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ABSTRACT Ransomware attacks are becoming increasingly sophisticated, more damaging to victims and
more challenging to prevent. In this paper, a dynamic modelling method is used to study the spreading
behaviors of ransomware. The dynamic state of each network node is assumed to be statistically dependent
of the states of its neighboring nodes. By incorporating the full topology of the propagating network via
its adjacent matrix, a novel node-based model is developed which is also suitable over generic connected
networks. The dynamics of the model is theoretically analyzed. Especially, the global stability of its trivial
equilibrium is theoretically confirmed depending on a sufficient condition including the leading eigenvalue
of the adjacent matrix. We also present results from extensive numerical simulations designed for some
specific networks, exhibiting different dynamic properties over distinct networks. Consequently, we suggest
that ransomware spreading can be availably contained by properly adjusting the network structure so that its
largest eigenvalue satisfies the desired requirement.

INDEX TERMS Blackmail virus, cybersecurity, complex networks, stability analysis, nonlinear system.

I. INTRODUCTION
With advancing antimalware technologies, hackers are seek-
ing easy targets through social engineering and are constantly
evolving their attacks for maximum efficiency [1]. In recent
years, attacks from new types of cyberthreats have caused
great damage [2]. One of them is the ransomware which is a
type of malicious software that encrypts the victim’s data files
to make them inaccessible and requires a ransom payment
to decrypt them [3]. For example, CryptoLocker caused an
estimated 3 million dollars before taking down by authorities
and CryptoWall was estimated to have caused over 18 million
dollars by June 2015 [4]. The use of ransomware scams
has grown internationally starting from 2012. In June 2013,
the data released by McAfee showed that the number of
ransomware samples collected in that quarter doubled that of
the same period of the previous year. Some unprecedented
and devastating ransomware families, such as WannaCrypt,
Petya/NotPetya and BadRabbit, brought down critical ser-
vices like hospitals, transportation, and traffic systems by
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infecting and encrypting files to prevent access. Especially,
the botnet Gamarue has infected more than 23 million IP
addresses, and the largest ransomware attack by WannaCrypt
infects over 0.23 million computers [5]–[7]. Thus, it is nec-
essary to study the propagating mechanisms and laws of
ransomware spreading, and make proper strategies on how
to strengthen the security of companies, protect against those
cyberthreats and combat them [8]–[10].

Ransomware attacks are usually carried out by employing
a Trojan that is disguised as a legitimate file that the user
is tricked into downloading or opening when it arrives as an
email attachment or a hyperlink. Websites or webpage links
are often employed by attackers to conduct phishing attacks
or distribute malware. Online services and financial institu-
tions have become popular phishing targets due to their poten-
tial for providing illegal access to victims’ private information
and even bank accounts. Phishing sites that targeted these two
categories of objectives accounted for the leading number of
active phishing URLs, and also received the largest share of
impressions during the first quarter of 2017 [5]. Some works
addressing the dynamics of cyber attacks have appeared
[11]–[13]. By incorporating the characteristics of web
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malware spreading, Liu and Zhong [14] developed a differ-
ential model to address the spreading behavior of malicious
links over networks. These epidemic compartmental models
usually have corresponding propagating thresholds and are
mostly established by a homogeneous network assumption
[15]–[18]. However, with the deep study of complex net-
works, the specific topology of spreading networks is also
incorporated in the study of malware dynamics [19]–[22].
For example, the quenched mean-field approach is employed
to model epidemic dynamics over a specifically given net-
work in terms of nodal probabilities. The results show that
the epidemic threshold depends on the inverse of the lead-
ing eigenvalue of the adjacency matrix of the fixed net-
work. By introducing probability variables to depict each
node’s specific state, Van Mieghem et al. [23] developed
a node-based epidemic model by modifying the traditional
SIS model, and derived that whether viruses decline toward
extinction depends on the maximum eigenvalue of the under-
lying network. By examining a node-based SIR model,
Youssef and Scoglio [24] indicated that the maximum num-
ber of infected nodes is closely related to the spectrum of
the network. Later, the dynamics of multivirus was studied
by proposing a node-level SIR model [25]. These epidemic
models indicate that the spectral radius of the spreading net-
work plays a significant role in determining virus dynamics,
i.e., heavily affecting whether viruses approach extinction.
For more information about this topic [26]–[28]. Generally,
node-level epidemic models can accommodate more knowl-
edge of the network topology, thus the propagating network’s
topological impact on malware spreading can be more deeply
revealed by studying such models.

Motivated by the previous models, in this paper, we will
address the spreading of ransomware and develop a new
node-based model by assuming that the dynamic state of
every node is statistically dependent of the states of its
nearest neighbors. The dynamic properties of this model
are analyzed. Especially, the global stability of the trivial
equilibrium is theoretically proved depending on a condition
including the spectral properties of the adjacency matrix
(specifically, the value of its maximum eigenvalue). Finally,
we also present results from extensive numerical simula-
tions designed over general networks such as complete, star-
shaped, and generated scale-free networks. Consequently,
we conclude that ransomware spreading can be contained by
adjusting the network topology so that its largest eigenvalue
falls into the desired interval.

