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ABSTRACT The 5G mobile communication system is attracting attention as one of the most suitable
communication models for broadcasting and managing disaster situations, owing to its large capacity and
low latency. High-quality videos taken by a drone, which is an embedded IoT device for shooting in a disaster
environment, play an important role in managing the disaster. However, the 5G mmWave frequency band is
susceptible to obstacles and has beam misalignment problems, severing the connection and greatly affecting
the degradation of TCP performance. This problem becomes even more serious in high-mobility drones and
disaster sites with many obstacles. To solve this problem, we propose a deep-learning-based TCP (DL-TCP)
for a disaster 5G mmWave network. DL-TCP learns the node’s mobility information and signal strength, and
adjusts the TCP congestion window by predicting when the network is disconnected and reconnected. As a
result of the experiment, DL-TCP provides better network stability and higher network throughput than the

existing TCP NewReno, TCP Cubic, and TCP BBR.

INDEX TERMS Deep-learning, mmWave, TCP, 5G, supervised-learning.

I. INTRODUCTION
In recent years, a series of natural disasters, such as the
tsunami in Indonesia, the magnitude 9.0 earthquake in Japan,
and the hurricane in USA, have been threatening the life of
mankind. Natural disasters have been occurring increasingly
frequently in the world along with abnormal weather phe-
nomena, and taking human lives with many financial losses.
To minimize damage in case of a disaster, it is very important
to quickly recognize it and accurately and promptly commu-
nicate useful information such as emergency situations and
action guidelines to all people in the disaster area [1].
However, when a disaster occurs, there is a limitation
to delivering emergency information because the existing
infrastructure (e.g., LTE base station and WiFi Hotspot) is
broken, and thus, the connectivity is cut off. To solve this
problem, employing unmanned aerial vehicles (UAVs) with
IoT devices for shooting that roam and shoot the scene of
the emergency situation with a small 5G base station can be
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one of the solutions. The UAVs can shoot high-definition
videos for emergency situations and deliver them quickly
to The broadcast station through the 5G core network [1].
In addition, this video can be utilized for rescue operations
or broadcasts to everybody in a disaster area. For a captured
video image to be efficiently used for lifesaving activities and
disaster management, 1) high-quality videos should be trans-
mitted without loss (high throughput/reliability) and 2) with
low latency. As 5G networks can provide high-throughput
(enhanced mobile broadband), fast, and accurate services
(ultra reliable and low latency), delivering emergency infor-
mation is a good use case for 5G networks (Fig. 1).

The 5G networks use a wide frequency band, millime-
ter wave (mmWave) band, to provide high throughput.'
Although mmWave has a wide bandwidth, beamforming
technology is absolutely necessary owing to its high path
loss and strong directivity. Fortunately, the 3GPP 5G stan-

n fact, in 5G, numerology is applied to cope with several operating
frequencies (e.g., 3.5 and 28 GHz), but in this paper, we discuss only
mmWave with a high bandwidth, assuming that a high-quality video image
is transmitted.
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FIGURE 1. System architecture of disaster 5G networks.

dard groups have discussed and proposed beamforming tech-
nologies for 5G networks [2]. Despite the advancement of
beamforming technology, the following problems remain in
the mmWave band.

« Blockage problem: The phenomena that the signal can-
not pass through the obstacle owing to the directivity and
the receiving SNR value is severed.

o Beam misalignment: The receiver has a poor SNR
value owing to nonmatching of transmitting/receiving
beam pairs.

In particular, the use of the transmission control proto-
col (TCP) is essential owing to the characteristics of disaster
communication, where end-to-end communication reliability
is very important. However, in 5G networks, especially in
mmWave band, TCP is very vulnerable owing to beam mis-
alignment and blockage issues. TCP in the mmWave band
has been extensively studied recently. In [3], [4], the authors
simulated the performance of several existing TCP schemes,
such as Reno, Cubic, and BBR, to verify how TCP will work
in the mmWave band. Furthermore, in [3] and [4], the authors
determined that the conventional loss-based TCP, such as
Ha et al. [5], is not suitable for the mmWave capacity owing
to its wide bandwidth, while congestion-based TCP, such as
BBR, is more suitable. In addition, the authors discussed how
beam tracking, handover, and mobility affect TCP perfor-
mance in 5G mmWave networks. However, no TCP for the
5G mmWave network has been proposed yet.

