IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received September 8, 2019, accepted September 29, 2019, date of publication October 4, 2019, date of current version October 16, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2945570

Enhanced List-Based Simulated Annealing
Algorithm for Large-Scale Traveling
Salesman Problem

LIJIN WANG!23, RONGYING CAI', MIN LIN'-23, AND YIWEN ZHONG /123

I College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
2Key Laboratory of Smart Agriculture and Forestry (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China
3Digital Fujian Research Institute of Big Data for Agriculture and Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China

Corresponding author: Yiwen Zhong (yiwzhong @fafu.edu.cn)
This work was supported in part by the Nature Science Foundation of Fujian Province of China under Grant 2019J01401, and in part by the

Special Fund for Scientific and Technological Innovation of Fujian Agriculture and Forestry University of China under
Grant CXZX2016026 and Grant CXZX2016031.

ABSTRACT List-based simulated annealing (LBSA) algorithm is a novel simulated annealing algorithm
where list-based cooling scheme is used to control the change of parameter temperature. Aiming to
improve the efficiency of the LBSA algorithm for large-scale optimization problems, this paper proposes an
enhanced LBSA (ELBSA) algorithm for solving large-scale traveling salesman problem (TSP). The ELBSA
algorithm can drive more sampling at more suitable temperatures and from more promising neighborhoods.
Specifically, heuristic augmented sampling strategy is used to ensure that more neighbors are from promising
neighborhoods, systematic selection strategy is proposed to guarantee that each component of the current
solution has a chance to be improved, and variable Markov chain length (VMCL), based on arithmetic
sequence, is used to sample more neighbors at more suitable temperatures. Extensive experiments were
performed to show the contribution of the heuristic augmented sampling strategy, and to verify the advantage
of using systematic selection and VMCL. Comparative experiments, which were conducted on a wide range
of large-scale TSP instances, show that the ELBSA algorithm is better than or competitive with most other
state-of-the-art metaheuristics.

INDEX TERMS Simulated annealing, traveling salesman problem, list-based cooling scheme, heuristic

augmented sampling, systematic selection, variable Markov chain length.

I. INTRODUCTION

Simulated annealing (SA) algorithm [1], [2] is a typical iter-
ative metaheuristic with an explicit strategy to escape from
local optima by allowing hill-climbing moves. Due to the
randomness of selecting candidate solutions from neighbor-
hoods of the current solution, its efficiency is not high, and its
convergence process can be extremely slow for large-scale
optimization problems. In the field of traveling salesman
problem (TSP), two strategies, instance-based sampling and
knowledge-based sampling, have been proposed to tackle this
low efficiency of SA algorithm. Instance-based sampling was
proposed by Wang et al. in multi-agent SA (MSA) algo-
rithm [3] and was also used in list-based SA (LBSA) algo-
rithm [4]. In instance-based sampling, solution components

The associate editor coordinating the review of this manuscript and

approving it for publication was Sudipta Roy

144366

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

of other solutions are used to guide the generation of candi-
date solution. Knowledge-based sampling was proposed by
Wang et al. in swarm SA (SSA) algorithm [5]. In knowledge-
based sampling, knowledge from searching history is stored
in pheromone matrix and is used to guide the generation
of candidate solution. Both instance-based sampling and
knowledge-based sampling use the experiences learned from
its searching history to guide the selection of neighbors.
As a result, the efficiency of sampling can be improved
remarkably.

Although instance-based sampling has shown promis-
ing performance, it does not use heuristic information of
TSP instance. Furthermore, the random selection strategy,
which is used by the LBSA algorithm to select the solu-
tion component to be replaced, may also deteriorate its
efficiency. Aiming to tackle those shortcomings, this paper
proposes an enhanced list-based SA (ELBSA) algorithm

VOLUME 7, 2019

https://orcid.org/0000-0002-9132-913X
https://orcid.org/0000-0001-5161-9311

L. Wang et al.: ELBSA Algorithm for Large-scale TSP

IEEE Access

with heuristic augmented instance-based sampling strategy
for the TSP. Inspired by the systematic selection strategy
used in SA algorithm [6] for quadratic assignment prob-
lem (QAP), the ELBSA algorithm uses a systematic way
to select the solution component for producing a candidate
solution. Finally, the ELBSA algorithm adopts a variable
Markov chain length (VMCL) to conduct more trials at more
profitable temperatures. Extensive experiments were carried
out to show the advantage of heuristic augmented sampling,
systematic selection, and VMCL. Comparative experiments,
which were carried out on a wide range of large-scale bench-
mark TSP instances, show that the proposed algorithm is
better than or competitive with most other state-of-the-art
metaheuristics.

The rest of this paper is organized as follows. Section 2 pro-
vides a short description of the TSP, the LBSA algorithm,
and metaheuristics for the large-scale TSP. Section 3 presents
the three strategies used by the ELBSA algorithm and the
pseudocode of the ELBSA algorithm. Section 4 fine-tunes
the parameters and analyzes the behavior of the ELBSA algo-
rithm. Section 5 compares the performance of the ELBSA
algorithm with that of other state-of-the-art metaheuristics
on a large number of TSP instances. Finally, in section 6 we
summarize our study and possible future research directions.

Il. RELATED WORK

A. TRAVELING SALESMAN PROBLEM

The TSP is one of the classical NP-hard problems in com-
binatorial optimization. The objective of the TSP is to find
a shortest route that visits each city once and returns to the
origin city. Consider a salesman who has to visit n cities,
the TSP can be defined as follows. Suppose a matrix D =
(d; j)nsn is used to store the distances between all pairs of
cities, where each element d; ; represents the length of the
edge from city i to city j. We can use a linked list x to represent
a solution. Each element x; in x represents an edge from city j
to city x;. To guarantee that x is a valid solution, x must be a
permutation of cities and x; # j for each j € {1, 2,3, ..., n}.
Using a TSP instance with four cities as an example, suppose
x = (3, 1,4, 2), then, x represents a solution with four edges
(e1,3,€2,1, €34, e42). Therefore, the route of solution x is
1 - 3 > 4 — 2 — 1. The goal of the TSP is to find a
solution x that minimizes

fo =Y djy (1)
j=1

B. LIST-BASED SIMULATED ANNEALING

The basic idea of SA algorithm is to allow accepting worse
solutions in order to escape from local minima. The probabil-
ity of accepting worse solution is decreased during the search
under the control of the parameter temperature. SA algorithm
uses the Metropolis acceptance criterion to decide whether to
accept a candidate solution. Suppose x is the current solution
and y is the candidate solution selected from x’s neighbors.
Their objective function values are f(x) and f(y). For a

VOLUME 7, 2019

minimization problem, the candidate solution y is accepted as
the new current solution x based on the acceptance probability

_ L fFroy<fx) @
P=N e~ orherwise
where t > 0 is the parameter temperature.

To use SA algorithm for a specific optimization problem,
one must specify the cooling schedule for the parameter
temperature. The LBSA [4] algorithm is a novel SA algo-
rithm which uses list-based cooling scheme to control this
parameter. In the list-based cooling scheme, all tempera-
tures are stored in a priority list, where a larger value has
a higher priority. In each generation, the maximum value
in the list is used as the current temperature to calculate
the acceptance probability for a candidate solution, and the
temperature value in the list is updated adaptively according
to the effectiveness of sampling. In the following subsections,
we introduce the method for producing the initial temperature
list and the temperature updating strategy used by the LBSA
algorithm.

1) PRODUCTION OF THE INITIAL TEMPERATURE LIST

The LBSA algorithm uses parameter pg (initial acceptance
probability) to produce the initial temperature values as
follows. Suppose x is the current solution, y is the candidate
solution, and f (x) and f (y) are their objective function values.
According to the Metropolis acceptance criterion, the accep-
tance probability p of y can be calculated using Eq. 2.
Conversely, if the acceptance probability pg is known, then
we can calculate a corresponding temperature # as int Eq. 3.

. —(f) —f(x)
0= In(po)

The LBSA algorithm uses parameter py and Eq. 3 to pro-
duce the initial temperature values for the temperature list.

3)

2) TEMPERATURE UPDATING STRATEGY

In each generation, LBSA uses the maximum value f,,,, in
the temperature list as the current temperature. For each 4y,
suppose there are ¢ times when the worse solution is accepted;
we use d; and p; to represent the difference between the
objective function values and the acceptance probability cal-
culated by Eq. 2, where i € {1,2,...,c}. In SA algo-
rithm, whenever a worse solution is met, a random number
r is created and is compared with p to decide whether to
accept this worse solution. If r is less than p, then the worse
solution is accepted. Therefore, for the ith accepted worse
solution, we can use Eq. 3 to calculate a new temperature #; as
t; = —d;/In(r;). The LBSA algorithm uses the average of all #;
(Zle ti/c) to replace the 7,4, in the temperature list. Because
ri is less than p; and t,,,,x = —d;/In(p;), t; is always less than
tmax- Therefore, Zle ti/c is also less than t,,,y. In this way,
the temperature will become lower and lower as the search
progresses.

144367

IEEE Access

L. Wang et al.: ELBSA Algorithm for Large-scale TSP

C. METAHEURISTICS FOR THE LARGE-SCALE TSP

In recent years, many metaheuristics have been proposed
to solve the TSP. Among these metaheuristics, some have
been applied to large-scale TSP instances, e.g., ant algo-
rithm [7]-[13], genetic algorithm [14], [15], particle swarm
optimization [16], [17], cuckoo search [18], [19], bee-
inspired algorithm [20]-[22], pigeon-inspired optimization
algorithm [23], bat algorithm [24], [25], immune algo-
rithm [26], invasive weed optimization [27], African buffalo
optimization [28], symbiotic organisms search [29], [30],
harmony search [31], evolutionary algorithm [32], neural
network [33], hybrid algorithms [34], [35], and those based
on local search [36]—[38].

