II at the KIT, which focused
on enabling reliability across multiple software and hardware layers. At the
Chair for Processor Design at Technische Universität Dresden, Germany,
she initiated the research on Reconfigurable Approximate Computing. She
received the CODES+ISSS 2011 and 2015 Best Paper Awards, DATE
2017Best Paper AwardNomination, several HiPEACPaper Awards, Richard
Newton Young Student Fellow Award at DAC 2015, and Research Student
Award at KIT, in 2012. She has served on the TPC of multiple premier
conferences on design automation and embedded systems (such as DATE
and CASES) and has (co-)chaired sessions at the DATE 2017, 2018, and
2019 conferences.

MUHAMMAD SHAFIQUE (M’11–SM’16)
received the Ph.D. degree in computer science
from the Karlsruhe Institute of Technology (KIT),
Germany, in January 2011. Before, he was with
Streaming Networks Pvt. Ltd., where he was
involved in research and development of video
coding systems for several years. He has been a
Full Professor with the Computer Architecture and
Robust Energy-Efficient Technologies (CARE-
Tech.), Institute of Computer Engineering, Tech-

nische UniversitätWien (TUWien), Austria, since November 2016. He holds
one U.S. patent and has (co-)authored six books, more than ten book
chapters, and over 200 articles in premier journals and conferences. His
research interests include computer architecture, power-/energy-efficient
systems, robust computing, hardware security, brain-inspired computing
trends, such as neuromorphic and approximate computing, hardware and
system-level design for machine learning and AI, emerging technologies
and nanosystems, FPGAs, MPSoCs, and embedded systems. His research
has a special focus on cross-layer modeling, design, and optimization of
computing and memory systems, and their deployment in use cases from
the Internet-of-Things (IoT), cyber-physical systems (CPS), and ICT for
development (ICT4D) domains. Dr. Shafique is a member of the ACM,
SIGARCH, SIGDA, SIGBED, and HIPEAC, and a Senior Member of the
IEEE Signal Processing Society (SPS). He has given several Keynotes,
Invited Talks, and Tutorials. He has served on the TPC of numerous
prestigious IEEE/ACM conferences. He received the 2015 ACM/SIGDA
Outstanding New Faculty Award, six gold medals in his educational career,
and several best paper awards and nominations at prestigious conferences,
such as CODES+ISSS, DATE, DAC and ICCAD, Best Master Thesis
Award, DAC’14 Designer Track Best Poster Award, IEEE TRANSACTIONS OF

COMPUTER ‘‘Feature Paper of the Month’’ Awards, and Best Lecturer Award.
He has also organized many special sessions at premier venues and served
as the Guest Editor for the IEEE DESIGN AND TEST MAGAZINE and the IEEE
TRANSACTIONS ON SUSTAINABLE COMPUTING.

VOLUME 7, 2019 145339

http://dx.doi.org/10.1145/2961059
http://dx.doi.org/10.23919/DATE.2017.7926955
http://dx.doi.org/10.1145/2593069.2593094
http://dx.doi.org/10.1109/MDAT.2015.2439640