This paper proposes a new TCP for transmitting high-
quality videos (UHD 4K level) at low latency in disaster 5G
mmWave networks. The proposed TCP performs learning
based on mobility, location, and reception signal-to-noise
ratio (SNR) value of the terminal, and the learning agent (UE)
predicts the time duration for which the transmitting signal is
disconnected (blockage duration). If the blockage duration is
less than the TCP retransmission timeout (RTO) value, the
congestion window (cwnd) value is fixed and buffering is
performed for the corresponding time to utilize the mmWave
capacity. By contrast, the congestion control (CC) algorithm
is performed by determining that the actual congestion has
occurred.

The contributions of this study are summarized as follows:

o We analyzed and identified how the mmWave technical
challenges (blockage problem and beam misalignment)
affect TCP in the disaster 5G mmWave network.
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« We designed a machine learning (ML) model that pre-
dicts blockage duration based on mobility, location, and
received SINR value of the TCP sender in the disaster SG
mmWave network. The proposed ML model can predict
blockage duration with a probability of about 90% or
more, and is independent of the mobility model of UE
(TCP sender).

« Based on blockage duration, we proposed a new
loss-based TCP model suitable for the mmWave envi-
ronment. The proposed TCP distinguishes between a
temporary disconnection of a link and actual congestion,
and carries out a CC algorithm according to the situation.

o We determined that our proposed TCP outperforms
other existing TCPs in not only the disaster site but also
any topology (sport stadium, smart city, indoor, etc.)
with the 5G mmWave environment.

The remainder of this paper is organized as fol-
lows. In Section II, we describe related work on the
mmWave 5G network and existing TCPs. Furthermore,
we describe the problem of conventional TCPs in disas-
ter SG mmWave networks. In Section IV, we describe the
proposed machine learning architecture for ML-based TCP
in 5G mmWave networks. We compare the performance of
the proposed TCP with the existing TCPs in various network
typologies in V. Finally, in Section VI, the conclusions and
suggestions for future research directions are detailed.

Il. RELATED WORK

TCP research has been around for a long time and has become
one of the core protocols of the Internet. Thus, various TCP
versions have been proposed accordingly. In this section,
we present a brief overview of previous studies on 1) con-
ventional TCPs, 2) TCPs in 5G mmWave environment, and
3) TCPs with machine learning.

A. CONVENTIONAL TCP

The conventional congestion control technique for TCP
assumes that all segmentation loss reasons are based
on congestion. Therefore, the most popular TCP-Reno
andNew-Reno, at first, exponentially increase the congestion
window in the slow start phase and go through the congestion
avoidance phase when segmentation loss occurs, to adjust
the transmission rate [6], [7]. However, in wireless media
with a strong randomness factor, segmentation loss is caused
not only by network congestion but also by factors such as
interference, path loss, and mobility [8].

Recently, various new versions of TCP studies have been
conducted [5], [9]-[11]. Of these, TCP Cubic [5] is the
most popular TCP technique currently used in Linux Kernels
2.6.19 and above. In TCP Cubic, the size of the congestion
window grows very quickly right before the congestion event
occurs, and then, convexly increases the size of the congestion
window to prove the network state. Although TCP Cubic is
designed for high-bandwidth-delay product (BDP) networks,
it is not suitable for wireless networks, which have random
channel characteristics.
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One of the most popular TCPs, bottleneck bandwidth and
round-trip propagation time (BBR) [10], is used to maintain
an optimal congestion window based on the current net-
work bandwidth and round-trip time (RTT). However, BBR
is not still suitable for wireless media where packets are
still randomly dropped. To cope with the characteristics of
wireless media, other wireless TCPs have been proposed for
many years [12]-[15]. However, in these studies, the wireless
access is considered the bottleneck area and is not suitable for
mmWave networks with a large bandwidth.

B. TCP IN 5G MMWAVE NETWORK

With the release of 5G mobile communication standardiza-
tion, the question of whether existing TCP works well in the
mmWave band naturally emerges. In [3], [4], [16], the authors
simulated the operation of the conventional TCP (Tahoe,
Reno, Cubic, BBR, etc.) in 5G mmWave networks. They
experimented end-to-end performance between a mobile ter-
minal and a cloud server in an environment where signals
are attenuated owing to obstacles such as buildings and trees.
In their experiments, the authors determined that 1) the con-
ventional TCPs take a long time to activate the wide band-
width of mmWave, 2) the end-to-end latency increases owing
to the high link error rate, and 3) a frequent RTO occurs.