Several versions of SA algorithm and hybrid SA algorithm
have been proposed for solving the TSP [3]-[5], [16], [23],
[30], [31], [36], [38]-[44]. Some of them have been applied to
large-scale TSP instances. Wang et al. [3] proposed the multi-
agent SA (MSA) algorithm with instance-based sampling
that produces the candidate solution by perturbing the cur-
rent solution with the solution component of other solutions.
Zhan et al. [4] proposed the LBSA algorithm that uses list-
based cooling scheme to control the change of temperature.
Wang et al. [5] proposed the swarm SA (SSA) algorithm with
knowledge-based sampling. In SSA, knowledge about the
search experience is stored in pheromone matrix and the algo-
rithm produces candidate solution by perturbing the current
solution with solution component selected according to the
pheromone matrix and heuristic information. Lin er al. [36]
proposed an adaptive hybrid simulated annealing-tabu search
algorithm (AHSA-TS) that combines the ideas of SA algo-
rithm and tabu search algorithm. In AHSA-TS, the Metropo-
lis acceptance criterion of SA algorithm is used to decide
whether to accept the solution generated by tabu search.
Geng et al. [38] proposed an adaptive simulated annealing
algorithm with greedy search (ASA-GS), in which greedy
search technique is embedded in SA algorithm to speed up
the convergence rate. In ASA-GS, the Metropolis acceptance
criterion is only used for the best solution of a number of
bad solutions. Wang et al. [31] proposed an evolutionary
harmony search algorithm, in which SA algorithm is used to
improve its intensification ability. In the discrete comprehen-
sive learning PSO (D-CLPSO) algorithm [16], the discrete
pigeon-inspired optimization (D-PIO) algorithm [23], and the
SA-based symbiotic organisms search (SOS-SA) algo-
rithm [30], the Metropolis acceptance criterion is used to
decide whether to accept the newly produced solutions. These
studies have shown that SA algorithm can not only be inde-
pendently used to solve TSP with promising performance but
also be hybridized with population-based metaheuristics to
improve the intensification ability of these algorithms.

Ill. ENHANCED LIST-BASED SA ALGORITHM

A. METHOD FOR CREATING THE INITIAL TEMPERATURE
LIST

The LBSA algorithm needs a parameter po to produce
initial temperature values. It is very tedious to fine-tune

144368

parameter values, and those parameter values found by trial
and error are quite often very poor. Therefore, an algorithm
with fewer parameters is very attractive for practical users.
Zhong et al. [16] suggested that parameter pg can be removed
and that the difference between objective function values can
be directly used as initial temperature values. To enhance
the robustness of the initial temperature values, we delete
some extreme values to reduce the effect of noise. Alg. 1
is the method for creating the initial temperature list, where
parameter len is the length of the temperature list. As shown
in line 4 of Alg. 1, the absolute value of f (y) — f (x) is directly
used as the initial temperature value. To reduce the impact of
noise, 2 x len temperatures are first inserted into /st, and then,
the top len/2 temperatures and the bottom len/2 temperatures
are deleted from /st in line 9 and line 10 of Alg. 1.

Algorithm 1 Method for Creating the Initial Temperature List

Input: /en The length of the initial temperature list
Qutput: A priority list of temperatures
1: Create an initial solution x and an empty priority list /st
2: while the length of /st is less than 2 x len do
3 Produce candidate solution y from neighbors of x
4 Insert |f(y) — f(x)| into Ist
5. if y is better than x then
6 xX=y
7. endif
8: end while
9: Remove the top len/2 elements from Ist
10: Remove the bottom len/2 elements from Ist
11: Return Ist.

B. SYSTEMATIC SELECTION AND HEURISTIC AUGMENTED
SAMPLING STRATEGY

The original instance-based sampling [3], [4] strategy
randomly selects city i and uses only history knowledge (rep-
resented by the solution of each agent) to guide the selection
of the next visiting city of city i. We can improve the instance-
based sampling strategy in two aspects: (1) use a systematic
way to select city i and, (2) in addition to using history knowl-
edge, also use heuristic information to guide the sampling.
To use systematic selection strategy for city i, we can use
the city index one-by-one as city i to create the candidate
solution. In this way, each solution component has a chance
to be improved. Conversely, if random selection is used,
potential improvements might be missed at low temperatures
because of the random nature of the search.

To use heuristic information to guide the sampling, we can
construct a nearest neighbor list for each city i. If the selected
edge ¢;; is already in solution x, then we use the nearest
neighbor list of city i to select an edge to disturb solution x.
Heuristic information can not only speed up the convergence
speed but also provide extra diversity. Alg. 2 is the pseu-
docode of the heuristic augmented instance-based sampling
method, where parameter i is used to control whether to use
systematic selection or random selection. A calling method

VOLUME 7, 2019

L. Wang et al.: ELBSA Algorithm for Large-scale TSP

IEEE Access

Algorithm 2 Heuristic Augmented Instance-Based Sampling
Method
Input: i A city number
Input: x A solution represented as a linked list
QOutput: A new solution
1: Select another solution y randomly
2: j =y; //City jis the city following i in y
3: if ¢;is already in x then
4: j =k where y, =i //City k is the city leading i in y
5: while ¢;; is already in x do
6
7
8
9

Randomly select city j from the nearest city list of
end while
. end if
: x1 = inverse(x, e; j)
10: xp = swap(x, e; ;)
11: x3 = blockInsert(x, e; ;)
12: Return The best one among x1, x2, and x3

may use a random way or a systematic way to create param-
eter i for Alg. 2. In line 6 of Alg. 2, heuristic information
is used to select another edge in case the selected edge e; ;
is already in solution x. After the new edge e¢;; is selected,
as in [16], [23], the best solution among the solutions pro-
duced by inverse, swap, and blockInsert is selected as the
candidate solution. In Alg. 2, the inverse(x, e;;) operator
produces a new solution by inverting the visiting sequence
of cities between x; and j. The swap(x, e; ;) operator pro-
duces a new solution by swapping the positions of x; and j.
The blockinsert(x, e; j) operator produces a new solution by
moving a block of cities led by j to the front of x;. We
use a TSP instance with six cities as an example to explain
these operators in detail. Suppose the current solution x is
(2,3,4,5,6,1), and the selected edge is e 5. The current solu-
tion x, inverse, swap, and blockInsert operators are depicted
in Fig.1. Fig.1 (a) depicts the current solution x, the edges in
the current solution, and its tour. Because the selected edge
is e1 5, we must put city 5 into the element x; whose current
value is city 2. Fig.1 (b) depicts the inverse operator where
the visiting sequence of cities between city 2 and city 5 has
been inverted. Fig.1 (c) depicts the swap operator where the
positions of city 2 and city 5 have been exchanged. Fig.1 (d)
depicts the blockinsert operator where a block of two cities
led by city 5 has been moved to the front of city 2. In this
paper, the block size is a randomly selected number in the
range 1 to 10, and the length of the nearest city list is 20.

C. VARIABLE Markov CHAIN LENGTH BASED ON
ARITHMETIC SEQUENCE

In the classical homogeneous SA algorithm, the Markov
chain length (MCL) at each temperature is a fixed number.
For large-scale optimization problems, this may not be the
most suitable strategy. Several studies have shown that trying
more neighbors at optimal temperatures can improve SA’s
performance. In the field of QAP, Bolte and Thonemann [45]

VOLUME 7, 2019

x=(2,3,4,56,1)

edges = (€12, €3, €34, €45, €56, 6.1)

our= [TF-{ 2} 315 {6 {1]

(a) Current solution x

r

edges = (€15, €26, €32, €43, €54, €61)

x=(56,234,1)

(b) Solution created by inverse(x, e;5)

our= [T -{a {2 {6 {1]

edges = (€15, €26, €34, €42, €53, €6.1)
x=(56,4,2,3,1)

(c) Solution created by swap(x, €45)

edges = (€5, €se, €52, €23, €34, €4.1)

x=(5,3,4,1,6,2)
(d) Solution created by blockinsert(x, e, 5)

FIGURE 1. Neighbor operators used to produce candidate solutions.

proposed an annealing schedule with cosine-based oscilla-
tion; MiseviCius [6] presented an annealing schedule with
Lundy-Mees-function-based oscillation. In the field of the
uncapacitated exam scheduling problem, Dowsland and
Thompson [46] recommended that less time be spent explor-
ing the neighborhood at high temperatures where most
moves are accepted; Cheraitia and Haddadi [47] presented an
annealing schedule with increasing MCL based on geometry
sequence.

A typical search process of SA algorithm has the following
features: (1) In the early stage with high temperature, most
candidate solutions are accepted, even though those solutions
are worse than the current solution. (2) In the late stage
when the temperature is low, almost no candidate solution is
accepted. (3) In the middle stage, there exist some profitable
temperatures where the largest improvement is obtained.
Inspired by the above features of SA algorithm, we propose a
VMCL strategy based on arithmetic sequence such that more
trials may be tried at more profitable temperatures. Suppose
the fixed MCL for each temperature in the LBSA algorithm
is M. To obtain the objective of trying more trials at profitable
temperatures, we propose the VMCL sequence as follows.
(1) Both the initial MCL and the final MCL are M /2. (2) The
MCL in the generation G X pos has the largest value 3M /2,
where G is the maximum generation and pos is a parameter

144369

IEEE Access

L. Wang et al.: ELBSA Algorithm for Large-scale TSP

to determine the position with the maximum MCL. (3) In the
generations before M x pos, MCL increases from M /2 to
3M /2 according arithmetic sequence. (4) In the generations
after G x pos, MCL decreases from 3M /2 to M /2 according
arithmetic sequence. Suppose M is equal to 100 and G is
equal to 1000, then, the effect of parameter pos for the VMCL
is as shown in Fig.2.

150
140+
130
120
1104
100

90 4

804

Markov chain length

/ ——pos=0.25
——pos=0.5

701 pos =0.75

60

50

T T T T T T T T T 1
0 100 200 300 400 500 600 700 800 900 1000
Iteration times

FIGURE 2. Comparison of MCLs with different parameters pos.

D. Pseudocode OF THE PROPOSED ELBSA ALGORITHM

The ELBSA algorithm uses a simple SA framework based
on fixed iteration times for the outer loop and VMCL at each
temperature. The detailed pseudocode of the ELBSA algo-
rithm is listed in Algo. 3. In Algo. 3, parameters P, G, M, and
pos represent the population size, maximum iteration times,
fixed MCL, and relative position of the generation with the
maximum MCL, respectively. Array aSol is used to store the
current solution of each agent, and idx is the identifier of each
agent. Array aCity is used to store the index of the selected
city for each agent whose following city will be changed
to produce the candidate solution. Array aMCL is used to
store the MCLs for each generation. In line 12, the index
of the selected city is changed to the next one in sequence,
and line 13 uses this city as the parameter to call Algo. 2 to
produce candidate solution. These two lines implement the
systematic selection for the ELBSA algorithm. Variable c is
used to record the number of times worse solution is accepted
at each temperature, and variable s is used to store the sum
of temperatures calculated by Eq. 3. In line 27, the average
temperature s/c is used to update the temperature list. To have
good initial solutions, the ELBSA algorithm uses the greedy
random construction method to produce initial solutions.
The time complexity of the ELBSA algorithm is analyzed
as follows. In total, the ELBSA algorithm calls Algo. 2 to
produce G x P x M candidate solutions. In Algo.2, the inverse,
swap, and blockInsert operators are used to created candidate
solutions. Because we use linked list to represent a solution,
the time complexity of swap and blocklnsert is O(1), and
the time complexity of inverse is O(n). Therefore, the time
complexity of Algo.2 is O(n). As aresult, the time complexity
of the ELBSA algorithm is O(G x P x M x n). In our

144370

Algorithm 3 Enhanced List-Based SA Algorithm
Input: P, G, M, and pos
Output: bx Best solution found
1: Use the greedy random construction method to produce
solutions aSol
2: Use Alg. 1 to produce the initial temperature list for each
agent
3: Create an array aCity of size P that stores the selected
city for each agent
4: Use parameters pos and M to create an array aMCL of
size G that stores the MCLs for each generation
5: bx = best solution in aSol
6: for g=0toG— 1do
7. foridx =0to P —1do
8
9

x = aSol[idx]
: t = The maximum value in x’s temperature list
10: s=0,c=0,k=0.

11: while & + + < aMCL|[g] do

12: aCitylidx] = (aCitylidx] + 1)%n

13: Produce solution y using Alg. 2 with parameters
aCitylidx] and x

14: Calculate the acceptance probability p of y

15: Produce a random number r in the range [0, 1)

16: if r < p then

17: if f(y) —f(x) > O then

18: s+ == —fx)/In(r)

19: c+ +

20: else if f(x) < f(bx) then

21: bx =x

22: end if

23: X =Yy

24: end if

25: end while //end of inner loop

26: if ¢ > 0 then

27 Replace the maximum value in x’s temperature
list with s/c

28: end if

29: end for //end of for each agent
30: end for //end of outer loop
31: Return bx

simulation, the parameter M is set to the city number n of
the TSP instance, so the time complexity of the ELBSA
algorithm is O(G x P x n?).

IV. BEHAVIOR ANALYSIS OF THE ELBSA ALGORITHM

To fine-tune the parameters and analyze the behavior of the
ELBSA algorithm, six experiments have been carried out on
benchmark TSP instances from TSPLIB [48]. The details
of these benchmark TSP instances can be obtained from
‘comopt.ifi.uni-heidelberg.de/software/TSPLIB95/’. In our
study, we only consider symmetric TSP instances where the
distance from city i to city j is the same as that from city j to
city i. The first experiment uses full factorial experiment to
find a suitable combination of the list length for the initial

VOLUME 7, 2019

L. Wang et al.: ELBSA Algorithm for Large-scale TSP

IEEE Access

temperature list and the position of the maximum MCL.
The other five experiments use the one-variable-at-a-time
approach to analyze the behavior of the ELBSA algorithm.
The second experiment is used to analyze the effect of the
list length. The third experiment is used to analyze the effect
of the position of the maximum MCL. The fourth experi-
ment is used to analyze the contribution of the heuristic aug-
mented sampling. The fifth experiment is used to analyze the
convergence behavior of the ELBSA algorithm. These four
experiments are performed on Pr1002, D2103, Fnl4461, and
P1a7397 instances. The sixth experiment is used to verify the
effectiveness of the systematic selection and the VMCL. The
last experiment is carried out on 33 large-scale TSP instances
with city number ranging from 1000 to 85900. In all of the
experiments, the termination condition is 1000 generations.
In the first five experiments, the population size P is 10.
To control the running time, the population size P of the
last experiment is set according to Eq.(4). The percentage
error of the best tour length (PE) and the percentage error of
the average tour length (PEav) are used to compare different
variants of the ELBSA algorithm. The following experiments
were run on an Intel Core i5-3570 CPU, with 3.4 GHz and
8 GB of RAM. Java was used as the programming language.

50, ifn < 1000

30, elseifn < 2000

else if n < 4000)
10, elseif n < 50000

3, otherwise

where n is the city number of TSP instance.

A. PARAMETER TUNING

Parameter tuning is important for metaheuristics to achieve
a good performance. The ELBSA algorithm has two numer-
ical parameters that need tuning, i.e., the list length (len) of
the temperature list and the position (pos) of the maximum
MCL. Full factorial experiment is used to find a reasonable
combination of len and pos. After some pilot experiments,
we set five levels for len € {130, 140, 150, 160, 170} and
three levels for pos € {0.25, 0.375, 0.5}. Experiments were
carried out on the 26 large-scale TSP instances with city
number less than 10000. For each combination of len and
pos, we run the ELBSA algorithm 25 times for each instance.
The average of PEav on these 26 TSP instances is used to
compare the performance. Fig.3 presents the histogram of
the simulation results. Fig.3 shows the following findings:
(1) the best combination of len and pos is 150 and 0.375;
(2) the parameter len is more robust when the parameter pos is
smaller; (3) the parameter pos is more robust when the param-
eter len is larger; and (4) the parameter len and the parameter
pos are relevant. In general, the smaller len is, the smaller
pos should be because optimal pos is dependent on the most
suitable temperature; when len is smaller, the temperature
will decrease more quickly. As a result, the optimal pos
should also be smaller.

VOLUME 7, 2019

0.82
I pos = 0.25
0.804 I pos = 0.375
Il pos =05
0.78 p
3
i 0.76
Q
=
O 074+
Q
&
o 0724
>
<
0.70
0.68
0.66 -

130 140 150 160 170
List Length len

FIGURE 3. Comparison of the ELBSA algorithm with different
combinations of len and pos.

B. EFFECT OF THE LIST LENGTH OF THE INITIAL
TEMPERATURE LIST

To analyze the effect of the list length len on the behavior
of the ELBSA algorithm, we test 11 different /len from 100 to
200 with a step 10. For each len, we run the ELBSA algorithm
50 times for each instance and calculate the percentage error
of the average tour lengths relative to the best known tour
length. Fig. 4 presents the relation between the percentage
error and len. Similar to those results obtained by [4] and [16],
Fig. 4 shows the following: (1) The optimal list length is
instance-dependent; for example, the optimal len is 130 for
the Pr1002 instance, but 150 for the P1a7397 instance. (2) The
list length is more robust on small instances than on large
instances; for example, both a small and a large list length will
notably deteriorate the performance of the ELBSA algorithm
on the Pla7397 instance.

—=—Pr1002
164 ¥ e D2103 v
hd —A— Fnl4461 v
1.4+ v v Pla7397 v
v v
1.2 Y—v7
8
w 1.0 A
2 &
o ‘ A
o ——
£ 08 ~A—a—a A
§ \\\'x,,,‘,,, - - -
6’.3 0.6
0.4+
. . .
0.24 * ° o P 3 ° ° a4
0.0

T T T T T T T T T T)
100 110 120 130 140 150 160 170 180 190 200
List Length

FIGURE 4. Comparison of the ELBSA algorithm with different list
lengths len.

C. EFFECT OF THE POSITION OF THE MAXIMUM VMCL

To analyze the effect of the position pos of the maximum
VMCL on the behavior of the ELBSA algorithm, we test
8 different pos from 0 to 1 with a step 1/8. For each pos,
we run the ELBSA algorithm 50 times for each instance
and calculate the percentage error of the average tour length

144371

IEEE Access

L. Wang et al.: ELBSA Algorithm for Large-scale TSP

154

v
1.4 v v
v
1.34 v
12 v —a— Pr1002
- v

114 v e D2103
= v —a— Fnl4461
g 107 v Pla7397
w 094 e
& A a4
> 0.8 —A XA
£ e i
$ 0.7 .
8
5 06
o

0.54

0.4 4

0.34

R S

T T T T T T T T T
0000 0125 0250 0375 0500 0625 0750 0.875 1.000
Position of the maximum MCL

FIGURE 5. Comparison of the ELBSA algorithm with different
positions pos of the maximum VMCL.

relative to the best known tour length. Fig. 5 presents the rela-
tion between the percentage error and the pos. Fig. 5 shows
the following: (1) The optimal pos is instance-dependent; for
example, the optimal pos is 0.5 for the Fnl4461 instance, but
0 for the Pla7397 instance. (2) The pos is more robust on
small instances than on large instances.

D. CONTRIBUTION OF THE HEURISTIC AUGMENTED
SAMPLING STRATEGY

In the ELBSA algorithm, heuristic information is used to
enhance the instance-based sampling. To analyze the effec-
tiveness of the heuristic information, we compare the perfor-
mances of the ELBSA algorithm with heuristic information
and the ELBSA algorithm without heuristic information.
To accomplish this, we implemented three variants of the
ELBSA algorithm: ELBSA with heuristic-based sampling
only, ELBSA with instance-based sampling only, and ELBSA
with both heuristic-based sampling and instance-based sam-
pling. Fig. 6 compares the contributions of the heuristic-based
sampling and the instance-based sampling. Fig. 6 shows
that using instance-based sampling only is better than using
heuristic-based sampling only. Fig. 6 also shows than ELBSA
with both heuristic-based sampling and instance-based sam-
pling has best performance among these three variants. These
results verify that the heuristic information has a positive
effect on the performance of the ELBSA algorithm.