In addition, in [16], the authors performed comprehen-
sive experiments on how mobility management techniques
(e.g., handover) affect TCP performance in 5G mmWave
networks. They concluded that in a channel intermittent envi-
ronment (e.g., mmWave band), the fast adaptation of the
servicing base station is a key technology that can improve the
TCP performance. These studies [3], [4], [16]-[18] raised a
problem with TCP performance in the mmWave band, but did
not present a new TCP suitable for 5G mmWave networks.

Additionally, in [17], the authors proposed advanced
5G-TCP suitable for a wide bandwidth of mmWave by adjust-
ing the parameters of high-speed TCP (HSTCP). However,
they focused on how quickly a 5G mmWave network with a
wide bandwidth can be maximally activated without consid-
ering frequent link errors.

C. TCP WITH MACHINE LEARNING

Recently, machine learning techniques have effectively
advanced the state-of-the-art for many research domains.
In particular, machine learning can be applied to TCP appli-
cations such as congestion control [19], [20], network state
prediction [21], [22], traffic classification [23], traffic mon-
itoring, and security [24]. Congestion control, which is the
main function of ML-based TCP, is classified into loss predic-
tion through supervised learning and intelligent congestion
window control through reinforcement learning.

In [19], the authors proposed a Q-learning framework
with TCP design (QTCP), which enables senders to grad-
ually learn the optimal congestion control policy in an
online manner. QTCP performs congestion window control
(increase/decrease/hold) based on the time intervals of trans-
mitted packets and received ACK packets and average RTT.
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As Q-learning based TCP, throughput and RTT are modeled
as utility so that each action can optimize the utility. Similarly,
in [20], the authors proposed supervised learning- based TCP
(LP-TCP) and reinforcement learning-based TCP. LP-TCP
predicts the probability of loss of the current packet by learn-
ing the received ACK packet, current received cwnd size,
RTT, and exponentially weighted moving average.

QTCP and LP-TCP have the advantage of being applicable
to various network environments because it conducts con-
gestion control through self- learning rather than rule-based
learning. However, these studies predict or enhance network
congestion control through packet-based information (con-
gestion window size, RTT, time interval of ACKs, etc.).
Therefore, congestion control algorithms will not work prop-
erly for blockage problems caused by mobility and beam
misalignment problems (factors that are not caused by pack-
ets). This problem will become even more serious in the
5G mmWave disaster network, where mobility is frequent
and several obstacles are placed. To cope with this problem,
we propose a machine learning framework based on mobil-
ity, location, and received SNR information of the moving
objects.

Ill. TCP IN DISASTER 5G mmWave NETWORKS

In this section, we describe our proposed 5G mmWave net-
work model and related issues for the disaster site. As shown
in Fig. 1, we assume an uplink scenario model where UAVs,
for shooting extensively at disaster sites, and firefighters with
an electronic news-gathering camera, for shooting details of
the disaster sites, transmit the video to a broadcast station
or control centers. They can transmit high-quality videos in
raw data form without compression” to broadcast stations
and disaster control centers via the 5G network. However,
to transmit uncompressed video images without delay, a data
rate on the order of Gbps is required, which enables a 5G
mmWave network with a wide bandwidth.

In 5G mmWave networks, the beamforming technology is
essential for compensating for a high path loss. The formed
beams between the 5G base station and the transmission
terminal (transmitting UE) provide a high antenna gain; how-
ever, it is vulnerable to obstacles due to the beam directivity.
In addition, when the directions of the formed beams between
the transmitting and receiving antennas are not matched,
the receiving gain is lowered, and therefore, the SNR value
decreases. In particular, in the disaster 5G mmWave network
model, the transmitting UEs have variable mobility, which
can lead to communication problems.

Fig. 2 (a) shows the blockage problem in the mmWave
environment. UAVs that capture disaster scenes can transmit
video images to a 5G basestation (gNB) within line-of-sight
(LOS) locations. However, if non-line-of-sight (NLOS) is
formed due to obstacles such as trees/collapsed buildings,
it is impossible to transmit signals in the mmWave band.

2In general, video encoder equipment is limited to portable video cameras
for reasons of heavy weight and battery inefficiency.
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Camera mans moving fast to cover disaster scenes and UAVs
with fast mobility are more likely to be exposed to these
problems. Similarly, Fig. 2 (b) shows the problem of beam
misalignment in the mmWave environment. As shown in the
figure, the UAV and gNB beams are correctly matched and
the SNR of the signal is high, but the beams of the camera
man and the gNB are misaligned, and thus, the signal cannot
be received.

A. BLOCKAGE PROBLEM IN TCP

To analyze how a conventional TCP behaves when a blockage
problem occurs in mmWave networks, we have configured
a simple scenario, as shown in Fig. 3. In the left side of
Fig. 3, initially, the camera man and gNB are located at
LOS distance from each other, and thus, it can transmit the
video data without any problem. The camera man moves
to the NLOS area with 1.0 m/s mobility, and continues to
transmit video data. Fig. 4 shows the SINR value received
by the camera man. For simulation parameters, we set the
receiving threshold to —5dB and data rate to 1 Gbps and
use the NewReno TCP [7]. As shown in the graph of
Fig. 4, when the camera man stays in the NLOS region, the
SNR temporarily falls below the receiving threshold value.
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Fig. 4 also shows the congestion window variation in the
TCP layer in the above scenario. As shown in the figure,
when the SNR value falls below the receiving threshold value,
RTO occurs, which causes the cwnd value to be initialized
frequently. This leads to decreased total network throughput.

One way to fundamentally solve the blockage problem is
to install a base station to widen the LOS area, or install a
mirror that captures the signal being transmitted and relays it
to the NLOS area. However, in disaster areas where existing
infrastructure has collapsed or a metropolitan-area network
topology where many obstacles are concentrated, the above
solution has limitations. Therefore, the blockage problem
cannot be solved in a situation where the infrastructure is lim-
ited. However, if the blockage is intermittent, we can address
part of the performance degradation by simply maintaining
the transfer rate at the TCP end rather than initializing it. With
this motivation, we applied the ML framework to distinguish
RTOs between the blockage problem and network congestion
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caused by network buffers, which we will describe further in
the next section.

B. BEAM MISALIGNMENT IN TCP

As in the previous section, we have designed a sim-
ple scenario to investigate the behavior of TCP in
beam-misalignment issues in the mmWave environment.
In our experiment, as shown on the right side of Fig. 3, we set
random mobility within the specified topology for relatively
fast UAVs. The UAV is free to fly within the topology at a rate
of 25 to 30 m/s and transmits video data to the gNB. As shown
in Fig. 5, SNR fluctuation is very high with high mobility.
In the mmWave environment, even if the phases of the
transmitting and receiving antenna are slightly mismatched,
the receiving power drops significantly [25]. Compared to
the experimental results of low-speed movement (Fig. 4,
it can be seen that the fluctuation in SINR in Fig. 5 is more
intense. Initially, when the terminal and gNB match the beam,
the communication is performed through the corresponding
beam for a predetermined period. However, if the direction is
changed due to the mobility of the terminal during this period,
the beam pairs are mismatched and SNR decreases.

The beam sweep technique, which finds the optimal beam
again after the beam is mismatched, can be performed after
about 0.1-0.3 s (100-300 ms) [2].> However, if the UAV
continues to move, the SINR is still continuously dropped.
In other words, even if the terminal and gNB find the best
beam pair for communication, the signal quality can signif-
icantly deteriorate. To solve these problems, there is a beam
management technology, such as beam tracking, but there is
an accuracy limitation in the environment where the mobility
is rapidly changing. We only assume the beam sweep tech-
nique for recovering the beam misalignment problem, and
the beam management technique is beyond the scope of this

paper.

3According to 3GPP, the beam sweeping technique takes about
100-300 ms because it measures signal strength for all beam pairs of the
transceiver.
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Here, we aim to control the behavior of TCP. As shown
in Fig. 5, the beam misalignment problem causes cwnd ini-
tialization by RTO, which occurs intermittently. A frequent
initialization of cwnd leads to the problem of not taking
advantage of the wide bandwidth of mmWave. In the TCP
layer, the solution is the same as that for the blockage prob-
lem. Even if beam misalignment occurs, the sender can rec-
ognize it and keep cwnd uninitialized. Then, the sender will
find the optimal beam again in the beam sweep period and
not waste the bandwidth.

IV. MACHINE LEARNING ARCHITECTURE

In this section, we describe the proposed deep-learning-based
TCP (DL-TCP) in mmWave networks, which have blockage
and beam misalignment problems. Fig. 6 shows the architec-
ture of the proposed DL-TCP scheme. The TCP sender com-
prises a learner engine for learning, a predictor, a mobility
manager for managing velocity and location information, and
a TCP agent for determining TCP behavior. Each component
plays the following roles:

o A learner learns the duration of network failure based
on the information received from the mobility manager
and Rx antennas.

o A predictor is a module that predicts whether a TCP
RTO is a temporary or a long-term disconnect, based on
the learned information.

o Mobility manager is a module that provides the current
location information and velocity vector of the TCP
sender.