E. CONVERGENCE ANALYSIS

To analyze the convergence behavior of the ELBSA algo-
rithm, we compare the temperature decrease process and
PEav convergence process with different list lengths of the
temperature list. The used list lengths of the temperature list
include 100, 150, and 200. The four figures in Fig. 7 present
the temperature decrease process of the ELBSA algorithm on
the four TSP instances. The four figures in Fig. 8 present the
PEav convergence process of the ELBSA algorithm. These
figures clearly show that the list length of the temperature list
determines the convergence speed of the ELBSA algorithm.
If the list length is too small, then the ELBSA algorithm will
converge quickly and may be trapped in the local optima

144372

74 [T Heuristic
History
6 [JHeuristic+History
54
8
0 44
3
j=2)
£ 3]
3 =
<4
£ 2
14
= ==
04 é
Pr1002 D2103 Fnl4461 Pla7397

FIGURE 6. Comparison of the ELBSA algorithm with different sampling
strategies.

more easily. Conversely, if the list length is too large, then
the ELBSA algorithm may spend too much time at high
temperatures and has insufficient intensification ability in the
late stage.

F. ADVANTAGE OF SYSTEMATIC SELECTION AND
VARIABLE MCL

The ELBSA algorithm uses the systematic selection strategy
and the variable MCL strategy to improve its performance.
To analyze the effect of the systematic selection and the
variable MCL, we compare the performances of ELBSA
algorithm with two variants of it, i.e., ELBSA with random
selection and fixed MCL (ELBSA-RF) and ELBSA with sys-
tematic selection and fixed MCL (ELBSA-SF). Experiments
were carried out on 33 large-scale TSP instances with city
numbers from 1000 to 85900. Tab. 1 shows the simulation
results. In Tab.1, the PEav of ELBSA-SF is highlighted in
bold if it is better than the PEav of ELBSA-RF, and the PEav
of ELBSA is highlighted in bold if it is better than the PEav of
ELBSA-SF. The average PE of ELBSA-RF, ELBSA-SF, and
ELBSA is 0.53, 0.463, and 0.459 respectively. The average
PEav of ELBSA-RF, ELBSA-SF, and ELBSA is 0.73, 0.703,
and 0.673 respectively. Among the 33 instances, ELBSA-SF
obtains better PEav than ELBSA-RF on 25 instances, and
ELBSA obtains better PEav than ELBSA-SF on 26 instances.
The Wilcoxon signed ranks test [49] is used to compare
the PEav of ELBSA-RF and ELBSA-SF, where RT denotes
the sum of ranks for the instances in which ELBSA-SF
outperforms ELBSA-RF, and R™ indicates the sum of ranks
for the opposite. The computed R, R~, and p-value are
406.5, 121.5, and 4.49e-03, respectively. This result means
that the systematic selection can significantly improve the
performance of the ELBSA algorithm. The Wilcoxon signed
ranks test is also used to compare the PEav of ELBSA-SF and
ELBSA, where RT denotes the sum of ranks for the instances
in which ELBSA outperforms ELBSA-SF, and R~ indicates
the sum of ranks for the opposite. The computed R*, R,
and p-value are 399.5, 128.5, and 6.60e-03, respectively. This
result means that the variable MCL can significantly improve
the performance of the ELBSA algorithm.

VOLUME 7, 2019

L. Wang et al.: ELBSA Algorithm for Large-scale TSP

IEEE Access

Pr1002

—l— List Length=100
@ List Length=150
—A— List Length = 200

Temperature

~e A
b

-

400 600 800

Iteration Times

Fnl4461
—-— List Length=100

@ List Length=150
—A— List Length = 200

225)

200 ||
175 4
150 o

125 4

Temperature

100 +
75
50 4

25

0 100 200 300 400 500 600 700 800 900
Iteration Times

g @ .\"*i;
=338 ‘t*:‘:t‘;

Temperature

1000 0 100 200 300 400 500 600 700 800

D2103

—l-— List Length=100
@ List Length=150
—A— List Length = 200

Temperature

o A
° A
-y 039 .
0+ '\"'—:T
1000 0 100 200 300 400 500 600 700 800 900 1000

Iteration Times

Pla7397

—l— List Length=100
@ List Length=150
A List Length = 200

16000 |||

14000 ||

12000 “
10000
8000
6000
4000

2000

900 1000
Iteration Times

FIGURE 7. Comparison of the temperature decrease processes of the ELBSA algorithm with different list lengths.

V. COMPETITIVENESS OF THE ELBSA ALGORITHM

To observe the competitiveness of the ELBSA algorithm,
ELBSA’s performance was compared with that of 32 state-
of-the-art algorithms on a large number of large-scale bench-
mark TSP instances. In all of the following experiments,
the length of the temperature list is 150, the position parame-
ter of the VMCL is 0.375, the maximum generation is 1000,
and the total sampling times is 1000 x P n where n is the city
number. The population size P is set according to Eq. 4 such
that the running time of the ELBSA algorithm is less than
the running time of the competitor as far as possible. In the
following subsections, Wilcoxon rank-sum test or Wilcoxon
signed ranks test is used to compare the performance of the
ELBSA algorithm with that of other state-of-the-art algo-
rithms. In the Wilcoxon signed ranks test, R™ denotes the
sum of ranks for the instances in which the ELBSA algorithm
outperforms the competitive one, and R~ indicates the sum of
ranks for the opposite.

A. COMPARISON WITH THE LBSA ALGORITHM

The ELBSA algorithm is an enhanced LBSA algorithm.
To observe the advantage of the ELBSA algorithm over the
LBSA algorithm. The ELBSA algorithm was compared with
the LBSA algorithm in detail on 33 large-scale TSP instances
with integer distance. We run the ELBSA algorithm and the
LBSA algorithm 25 times on each instance and calculate the

VOLUME 7, 2019

statistical results. Tab.2 shows the simulation results, where
the better one is highlighted in bold. In Tab.2, PEb, PEw,
PEav, PEme, and Std represent the percentage error of the best
solution, the percentage error of the worst solution, the per-
centage error of the average solution, the percentage error of
the median solution, and the standard deviation, respectively.
The Wilcoxon rank-sum test [49] was used to test whether the
two algorithms have significant difference on each instance.
If the p-value is less than 0.05, then the two algorithms have a
significant difference and the corresponding p-value is high-
lighted in bold. Among the 33 instances, the ELBSA algo-
rithm achieves a better performance on 29 instances and is
significantly better than the LBSA algorithm on 25 instances,
whereas the LBSA algorithm achieves a better performance
on 4 instances and is significantly better than the ELBSA
algorithm on 2 instances. The Wilcoxon signed ranks test
is used to compare the PEav of the ELBSA algorithm and
the LBSA algorithm. The computed R*, R™, and p-value are
493, 35, and 1.15e-05, respectively. This result means that
the ELBSA algorithm is significantly better than the LBSA
algorithm.

B. COMPARISON WITH OTHER SA-RELATED ALGORITHMS

Among the SA-related algorithms, we compare the ELBSA
algorithm with ASA-GS [38] and SOS-SA [30] on 17 bench-
mark instances with float distance. Tab. 3 presents the

144373

IEEE Access

L. Wang et al.: ELBSA Algorithm for Large-scale TSP

Pr1002

—— List Length=100
@ List Length=150
—A— List Length = 200

Percentage Error

ey

Percentage Error

D2103

—l— List Length=100
@ List Length=150
A List Length = 200

-

\.\‘
.
i
LSS SN

LRI S S

Iteration Times
Fnl4461

—l— List Length=100
@ List Length=150
A List Length = 200

Percentage Error

T T T T T T T T T 1
0 100 200 300 400 500 600 700 800 900 1000

Percentage Error

T T T T T T T T T 1
0 100 200 300 400 500 600 700 800 900 1000

Iteration Times
600
550] Pla7397
500 - —l— List Length=100
450 @ List Length=150
400 —A— List Length = 200
b

Iteration Times

— T T T T T T T T T T T T T T T T T 1
0 100 200 300 400 500 600 700 800 900 1000

" T r T T T o T b T o T r T r T o T » 1
0 100 200 300 400 500 600 700 800 900 1000
Iteration Times

FIGURE 8. Comparison of the convergence processes of the ELBSA algorithm with different list lengths.

simulation results, where the best result is highlighted in bold.
The average PEav values of ASA-GS, SOS-SA, and ELBSA
are 3.32, 1.9, and 0.93, respectively. Among the 17 instances,
ELBSA obtains the best PEav on 13 instances, and SOS-SA
obtains the best PEav on 4 instances. The Wilcoxon signed
ranks test is used to compare the PEav of ASA-GS, SOS-SA,
and ELBSA. For ELBSA and ASA-GS, the computed R™,
R™, and p-value are 136, 0, and 2.93e-4, respectively. For
ELBSA and SOS-SA, the computed R*,R™, and p-value are
120, 16, and 4.18e-03, respectively. This result means that
the ELBSA algorithm is significantly better than ASA-GS
and SOS-SA.

The ELBSA algorithm is also compared with AHSA-
TS [36] and D-CLPSO [16] on 20 benchmark instances with
integer distance. Tab. 4 shows the simulation results, where
the best result is highlighted in bold. The average PEav values
of AHSA-TS, D-CLPSO, and ELBSA are 1.402, 0.828, and
0.598, respectively. Among the 20 instances, the ELBSA
algorithm obtains the best PEav on 18 instances, and the
D-CLPSO algorithm obtains the best PEav on 2 instances.
The Wilcoxon signed ranks test is used to compare the PEav
of AHSA-TS, D-CLPSO, and ELBSA. For ELBSA and
AHSA-TS, the computed R*, R™, and p-value are 189, 1, and
1.03e-04, respectively. For ELBSA and D-CLPSO, the com-
puted R*, R™, and p-value are 176, 14, and 6.81e-04,

144374

respectively. This result means that the ELBSA algorithm is
significantly better than AHSA-TS and D-CLPSO.