« TCP agent controls the cwnd value based on the infor-
mation predicted by the predictor.

As shown in section III, when a mobile TCP sender per-
forms communications in the mmWave band, blockage and
beam misalignment cause intermittent communications to be
disconnected and initialize cwnd. In case of the blockage
problem, if the TCP sender’s mobility is relatively fast, the
time to pass through the obstacle will be relatively short, and
in the opposite case, the disconnect time will be long. At this
time, the TCP agent can perform the following actions when
RTO occurs owing to signal disconnection. If the network
failure duration is short, the size of cwnd is maintained to
prevent the data rate from dropping, and in the opposite case,
the cwnd is initialized and enters the congestion avoidance
phase.
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Even in the case of beam misalignment, the TCP agent
can maintain the size of cwnd, but as the beam sweeping
technique is performed after 100-300 ms, the network failure
cannot exceed 100-300 ms. Therefore, even if the packet loss
occurs, the network state can be restored within 100-300 ms.
In other words, keeping the size of cwnd for that period is a
good solution. However, the conventional TCP initializes the
size of cwnd when it detects the packet loss event.

By combining the above analysis, we establish the follow-
ing hypothesis:

1) H;: If the network failure duration is long, this may be
due to network congestion or signal interruption from
the obstacles. Thus, it is better to initialize cwnd size.

2) Hj: If the network failure duration is short, it is a tem-
porary signal interruption that can be recovered soon.
Thus, it is better to maintain the size of cwnd.

3) H,: It is better to increase the size of cwnd if the
LOS between the TCP sender and gNB is formed and
communication is possible.

Based on H;, Hy, and H,,, our proposed DL-TCP determines
whether to maintain the cwnd size by predicting the network
failure duration when a packet loss event occurs.

A. TRAINING NETWORK FAILURE DURATION
To operate the proposed DL-TCP, training is required for
a specific topology. In the training phase, the mobile TCP
sender moves randomly and records the SNR value received
from the gNB. We use the NS3-based mmWave network
simulator to collect the training data.

As shown in Fig. 7, the structure of the training data is as
follows:

1) Time (¢): The time taken by the TCP sender to update
the SNR value from the gNB.

2) Location information (I, l;, I!): The current TCP
sender’s X, y, z coordinates at 7.

3) Velocity vector (v, v;, vl): The current TCP sender’s
mobility vector at 7.

4) SNR (y;): The SNR value received by the TCP sender
from the gNB at 7.

Let N denote the amount of collected information in the
simulation. Then, N x 1 vectors of the time and SNR are
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defined by

L] nyl]Tv

ey

respectively, and an N x 3 matrix of the location information
and velocity vector is defined by

vl

T=1[t,t1,t2,....ty—11", S =1[y0, v1, 2 -

vt

@)

L=l 0b,.. V = [vo, V1, 2, ..

where Zi = [lfc, l;, lé‘] and v; = vi, vg,, vé], respectively.
Based on the collected training datasets, the TCP sender
can generate a result set as shown in Fig. 7. The result set ()
is generated as a one-hot vector based on the network failure
duration between the TCP sender and the gNB.
Assuming 6, to denote the receiving threshold, the discon-

nected state at ¢ (Dy) is given by

0, iff, <
Dt _ 11 Oy _.Vt (3)
1, otherwise.

where D, = 1 indicates that the link state between the
TCP sender and the gNB is disconnected. After calculating
Dy, Vt, ¥ can be generated as Algorithm 1. In Algorithm 1,
n denotes the long network failure duration threshold. If the
network failure duration is longer than 7, it is considered a
long network failure.

Based on the generated result set and training dataset,
the learner trains parameters (W;*) of multiple fully con-
nected (FC) layers. The output of each layer is passed to the
adjacent layer via the following rectified linear unit activation
function:

0, ifx<0O
f) = X x>0 “)
During the training, the parameters of the FC layers are
trained to inform the TCP agent about whether the network
is disconnected temporarily or for a long period. For the
cost function of the training, we consider the cross-entropy
function, which is given as

C=-Y yilogy;+ (1 —y)log(l - 5) )
i
where C and i denote the entropy loss and iteration epoch,
respectively.”