C. COMPARISON WITH OTHER STATE-OF-THE-ART
ALGORITHMS
To further observe the competitiveness of the ELBSA algo-
rithm among state-of-the-art metaheuristics, the ELBSA
algorithm is also compared with 27 newly published meta-
heuristics. Three of these metaheuristics are compared in
detail, and the other 24 metaheuristics are compared in brief.
The ELBSA algorithm is compared in detail with honey
bees mating optimization (HBMO) [21], massively parallel
neural network (MPNN) [33], and D-PIO [23] on 33 bench-
mark instances with integer distance. Tab. 5 shows the simu-
lation results, where the best result is highlighted in bold. The
average PEav values of HBMO, MPNN, D-PIO, and ELBSA
are 0.076, 8.826, 0.739, and 0.673, respectively. In terms
of the average PEav for all of the instances, the HBMO
algorithm, which is augmented by the 2-opt, 2.5-opt and 3-opt
operators, achieves the best performance. The ELBSA algo-
rithm outperforms the other two algorithms. The Wilcoxon
signed ranks test is used to compare the PEav of MPNN,
D-PIO, and ELBSA. For ELBSA and MPNN, the computed
RT, R™, and p-value are 528, 0, and 5.4e-7, respectively. For
ELBSA and D-PIO, the computed R*, R™, and p-value are

VOLUME 7, 2019

L. Wang et al.: ELBSA Algorithm for Large-scale TSP

IEEE Access

TABLE 1. Comparison of the ELBSA algorithm with ELBSA-RF and ELBSA-SF.

No. Instance Optimal ELBSA-RF . ELBSA-SF , ELBSA .
PE PEav Time(s) PE PEav Time(s) PE PEav Time(s)

1 Dsj1000 18659688 0.089 0.336 17.5 0.104 0349 16.7 0.137 0304 163
2 Pr1002 259045 0.518 0.655 14.6 0.414 0.606 13.0 0.257 0.586 12.8
3 U1060 224094 0.148 0.35 15.9 0.232 0.404 142 0.225 0363 14.1
4 Vm1084 239297 0.071 0.318 18.6 0.059 0.287 17.1 0.097 0.213 16.8
5 Pcb1173 56892 0.237 0.534 18.8 0.148 0432 16.7 0.128 0424 165
6 DI1291 50801 0.311 0.508 20.8 0.264 0.55 18.1 0.232 0572 177
7 R11304 252948 0.039 0.315 23.1 0.057 0329 21.1 0.02 0.195 20.7
8 R11323 270199 0.12 0.353 237 0.053 0393 21.6 0.125 0354 212
9 Nrw1379 56638 0.339 0457 249 0.325 0.441 225 0.318 0418 223
10 F11400 20127 0.005 0.223 263 0.005 0.24 23.8 0.015 0395 23.7
11 Ul1432 152270 0.265 0375 25.7 0.282 0.402 23.0 0.295 0.386 23.0
12 F11577 22249 0.139 0.237 283 0.13 0.218 245 0.139 0.211 242
13 D1655 62128 0.46 0.696 30.0 0.246 0.49 26.2 0.171 0.45 25.8
14 Vm1748 336556 0.278 0477 377 0.21 0.388 35.0 0.251 041 34.7
15 U1817 57201 0.49 0.63 33.8 0404 0.613 30.2 0.372 0.548 29.5
16 R11889 316536 0.333 0.647 41.0 0.053 0.572 378 0.171 0.516 37.2
17 D2103 80450 0.027 0.153 27.1 0.058 0.155 24.1 0.092 0.148 233
18 U2152 64253 0.689 0.857 29.2 0.529 0.815 26.1 0.509 0.754 25.7
19 U2319 234256 0.47 0.58 37.3 0.47 0.566 34.0 0495 0.631 34.1
20 Pr2392 378032 0.644 0.854 342 0.561 0.784 30.3 0.515 0.723 29.7
21 Pcb3038 137694 0491 0.708 51.9 0.394 0.658 46.5 0444 0597 457
22 FI3795 28772 0.754 1.45 83.1 0.33 1.505 76.7 0.775 1572 754
23 Fnl4461 182566 0.805 0.888 53.5 0.73 0.847 50.0 0.566 0.784 494
24 RI5915 565530 0.752 1.088 85.0 0.631 1.033 82.6 0.523 0929 80.1
25 RI15934 556045 0.781 1.023 915 0.59 0.986 87.5 0.705 0974 852
26 Pla7397 23260728 0.879 1.226 132.6 0.876 1.186 127.5 0.831 1.268 126.6
27 R111849 923288 0.867 1.025 453.1 0.793 1.002 458.7 0.817 0943 4384
28 Usal3509 19982859 0.903 1.017 450.3 0.873 098 431.7 0.821 0939 4222
29 Brd14051 469388 0936 1 493.6 0908 0.986 4742 0.815 0902 459.1
30 DI5112 1573084 0.84 0.939 7344 0.818 0907 735.6 0.739 0.813 7157
31 DI18512 645244 0.928 0.99 824.0 0.904 0.965 790.2 0.846 0.886 769.7
32 Pla33810 66050535 1.524 1.71 2038.2 1.515 1.661 1930.4 1.355 1.539 1903.0
33 P1a85900 142383704 1.365 1.458 4060.6 1.313 1.441 3795.738 1342 1456 3827.2

Average 0.53 0.73 305.463 0463 0.703 289.81 0.459 0.673 286.9

435.5, 92.5, and 7.8e-4, respectively. This result means that
the ELBSA algorithm is significantly better than MPNN and
D-PIO.

The ELBSA algorithm is also compared in brief with
24 metaheuristics published in recent years. These meta-
heuristics include MSA [3], SSA [5], modified ant system
(MAS) [8], two-stage hybrid swarm intelligence optimization
(TSHACO) [35], ant colony extended (ACE) [11], ant colony
optimization algorithm with two-stage updating pheromone
(TSACO) [12], effective heuristics for ant colony optimiza-
tion (ESACO) [7] where 2-opt local search is used to improve
solution constructed by each ant, hybrid Max-Min ant sys-
tem (HMMA) [10], permutation-coded genetic algorithm
(PCGA) [15], genetic simulated annealing ant colony system
with particle swarm optimization techniques (HGA) [34], set-
based PSO where the global best solution is further improved
by 3-opt local search operator (S-PSOg) [17], set-based PSO
where iteration best positions are further improved by 3-opt
local search operator (S-PSOi) [17], bee colony optimiza-
tion with local search (BCO) [22], hybrid discrete artificial
bee colony algorithm with threshold acceptance criterion
(HDABC) [20], improved discrete cuckoo search algorithm
(IDCS) [18], discrete cuckoo search algorithm (DCS) [19],
discrete bat algorithm (DBA) [25], improved discrete
bat algorithm (IDBA) [24], evolutionary harmony search

VOLUME 7, 2019

algorithm (EHS) [31], immune algorithm combined with
estimation of distribution (IA-EDA) [26], discrete invasive
weed optimization algorithm (DIWO) [27], African buf-
falo optimization (ABO) [28], discrete symbiotic organisms
search (DSOS) [29], and dynamic multiscale region search
algorithm (DMRSA) [37]. Tab. 6 highlights the comparison
of the ELBSA algorithm with these 24 metaheuristics. The
column Distance Type denotes the type of distance between
cities, which may be float or integer. The column N denotes
the number of total instances. The column Dims denotes the
city numbers of the smallest and the largest instances. The
columns PEav and PEavl denote the PEav values of the
compared algorithm and the ELBSA algorithm, respectively.
Because many of the metaheuristics were tested on a small
number of large-scale TSP instances, instances with a city
number of more than 100 are also included for comparison
for these metaheuristics which were tested only on a small
number of large-scale TSP instances. We run the ELBSA
algorithm 25 times for each TSP instance to obtain the
statistical results, and the results of other algorithms are
directly obtained from the corresponding papers. The PEav
values of the TSP instances were used with the Wilcoxon
signed ranks test to compare the ELBSA algorithm with
the other algorithms. Except for ESACO and S-PSOi, both
of which are heavily enhanced by local search method,

144375

IEEE Access

L. Wang et al.: ELBSA Algorithm for Large-scale TSP

TABLE 2. Comparison of the ELBSA algorithm with the LBSA algorithm in detail.
No. Instance LBSA ELBSA p-value
PEb PEw PEav PEme Std PEb PEw PEav PEme Std
1 Dsj1000 0233 0.883 0.535 0.52 0.143 0.137 0499 0304 0292 0.1 7.14e-07
2 Pr1002 0436 0926 0.696 0.702 0.101 0257 0.762 0.586 0.603 0.11 5.73e-04
3 U1060 0.171 0.598 0.409 0413 0.117 0225 0578 0363 0.342 0.087 1.60e-01
4 Vm1084 0.153 0.647 0383 0361 0.145 0.097 0499 0213 0.194 0.089 4.61e-05
5 Pcb1173 0.264 0.826 0.54 0.524 0.142 0.128 0.684 0.424 0469 0.146 2.76e-02
6 D1291 0366 1.276 0801 0.762 0219 0232 1.161 0572 0502 0239 6.16e-04
7 R11304 0.064 0.723 0331 0311 0.17 0.02 0442 0195 0.145 0.136 4.21e-03
8 R11323 0246 0.752 0471 0443 0.144 0.125 0.522 0355 0379 0.123 2.15e-02
9 Nrwl1379 0381 0.77 0495 0482 0.089 0318 0517 0418 0418 0.057 1.24e-03
10 F11400 0.03 0.86 0331 0.298 0255 0.015 1.406 0395 0303 0386 9.92e-01
11 U1432 0214 0457 0328 0328 0.065 0295 0558 0386 0366 0.061 5.36e-03
12 F11577 0.121 1.685 0324 0207 0323 0.139 0445 0211 0202 0.061 2.77e-01
13 D1655 0.237 0.776 0521 0486 0.166 0.171 0.697 045 0464 0.116 2.48e-01
14 Vm1748 0.323 0.701 0.494 049 0.079 0.251 0572 041 0425 0.082 1.24e-03
15 U1817 0505 1.143 0.781 0.801 0.141 0372 0.745 0.548 0561 0.097 4.32e-07
16 R11889 0363 1268 0.771 0.794 0.22 0.171 0.889 0.516 0511 0.171 1.49e-04
17 D2103 0.04 0.288 0.164 0.15 0.068 0.092 0305 0.148 0.124 0.052 4.55e-01
18 U2152 0.803 1.212 099 0977 0.116 0509 0.996 0.754 0.756 0.114 1.99e-07
19 U2319 0295 04 0.346 0.33 0.028 0495 0.758 0.632 0.625 0.062 1.33e-09
20 Pr2392 0.701 1.286 0927 0925 0.131 0515 0919 0723 0.723 0.096 5.29e-07
21 Pcb3038 0.581 0936 0.775 0.792 0.098 0444 0.755 0597 0584 0.074 3.34e-07
22 F13795 0514 2568 1552 1.616 0488 0.775 2471 1572 1571 0552 8.16e-01
23 Fnl4461 1.093 1393 1.25 1271 0.078 0.566 0.88 0.784 0.795 0.064 1.33e-09
24 RI5915 1.022 1968 1491 1442 0227 0523 1.1 0.929 0939 0.127 2.43e-09
25 R15934 1.18 1.985 1.573 1554 0.22 0.705 1221 0974 0924 0.148 2.43e-09
26 P1a7397 1.062 1958 1432 1475 0215 0831 1.692 1269 1209 0212 1.57e-02
27 RI111849 1355 1.83 1.664 1.661 0.105 0.817 1.082 0943 0941 0.071 1.33e-09
28 Usal3509 1.4 1.727 1.563 1.566 0.08 0.821 1.079 0939 0936 0.068 1.33e-09
29 Brd14051 1.305 1.61 1.475 1488 0.069 0.815 1.099 0902 0.893 0.061 1.33e-09
30 D15112 1.327 1527 1405 1389 0.049 0.739 0902 0.813 0.804 0.042 1.33e-09
31 D18512 1.356 1.535 1455 1459 0.042 0846 0924 0.886 0.888 0.022 1.33e-09
32 Pla33810 1.499 1979 1.821 1.82 0.104 1355 1.773 1.539 1545 0.094 2.71e-08
33 Pla85900 3.062 3.359 3216 3227 0.075 1342 1553 1456 1478 0.052 1.33e-09
Average 0.688 1.268 0949 0942 0.143 0459 0924 0.673 0.664 0.120
TABLE 3. Comparison of ELBSA with ASA-GS and SOS-SA on 17 benchmark instances with float distance.
No. Instance Optimal ASA-GS SOS-SA_ ELBSA _
' PEav Time(s) PEav Time(s) PEav Time(s)
1 Pr1002 259045 2.01 164.42 1.06 12.81 0.585 9.44
2 Pcb1173 56892 1.63 193.08 1.19 8.73 0.531 1325
3 D1291 50801 2.85 214.64 0.96 12.08 1.248 14.26
4 R11323 270199 1.2 210.16 0.56 11.02 0329 17.33
5 F11400 20127 3.25 232.02 0.52 14.74 1.3 19.24
6 D1655 62128 3.26 281.88 3.19 16.19 1.058 22.13
7 Vm1748 336556 2.18 276.98 0.05 18.27 0.405 30.05
8 U2319 234256 1.06 410.97 0.46 18.11 0.632 33.26
9 Pcb3038 137694 2.57 554.28 1.46 25.67 0.672 4332
10 Fnl4461 182566 2.65 830.9 1.63 32.74 0.907 46.78
11 R15934 556045 3.48 1043.95 1.83 49.99 0953 78.28
12 Pla7397 23260728 3.89 124522 232 98.72 1.242 11948
13 Usal3509 19982859 4.14 2016.05 7.09 313.11 0.926 399.60
14 Brd14051 469385 3.58 2080.5 1.8 370.88 0.983 457.05
15 D18512 645238 3.75 259397 22 601.85 0979 746.93
16 Pla33810 66048945 5.27 4199.88 3.07 1899.99 1.61 1888.49
17 P1a85900 142382641 9.62 8855.13 2.84 7591.83 1.448 4030.31
Average 3.32 1494.35 1.90 652.75 0.93 468.78

the ELBSA algorithm outperforms the other 22 metaheuris-
tics. The results of the Wilcoxon signed ranks test with a
0.05 significance level show that, except for the ESACO,
S-PSOi, and MAS algorithms, the ELBSA algorithm is
significantly better than the other metaheuristics, where the
p-value is highlighted in bold. It is worth noting that although

144376

the ELBSA algorithm is worse than ESACO in terms of the
average PEav, the ELBSA algorithm outperforms ESACO on
the four largest instances.

When comparing the ELBSA algorithm with other
metaheuristics, we found that it is very difficult to fairly
compare existing metaheuristics. There are several reasons,

VOLUME 7, 2019

L. Wang et al.: ELBSA Algorithm for Large-scale TSP

IEEE Access

TABLE 4. Comparison of ELBSA with AHSA-TS and D-CLPSO on 20 benchmark instances with integer distance.

No. Instance Optimal AHSA-TS D-CLPSO ELBSA _
PEav Time(s) PEav Time(s) PEav Time(s)

1 Pr1002 259045 0.998 47.886 0.76 13.842 0.586 12.844
2 Pcb1173 56892 0.649 58.969 0.737 17.222 0.424 16.524
3 D1291 50801 1.08 197472 0.645 19.149 0.572 17.659
4 RI11304 252948 1.186 64.243 0.431 20.804 0.195 20.739
5 RI11323 270199 0.671 68.257 0.41 20.964 0.354 21.16
6 F11400 20127 1.76 527.347 0.328 24.208 0.395 23.656
7 F11577 22249 1.187 81.542 0.219 27.248 0.211 2422
8 D1655 62128 1.324 235.178 0.819 28.334 0.45 25.75
9 Vm1748 336556 1.165 99.985 0.678 33.21 0.41 34.714

10 R11889 316536 1.768
11 D2103 80450 1.171
12 U2319 234256 0.485
13 Pr2392 378032 1.479
14 Pcb3038 137694 1.083
15 Fnl4461 182566 1.128
16 R15934 556045 1.915
17 Pla7397 23260728 2.902
18 Usal3509 19982859 1.886
19 Brd14051 469385 2.021
20 D18512 645238 2.189

Average 1.402

101979 0.716 36.321 0.516 37.194
299.784 0.381 39.257 0.148 23318
132.388 0.385 48.055 0.631 34.095
133.704 1.042 30.211 0.723 29.704
168.122 0.998 43.985 0.597 45.68
275.655 1.222 43.685 0.784 49.386
379.243 1.205 75414 0.974 85.205
661.815 1427 129.106 1.268 126.588
111991 1466 488.165 0.939 422.184
123027 1.328 543.184 0.902 459.056
3328.67 1.362 837399 0.886 769.659
460.621 0.828 125.988 0.598 113.967

TABLE 5. Comparison of ELBSA with HBMO, MPNN, and MAS algorithms on 33 benchmark instances with integer distance.

No. Instance HBMO _ MPNN] D-PIO] ELBSA]
PEav Time(s) PEav Time(s) PEav Time(s) PEav Time(s)

1 Dsj1000 0.012 80.29 6.46 61.31 0.388 16.62 0.304 16.28
2 Pr1002 0.001 80.57 4.78 55.76 0.51 14.12 0.586 12.84
3 U1060 0 80.68 5.12 67.94 0.374 15.30 0.363 14.11
4 Vm1084 0.005 85.21 5.86 68.53 0.327 1743 0213 16.83
5 Pcb1173 0.003 89.28 7.5 70.53 0.392 17.76 0.424 16.52
6 D1291 0 91.14 9.66 81.58 0.668 19.29 0.572 17.66
7 RI11304 0 103.29 10 78.64 0.313 21.48 0.195 20.74
8 R11323 0 113.43 9.45 82.52 0408 21.98 0.354 21.16
9 Nrw1379 0.009 121.89 4.61 80.42 0.519 23.23 0418 22.30
10 F11400 0.011 198.67 4.32 234.54 0419 2454 0.395 23.66
11 Ul1432 0.016 200.01 5.02 96.78 0.388 23.90 0.386 22.99
12 F11577 0.022 227.28 1746 107.54 0.178 25.32 0211 24.22
13 D1655 0.122 241.67 9.6 99.4 0.369 27.23 0.45 25.75
14 Vm1748 0.189 257.81 6.68 132.86 0454 33.77 0.41 34.71
15 U1817 0.028 289.12 9.68 125.03 0.561 30.27 0.548 29.52
16 R11889 0.017 291.57 9.54 129.02 0.688 36.59 0.516 37.19
17 D2103 0.041 350.78 19.15 1325 0.145 23.78 0.148 23.32
18 U2152 0.39 357.23 1043 144.56 0.838 25.86 0.754 25.70
19 U2319 0.028 391.08 1.72 191.37 0.838 34.14 0.631 34.10

20 Pr2392 0.026 401.28 7.04
21 Pcb3038 0.002 457.29 7.88
22 F13795 0.37 461.81 16.13
23 Fnl4461 0.35 498.01 5.62
24 RI5915 0.012 557.87 12.94
25 R15934 0.0127 561.21 13.02
26 Pla7397 0.0086 780.31 10.19
27 RI11849 0.098 890.05 11.49
28 Usal3509 0.087 897.09 7.62
29 Brd14051 0 902.35 6.18
30 D15112 0.005 928.34 5.95
31 D18512 0.25 995.17 6
32 Pla33810 0.18 109545 13.23
33 P1a85900 0.21 1198.21 10.94
Average 0.076 432.59 8.826

161.54 0.612 29.68 0.723 29.70
195.26 0.624 43.72 0.597 45.68
389.22 1.52 67.33 1.572 75.43
330.24 0961 44.10 0.784 49.39
465.58 1.005 63.09 0.929 80.14
478.35 1.041 68.71 0974 85.21
682.31 1.441 113.59 1.268 126.59
1234.15 1.062 299.36 0.943 438.39
1579.27 1.168 318.28 0.939 422.18
1459.43 1.051 347.70 0.902 459.06
1802.36 0984 522.12 0.813 715.72
2084.02 1.049 569.24 0.886 769.66
4788.57 1.726 1385.08 1.539 1903.00
25034.37 1.378 5279.07 1456 3827.17
1294.7 0.739 291.02 0.673 286.88

such as the following: (1) The time complexity to produce
a new solution is quite different for different operators;
for example, the construction method used in the ant-
based system is far more complex than the inverse, swap,

VOLUME 7, 2019

and blockInsert operators used by the ELBSA algorithm.
(2) Different implementations may have quite different time
complexities for same operator; using the blockInsert oper-
ator as an example, it has an O(1) time complexity if the

144377

IEEE Access

L. Wang et al.: ELBSA Algorithm for Large-scale TSP

TABLE 6. Comparison of ELBSA with 24 algorithms published in recent years.