B. PREDICTION NETWORK FAILURE
DURATION AND DL-TCP
In this section, we describe a technique for predicting network

failure duration through trained FC-layer parameters, and
accordingly, the behavior of DL-TCP.

4Wi denotes the vector of weight parameter of hidden layer i. w; =
(w?, wil, A Wé_l) where j denotes the number of states.

5Cross—entropy cost function is the most popular model for classification
problems with many datasets due to low error rate and high learning effi-
ciency [29], [30].
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Algorithm 1 Network Failure Duration-Based Result Set Input Hidden Layers (LeRU) Output
Generation Algorithm Layer K layers ‘ Layer
1 Result set (3) generation function (7', S):
Input : Training data set 7 and S %
Output: y /* Result set x/ .Y @
2 begin
3 n < Trro; /* Tgrro: TCP timeout value; .§
*/ e o< @
4 foreach i /* i: index (0<i<N) =/
5 do .é
6 <t
7 if D, == 0 then @
8 H§<—0;H§<—0;Hf,<—1; .Z
5. O -
0 elseyl < H. H. Hy; W, & Xavier Initializer €3 Random drop (Dropout)
10 foreaChj /* j: index (i=j< k) FIGURE 8. Multi-class deep-neural networks architecture.
k = argmax; () s.t. fH <t+n =/
1 do
12 if D; == 0 then Algorithm 2 Behavior of DL-TCP When Packet Loss
13 H; <~ 0; Hi <~ 1; Hfz <~ 0; Occurs
yi < Hj, Hy, Hy ; 1 DL-TCP congestion control function:
14 break; 2 Packet loss:
15 else 3 begin
16 continue; 4 t < Teurs /x Teyr: current time */
7 end s |y < predict(t,l;, v, y); /* y=[H, Hy, H,] «/
18 end 7 ifHH==1 /» long time failure x/ then
19 H; <~ 1; H; <~ 0 H;, <~ 0 8 Delays RTO by Tgro;
yi < Hj, Hy, H} ; 9 Keeps size of cwnd,
20 end 10 elseif H, ==1 /+« short time failure =/
21 end then
22 return y; 11 Retransmits packets that have been transmitted
23 end for Teyr — RTT /2;
12 Keeps size of cwnd,
13 elseif H, == 1 /+ network congestion =x/
then
. . . . 14 Decreases size of cwnd,
As mentioned in section IV-A, if a TCP sender puts
. . 15 Enters the steady state;
t, Iy, Iy, I, vy, vy, v;, and y; as input to the predictor, 16 end
the current network status is classified as one of the three
states (Hj, Hg, or Hy). Fig. 8 shows our designed multi-
class deep-neural-network architecture. Our DNN structure
comprises K depths and we use the Xavier initializer [26]. « If the TCP agent receives Hj = 1, it delays the RTO by
In addition, Dropout is applied to prevent over-fitting [27] Trro while keeping the size of cwnd uninitialized (lines
and the Adam optimizer [28] is used to minimize the loss 7-9).
function. o If the TCP agent receives Hs = 1, it immediately

Our proposed DL-TCP operation is simple: Basically, retransmits packets that have been transmitted for Ty, —
DL-TCP works same as the most popular version of TCP RTT /2, without initializing the size of cwnd (lines

Cubic [5]. In most TCP versions, including TCP Cubic, when 10-12)°

a packet loss event occurs, the size of the current cwnd is « Ifthe TCP agent receives Hp = 1, it determines network
initialized and the TCP agent enters the congestion control congestion. Thus, it decreases the size of cwnd and goes

phase. However, in the proposed DL-TCP, when a packet to the steady state to adjust the data rate (lines 13-15).
loss event occurs, the predictor classifies the duration of the
packet loss event and the TCP agent receives this informa-
tion. As shown in Algorithm 2, the TCP agent performs the
following actions: T, — RTT /2 means the time of the most recently transmitted packet.
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TABLE 1. Prediction accuracy of DL-TCP (random-walk model).

TABLE 2. Prediction accuracy of DL-TCP (Scan mobility model).