No. Algorithm Distance Type N Dims PEav PEavl R+ R- p-value

1 MSA [3] Float 17 [1002, 85900] 1.59 0.93 128 8 1.18e-03
2 SSA [5] Integer 26 [101, 33810] 0.55 0.27 282.5 425 1.24e-03
3 MAS [8] Integer 25 [1000, 15112] 1.12 0.54 208 92 5.11e-02
4 TSHACO [35] Integer 26 [101, 33810] 2.63 0.27 325 0 8.30e-06
5 ACE [11] Integer 15 [101, 1400] 0.77 0.24 92 13 7.60e-03
6 TSACO [12] Integer 9 [105, 2392] 1.05 0.24 36 0 7.69e-03
7 ESACO [7] Integer 11 [1002, 18512] 0.70 0.87 19 36 2.13e-01
8 HMMA [10] Float 12 [105, 1400] 7.7 0.29 66 0 2.22e-03
9 PCGA [15] Integer 14 [225, 18512] 433 0.52 91 0 9.82¢-04
10 HGA [34] Integer 15 [101, 1655] 222 016 105 0 6.55e-04
11 S-PSOg [17] Integer 9 [198, 1577] 2.73 0.25 36 0 7.69e-03
12 S-PSOi [17] Integer 9 [198, 1577] 012 025 8 28 5.81e-02
13 BCO [22] Integer 16 [574, 1379] 1.40 0.29 119 1 5.31e-04
14 HDABC [20] Float 17 [1002, 85900] 1.27 0.93 125 11 1.93e-03
15 IDCS [18] Integer 21 [107, 1379] 1.03 0.16 1925 175 1.09e-03
16 DCS [19] Float 30 [127, 3795] 132 0.24 423 12 5.75e-06
17 DBA [25] Integer 21 [107, 1379] 0.72 0.16 196 14 6.81e-04
18 IDBA [24] Integer 10 [101, 1002] 2.93 0.09 45 0 5.06e-03
19 EHS [31] Integer 17 [1002, 85900] 1.73 0.77 135 1 3.52e-04
20 IA-EDA [26] Integer 14 [101, 100000] 1.84 0.27 91 0 1.47¢-03
21 DIWO [27] Float 13 [107, 2392] 1.45 0.10 78 0 1.47e-03
22 ABO [28] Integer 15 [101, 1655] 1.34 0.6 104 1 8.05e-04
23 DSOS [29] Integer 13 [101, 2392] 384 0.6 78 0 1.47¢-03
24 DMRSA [37] Integer 15 [101, 1655] 0.98 0.16 101 4 2.33e-03

4000

3000 -

2000

1000

T T T T T T T
0 500 1000 1500 2000 2500 3000

FIGURE 9. The tour of the best solution for the Lin318 instance.

1000000

800000

600000 4

400000

200000

T T T T T T
] 200000 400000 600000 800000 1000000

FIGURE 10. The tour of the best solution for the Dsj1000 instance.

linked list is used to represent the solution, but it has an
O(n) time complexity if a simple array is used to represent
the solution. (3) For some algorithms, the solution evalua-
tion times are not deterministic. (4) The software or (and)

144378

hardware platforms are different. To facilitate the compar-
ative study of metaheuristics for the TSP, the source code
implementing the ELBSA algorithm is made publicly avail-
able in GitHub (https://github.com/yiwzhong/ELBSA4TSP).
To help researchers observe the results, we also provide a
python script to draw the tour of a solution. Using the script,
we depict the tours of the best results obtained by the ELBSA
algorithm for the Lin318 and Dsj1000 instances as shown
in Fig.9 and Fig.10. For the Lin318 instance, the tour length of
the solution depicted in Fig.9 is also the optimal tour length.
For the Dsj1000 instance, the percentage error of the tour
length for the solution depicted in Fig.10 is 0.124.

VI. CONCLUSION

Aiming to improve the sampling efficiency of SA algorithm
for the TSP, this paper presents an enhanced list-based
SA algorithm that can sample more neighbors at more
suitable temperatures and from more promising neighbor-
hoods. Specifically, heuristic augmented sampling, system-
atic selection, and variable Markov chain length are adopted
to improve the sampling efficiency. Extensive experiments
have verified the effectiveness of the proposed strategies. The
proposed ELBSA algorithm was compared with 32 state-of-
the-art metaheuristics on a wide range of large-scale TSP
instances. The simulation results show that except for the
three hybrid algorithms, i.e., ESACO [7], S-PSOi [17], and
HBMO [21], which are intensively augmented by local search
methods, the ELBSA algorithm achieves better performance
than the other algorithms. The three strategies used by the
ELBSA algorithm may be used to enhance SA algorithm for
other large-scale optimization problems. One shortage of the
ELBSA algorithm is that its parameters are not only rele-
vant, but are also instance-dependent. An interesting research

VOLUME 7, 2019

L. Wang et al.: ELBSA Algorithm for Large-scale TSP

IEEE Access

direction is to study how to use adaptive parameter control
to improve the performance of the ELBSA algorithm. The
ELBSA algorithm uses current population as an approximate
representation of knowledge obtained in the search process,
and uses the knowledge to guide its sampling. In the field
of metaheuristics, more advanced knowledge representations
exist, such as external archive and probabilistic models.
A potential research direction is to explore whether these
advanced knowledge representations can further improve the
efficiency of SA’s sampling.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

V. Cerny, “Thermodynamical approach to the traveling salesman problem:
An efficient simulation algorithm,” J. Optim. Theory Appl., vol. 45, no. 1,
pp. 41-51, 1985.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated
annealing,” Science, vol. 220, no. 4598, pp. 671-680, 1983.

C. Wang, M. Lin, Y. Zhong, and H. Zhang, “Solving travelling salesman
problem using multiagent simulated annealing algorithm with instance-
based sampling,” Int. J. Comput. Sci. Math., vol. 6, no. 4, pp. 336-353,
Sep. 2015.

S.-H. Zhan, J. Lin, Z.-J. Zhang, and Y.-W. Zhong, ‘“‘List-based simulated
annealing algorithm for traveling salesman problem,” Comput. Intell. Neu-
rosci., vol. 2016, Feb. 2016, Art. no. 1712630.

C. Wang, M. Lin, Y. Zhong, and H. Zhang, “Swarm simulated annealing
algorithm with knowledge-based sampling for travelling salesman prob-
lem,” Int. J. Intell. Syst. Technol. Appl., vol. 15, no. 1, pp. 74-94, 2016.
A. Misevicius, “A modified simulated annealing algorithm for the
quadratic assignment problem,” Informatica, vol. 14, no. 4, pp. 497-514,
2003.

H. Ismkhan, “Effective heuristics for ant colony optimization to han-
dle large-scale problems,” Swarm Evol. Comput., vol. 32, pp. 140-149,
Feb. 2017.

Y. Yan, H.-S. Sohn, and G. Reyes, “A modified ant system to achieve
better balance between intensification and diversification for the traveling
salesman problem,” Appl. Soft Comput., vol. 60, pp. 256-267, Nov. 2017.
A. M. Mohsen, “Annealing ant colony optimization with mutation oper-
ator for solving TSP,” Comput. Intell. Neurosci., vol. 2016, Oct. 2016,
Art. no. 8932896.

W. Yong, “Hybrid Max—Min ant system with four vertices and three lines
inequality for traveling salesman problem,” Soft Comput., vol. 19, no. 3,
pp. 585-596, Mar. 2015.

J. B. Escario, J. F. Jimenez, and J. M. Giron-Sierra, “Ant colony extended:
Experiments on the travelling salesman problem,” Expert Syst. with Appl.,
vol. 42, no. 1, pp. 390-410, Jan. 2015.

Z. Zhang and Z. Feng, “Two-stage updating pheromone for invariant
ant colony optimization algorithm,” Expert Syst. Appl., vol. 39, no. 1,
pp. 706-712, Jan. 2012.

J. Ning, Q. Zhang, C. Zhang, and B. Zhang, “A best-path-updating
information-guided ant colony optimization algorithm,” Inf. Sci.,
vols. 433-434, pp. 142-162, Apr. 2018.

J. Wang, O. Ersoy, M. He, and F. Wang, “Multi-offspring genetic algorithm
and its application to the traveling salesman problem,” Appl. Soft Comput.,
vol. 43, pp. 415-423, Jun. 2016.

P. V. Paul, N. Moganarangan, S. S. Kumar, R. Raju, T. Vengattaraman,
and P. Dhavachelvan, “Performance analyses over population seeding
techniques of the permutation-coded genetic algorithm: An empirical study
based on traveling salesman problems,” Appl. Soft Comput., vol. 32,
pp. 383-402, Jul. 2015.