Layer = 1 Layer = 2 Layer = 4 Layer = 8

Layer = 1 Layer = 2 Layer = 4 Layer = 8

SC1 SC2 SC1 SC2 SC1 SC2 SC1 SC2

SC1 SC2 SC1 SC2 SC1 SC2 SC1 SC2

Prediction Accuracy

(Only DNN model) 89.52 | 88.46 | 9324 | 93.41 | 96.17 | 95.76 | 98.23 | 97.83

Prediction Accuracy

(Only DNN model) 90.23 | 89.88 | 94.41 | 94.11 | 96.81 | 96.32 | 98.44 | 98.12

Prediction Accuracy

(/w dropout) 93.62 | 93.14 | 9572 | 95.11 | 97.87 | 97.35

Prediction Accuracy

9423 | 94.12 | 96.45 | 96.23 | 98.51 | 98.27
(/w dropout)

Prediction Accuracy

. 91.05 | 90.87 | 95.25 | 94.71 | 96.74 | 96.31 | 96.75 | 96.51
(/w Xavier)

Prediction Accuracy

. 9245 | 9212 | 96.56 | 95.88 | 97.35 | 97.12 | 97.21 | 97.12
(/w Xavier)

Prediction Accuracy
(/w dropout, Xavier)

94.36 | 94.95 | 9547 | 96.74 | 96.42 | 96.94

Prediction Accuracy
(/w dropout, Xavier)

95.65 | 95.73 | 96.21 | 97.17 | 97.51 | 97.84

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
DL-TCP based on the mmWave NS-3 simulator [31]. First,
we measure the prediction accuracy of the proposed DL-TCP.
Basically, we assume a topology with 200 m? size, small
obstacles of 3.5 m in height and 0.5 m in width, and large
obstacles of 20 m in height and 10 m in width. We set two
scenario models for comparison, as follows:

o Scenario 1 (SC1): We place fewer obstacles in a given
topology. In this scenario, 10 small obstacles and 2 large
obstacles are randomly deployed.

« Scenario 2 (SC2): We place obstacles densely within a
given topology. In this scenario, 50 small obstacles and
10 large obstacles are randomly deployed.

The UAV is associated with the gNB in the topology
and the gNB performs automatic beam sweeping every
100-300 ms. For the mobility model, we considered a
random-walk model in which each UAV moves randomly and
a scan mobility model that performs a mission to search the
entire topology [32]. In addition, we assumed that the UAV
speed follows a uniform distribution between 54 and 90 km/h.
To collect training data, we collected SNR data for about
1 day.”

Table 1 shows the accuracy of the results predicted from
the input values (z, 7,, Vr, ¥¢), by using the TCP Agent learned
by the collected training data in a random-walk mobility
scenario. We experimented with increasing the number of
FCs while fixing the learning rate to 0.01 and the number of
epochs to 2000. As shown in Table 1, the maximum predic-
tion accuracy reached 98.23% and 97.83% for SC1 and SC2,
respectively. Note that when a packet loss event occurs,
it can be distinguished by about 97.8-98.23%, whether due
to network congestion or link error. Moreover, if the TCP
agent recognizes the link error, it can also detect whether the
link error phenomenon has a long duration or short duration.
Although the prediction accuracy of SC2 with a lot of obsta-
cles is about 0.5% less than that of SC1, we can confirm
that the proposed model has a high probability of 97% or
more. Table 2 shows the prediction accuracy in the scan
mobility scenario, where the UAV path is deterministic, and
thus, has a relatively high prediction accuracy. As shown
in Table 2, there is little difference in accuracy between

In a real environment, UAV does not have any time to collect training
data, but it learns while performing communication. In this experiment,
we set the collecting period to check the achievable prediction accuracy when
the training data are sufficient.
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FIGURE 9. Average throughput versus traffic loads.

SC1 and SC2. In other words, it shows similar prediction
accuracy without being greatly influenced by the presence or
absence of obstacles. This is because our proposed model is
independent of obstacles because the TCP agent learns based
on mobility information and SNR in each region. In addition,
because it has learned enough deterministic mobility, this
result is analyzed as over-fitting. However, as the UAV at
the disaster site has mission-oriented mobility, the path is
programmed in advance, and thus, over-fitting is not a big
problem.

To evaluate the actual performance of TCP based on the
proposed DL architecture, we measured the following per-
formance metrics:

« Network throughput (Mbps): total data traffic in bits
transferred successfully from TCP sender to end termi-
nal divided by time.

« Round-trip-time (ms): total round-trip time from TCP
sender to end-terminal.

« Variation in cwnd size (bytes): variation in cwnd size
of TCP sender.

For the simulation parameters, we set the data rate to
1 Gbps and the operating frequency to 28 GHz (mmWave),
which is the same as the prediction accuracy measure-
ment scenario. In addition, the performance of DL-TCP
is compared to those of NewReno [7], BBR [10], and
Cubic [5].

The above part of Fig. 9 shows the average throughput ver-
sus the traffic loads with the scan mobility model. As shown
in the above figure, the average throughput increases with
traffic, for all schemes. The proposed DL-TCP has about
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FIGURE 10. Average round-trip time versus traffic loads.

36% performance improvement compared to other TCP
techniques. In the conventional TCP, when a packet loss
event occurs, it recognizes it as a network congestion and
initializes a window or moves to a phase of gradually decreas-
ing it. Meanwhile, DL-TCP distinguishes congestion from
temporary disconnection and holds the window size when
a temporary disconnection occurs to utilize the available
bandwidth. In TCP-BBR and TCP-Cubic, the performance
in SC1 with fewer obstacles is higher than that in SC2,
and DL-TCP and TCP-NewReno show almost the same
results regardless of the number of obstacles. This means
that DL-TCP shows consistent performance regardless of
the obstacles, and TCP-NewReno does not utilize the wide
bandwidth of mmWave. The bottom part of Fig. 9 shows
the average throughput with a random-walk mobility model.
Unlike the scan mobility model, the random-walk mobility
model shows a lower overall throughput for all schemes
because the blockage and beam misalignment problems occur
more frequently. In addition, the throughput of the proposed
technique differs between SC1 and SC2. In the random-walk
model, the mobility of the node is significantly fluctuating,
where the learning of the TCP agent is not sufficiently per-
formed. Therefore, it is analyzed that the prediction accuracy
is lowered in SC2 with many obstacles. Nevertheless, as the
environment is very tough, other TCP techniques also show
poor performance and the proposed DL-TCP exhibits the best
performance.

Fig. 10 shows the average round-trip time versus the traffic
loads. As shown in the figure, TCP-NewReno, TCP-Cubic,
and DL-TCP show similar trends with a difference of about
2-3 ms. The proposed DL-TCP shows RTT similar to that of
the existing TCP despite high throughput. TCP BBR has a
relatively high RTT because it tends to use full bandwidth
over other TCP technologies. The results for random-walk
mobility are about 4-5 ms lower than those for the scan mobil-
ity model. This is because similar to the result of throughput,
the connection between nodes is frequently disconnected and
RTT is increased accordingly. In the SC2 of the scan mobil-
ity model, RTT does not change much with the throughput
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FIGURE 12. Variation of congestion window size with random-walk
mobility.

because the TCP agent has been sufficiently learned,
while the random-walk mobility model shows the same
increase as other schemes for the proposed DL-TCP
scheme.

Fig. 11 and Fig. 12 show the variation in cwnd size for
all TCP schemes in SC2 with the scan mobility model and
random-walk mobility, respectively. As shown in the figure,
it shows very rapid cwnd fluctuations for all TCP schemes.
This is because the link is unstable due to beam misalign-
ment from the mobility and obstacles within the topology.
In particular, in the case of the random-walk mobility model,
the graph tends to become more intense. TCP-NewReno
shows a tendency to maintain a low cwnd size without fill-
ing the wide bandwidth, due to frequent link errors. How-
ever, our proposed DL-TCP lowers cwnd only when the
link is congested or when RTO occurs, and maintains the
cwnd size when it determines that the link disconnection is
temporary. Therefore, DL-TCP has higher average through-
put, as shown in Fig. 9, compared to other TCP techniques
that lower the cwnd size every time a packet loss event
occurs.
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VI. CONCLUSION

The 5G mmWave network is one of the most suitable models
for rapid disaster response. However, due to the character-
istics of the mmWave band, deterioration in signal strength
from the obstacles and beam misalignment can be a fac-
tor in attenuating TCP performance. This paper proposes a
DL-TCP suitable for the disaster 5G mmWave band. Our
proposed deep-learning architecture learns the link discon-
nection time based on the node mobility information and
signal strength, and predicts the link disconnection time when
a packet loss event occurs. DL-TCP was designed to oper-
ate without wastage of mmWave bandwidth by performing
proper cwnd size control according to the predicted time,
which was confirmed through NS-3-based simulation. As the
proposed model is a loss-based TCP model in which a packet
loss event occurs, it is not a radical solution for avoiding link
error. However, the deep-learning architecture proposed in
this paper can be applied to the beam reflection technology
to avoid obstacles in the mmWave band and beam man-
agement technology to provide a seamless communication
environment. In the future, we will apply the deep-learning
architecture to research on minimizing errors in the mmWave
band.
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