Y. Zhong, J. Lin, L. Wang, and H. Zhang, “Discrete comprehensive
learning particle swarm optimization algorithm with metropolis acceptance
criterion for traveling salesman problem,” Swarm Evol. Comput., vol. 42,
pp. 77-88, Oct. 2018.

W.-N. Chen, J. Zhang, H. S. H. Chung, W.-L. Zhong, W.-G. Wu, and
Y.-H. Shi, “A novel set-based particle swarm optimization method for
discrete optimization problems,” IEEE Trans. Evol. Comput., vol. 14,
no. 2, pp. 278-300, Apr. 2010.

A. Ouaarab, B. Ahiod, and X.-S. Yang, “Discrete cuckoo search algorithm
for the travelling salesman problem,” Neural Comput. Appl., vol. 24,
nos. 7-8, pp. 1659-1669, 2014.

VOLUME 7, 2019

(19]

[20]

(21]

[22]

(23]

(24]

(25]

[26]

(27])

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

Y. Zhou, X. Ouyang, and J. Xie, “A discrete cuckoo search algorithm for
travelling salesman problem,” Int. J. Collaborative Intell., vol. 1, no. 1,
pp. 68-84, 2014.

Y. Zhong, J. Lin, L. Wang, and H. Zhang, “Hybrid discrete artificial
bee colony algorithm with threshold acceptance criterion for traveling
salesman problem,” Inf. Sci., vol. 421, pp. 70-84, Dec. 2017.

Y. Marinakis, M. Marinaki, and G. Dounias, “Honey bees mating opti-
mization algorithm for the Euclidean traveling salesman problem,” Inf.
Sci., vol. 181, no. 20, pp. 4684-4698, Oct. 2011.

L.-P. Wong, M. Y. H. Low, and C. S. Chong, “Bee colony optimization
with local search for traveling salesman problem,” Int. J. Artif. Intell. Tools,
vol. 19, no. 3, pp. 305-334, 2010.

Y. Zhong, L. Wang, M. Lin, and H. Zhang, “Discrete pigeon-inspired
optimization algorithm with metropolis acceptance criterion for large-scale
traveling salesman problem,” Swarm Evol. Comput., vol. 48, pp. 134-144,
Aug. 2019.

E. Osaba, X.-S. Yang, F. Diaz, P. Lopez-Garcia, and R. Carballedo, “An
improved discrete bat algorithm for symmetric and asymmetric traveling
Salesman problems,” Eng. Appl. Artif. Intel., vol. 48, pp. 59-71, Feb. 2016.
Y. Saji and M. E. Riffi, “A novel discrete bat algorithm for solving
the travelling salesman problem,” Neural Comput. Appl., vol. 27, no. 7,
pp. 1853-1866, 2016.

Z. Xu, Y. Wang, S. Li, Y. Liu, Y. Todo, and S. Gao, “Immune algorithm
combined with estimation of distribution for traveling salesman problem,”
IEEJ Trans. Elect. Electron. Eng., vol. 11, no. S1, pp. S142-S154, 2016.
Y. Zhou, Q. Luo, H. Chen, A. He, and J. Wu, “A discrete invasive weed
optimization algorithm for solving traveling salesman problem,” Neuro-
computing, vol. 151, no. 3, pp. 1227-1236, Mar. 2015.

J. B. Odili and M. N. M. Kahar, “Solving the traveling salesman’s prob-
lem using the African Buffalo optimization,” Comput. Intell. Neurosci.,
vol. 2016, Aug. 2015, Art. no. 1510256.

A. E.-S. Ezugwu and A. O. Adewumi, “Discrete symbiotic organisms
search algorithm for travelling salesman problem,” Expert Syst. Appl.,
vol. 87, pp. 70-78, Nov. 2017.

A.E.-S. Ezugwu, A. O. Adewumi, and M. E. Frincu, *“Simulated annealing
based symbiotic organisms search optimization algorithm for traveling
salesman problem,” Expert Syst. Appl., vol. 77, pp. 189-210, Jul. 2017.
C. Wang, J. Lin, M. Lin, and Y. Zhong, “Evolutionary harmony search
algorithm with metropolis acceptance criterion for travelling salesman
problem,” Int. J. Wireless Mobile Comput., vol. 10, no. 2, pp. 166-173,
2016.

L. T. Kéczy, P. Foldesi, and B. Tiiu-Szabd, “Enhanced discrete bacterial
memetic evolutionary algorithm—An efficacious metaheuristic for the
traveling salesman optimization,” Inf. Sci., vols. 460-461, pp. 389-400,
Sep. 2018.

H. Wang, N. Zhang, and J.-C. Créput, “‘A massively parallel neural network
approach to large-scale Euclidean traveling salesman problems,” Neuro-
computing, vol. 240, pp. 137-151, May 2017.

S.-M. Chen and C.-Y. Chien, “Solving the traveling salesman problem
based on the genetic simulated annealing ant colony system with parti-
cle swarm optimization techniques,” Expert Syst. Appl., vol. 38, no. 12,
pp. 14439-14450, 2011.

W.Deng, R. Chen, B. He, Y. Q. Liu, L. F. Yin, and J. H. Guo, “A novel two-
stage hybrid swarm intelligence optimization algorithm and application,”
Soft Comput., vol. 16, no. 10, pp. 1707-1722, 2012.

Y. Lin, Z. Bian, and X. Liu, “Developing a dynamic neighborhood struc-
ture for an adaptive hybrid simulated annealing tabu search algorithm to
solve the symmetrical traveling salesman problem,” Appl. Soft Comput.,
vol. 49, pp. 937-952, Dec. 2016.

H. G. Zhang and J. Zhou, “Dynamic multiscale region search algorithm
using vitality selection for traveling salesman problem,” Expert Syst. Appl.,
vol. 60, pp. 81-95, Oct. 2016.

X. Geng, Z. Chen, W. Yang, D. Shi, and K. Zhao, “Solving the traveling
salesman problem based on an adaptive simulated annealing algorithm
with greedy search,” Appl. Soft Comput., vol. 11, no. 4, pp. 3680-3689,
2011.

E. H. L. Aarts, J. H. M. Korst, and P. J. M. van Laarhoven, “A quantitative
analysis of the simulated annealing algorithm: A case study for the trav-
eling salesman problem,” J. Stat. Phys., vol. 50, nos. 1-2, pp. 187-206,
1988.

J. R. A. Allwright and D. B. Carpenter, “A distributed implementation
of simulated annealing for the travelling salesman problem,” Parallel
Comput., vol. 10, no. 3, pp. 335-338, May 1989.

144379

IEEE Access

L. Wang et al.: ELBSA Algorithm for Large-scale TSP

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

C.-S. Jeong and M.-H. Kim, ‘‘Fast parallel simulated annealing for travel-
ing salesman problem on SIMD machines with linear interconnections,”
Parallel Comput., vol. 17, nos. 2-3, pp. 221-228, Jun. 1991.

M. Hasegawa, “Verification and rectification of the physical analogy of
simulated annealing for the solution of the traveling salesman problem,”
Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 83,
no. 3, 2011, Art. no. 036708.

P. Tian and Z. Yang, “An improved simulated annealing algorithm with
genetic characteristics and the traveling salesman problem,” J. Inf. Optim.
Sci., vol. 14, no. 3, pp. 241-255, 1993.

Z. Wang, X. Geng, and Z. Shao, “An effective simulated annealing algo-
rithm for solving the traveling salesman problem,” J. Comput. Theor.
Nanosci., vol. 6, no. 7, pp. 1680-1686, 2009.

A. Bolte and U. W. Thonemann, “Optimizing simulated annealing sched-
ules with genetic programming,” Eur. J. Oper. Res., vol. 92, no. 2,
pp. 402416, 1996.

K. A. Dowsland and J. M. Thompson, “Simulated annealing,” in Hand-
book of Natural Computing, vol. 43, G. Rozenberg, T. Bick, and J. N. Kok,
Eds. Berlin, Germany: Springer, 2012, no. 1, pp. 1623-1655.

M. Cheraitia and S. Haddadi, “Simulated annealing for the uncapaci-
tated exam scheduling problem,” Int. J. Metaheuristics, vol. 5, no. 2,
pp. 156-170, 2016.

G. Reinelt, “TSPLIB-A traveling salesman problem library,” ORSA
J. Comput., vol. 3, no. 4, pp. 376-384, 1991.

S. Garcia, D. Molina, M. Lozano, and F. Herrera, “A study on the use of
non-parametric tests for analyzing the evolutionary algorithms’ behaviour:
A case study on the CEC’2005 special session on real parameter optimiza-
tion,” J. Heuristics, vol. 15, no. 6, pp. 617-644, 2009.

LUIN WANG received the Ph.D. degree from
Beijing Forestry University, Beijing, China,
in 2008. He is currently a Professor with the Col-

ey) o lege of Computer and Information Science, Fujian

- Agriculture and Forestry University, Fuzhou,

— China. His current research interests include
nature-inspired algorithm and intelligent informa-
tion processing.

144380

RONGYING CAlI is currently a Senior Exper-
imentalist with the College of Computer and
Information Science, Fujian Agriculture and
Forestry University. Her current research interests
include intelligent computing and combinatorial
optimization.

MIN LIN is currently an Associate Professor with
the College of Computer and Information Science,
Fujian Agriculture and Forestry University. His
current research interests include intelligent com-
puting, bioinformatics, and parallel computing.

YIWEN ZHONG received the M.S. and Ph.D.
degrees in computer science and technology
from Zhejiang University, Hangzhou, China,
in 2002 and 2005, respectively. He is currently a
Professor with the College of Computer and Infor-
mation Science, Fujian Agriculture and Forestry
University, Fuzhou, China. His current research
interests include computational intelligence, data
visualization, and bioinformatics.

VOLUME 7, 2019