II. MODEL DESCRIPTION
The spreading mechanisms of ransomware have some similar
characteristics with Trojan horses.When users visit malicious
websites accidentally, ransomware spreading like a home-
page Trojan will be automatically downloaded by the browser
and runs in the background. Additionally, ransomware can
also propagate through other ways, such as email attach-
ments, removable storage medium or being bundled with
other malware. Once a computer is intruded by a ransomware,

it will prevent users from accessing their systems by locking
the system’s screen or by locking all data files.

We first refer the device nodes that are not yet (or never
been) intruded by ramsomware as susceptible nodes. All
these nodes are theoretically possible to suffer from the
intrusion of ransomware attacks. After being intruded by
ransomware, susceptible nodes will become delitescent ones,
which indicate that the ransomware stays in the equipment,
but do not show attack features yet. Once the ransomware
resident in delitescent devices starts to encrypt files and
threatens to perpetually block access to victim’s data, then we
define that delitescent nodes become infected nodes which
usually require ransomware payment for decrypting files.
In this situation, the screens of a computer or a mobile ter-
minal will usually be locked, victim users have to recover
their systems by paying the ransom according to the hacker’s
request. We assume that the encrypted files will success-
fully get recovered after the victims defray the payment of
ransomware, making the intruded nodes turn to be recov-
ered nodes for a certain period. However, hackers are not
benevolent and they aim to gain as much economic benefits
as possible, thus we consider that recovered devices may
turn back to be susceptible nodes and suffer from the new
ransomware attacks again (see Figure 1).

FIGURE 1. Schematic diagram of attack processes of ransomware.

Based on the above discussions, we consider that the state
of each node over the network has four possible cases: sus-
ceptible (S), delitescent (D), infected (I) and recovered (R).
In the sequel, we let Xi(t) = 0 (respectively, 1, 2, 3) represent
that the i-th node is susceptible (respectively, delitescent,
infected, recovered) at time t . Then the state of the whole
spreading network at time t can be described by the vector
X(t) = [X1(t),X2(t), . . . ,XN (t)], where N is the size of the
considered propagating network. The ransomware propagat-
ing network can be denoted by a general graph G = (V ,E)
on N non-isolated nodes which are connected and num-
bered 1 through N , where nodes represent terminal devices
of a network, and edges stand for the links among nodes
through which ransomware can proliferate. We also denote
by A = [aij]N×N the adjacency matrix of the graph G, let

VOLUME 7, 2019 142225



W. Liu: Modeling Ransomware Spreading by a Dynamic Node-Level Method

{dk , 1 ≤ k ≤ N } denote the degree sequence of G, and
let {λk , 1 ≤ k ≤ N } denote the spectrum of the matrix
A. Let λmax(A) denote the greatest eigenvalue of the adja-
cency matrix A, then we can assume that λmax(A) = λ1 ≥

λ2 ≥ · · · ≥ λN , since A is real and symmetric.
Next, we will introduce several notations to depict the

possibility of a specific node being at a state. That is, let
sj(t) (respectively, dj(t), ij(t)), rj(t)) denote the probability
of the event that the j-th node is susceptible (respectively,
delitescent, infected, recovered) at time t , i.e.,

sj(t) = Pr(Xj(t) = 0), dj(t) = Pr(Xj(t) = 1),

ij(t) = Pr(Xj(t) = 2), rj(t) = Pr(Xj(t) = 3).

Note that a susceptible node is infected by a single infected
neighbor with the probability of λ per unit time. Then, a sus-
ceptible node j gets infected with the average probability
of 1 −

∏
k (1 − λik (t)) per unit time, which approximates

λ
∑

k ajk ik (t) when the number of infected nodes is small,
where k ∈ Zj, the set of nodes connected to the node j.
The following Figure 2 synoptically shows the probability
transitions of each node state within per unit time.

FIGURE 2. Schematic diagram for the probability transitions of states of
each node over the network.

Let 1t be a very small time interval, then we get the
following equations:

Pr(Xj(t +1t) = 0|Xj(t) = 0)= 1−λ
∑
k

ajk ik (t)1t+o(1t),

Pr(Xj(t +1t) = 1|Xj(t) = 0) = λ
∑
k

ajk ik (t)1t + o(1t),

Pr(Xj(t +1t) = 2|Xj(t) = 0) = 0,

Pr(Xj(t +1t) = 3|Xj(t) = 0) = 0,

Pr(Xj(t +1t) = 0|Xj(t) = 1) = 0,

Pr(Xj(t +1t) = 1|Xj(t) = 1) = 1− ε1t − η1t + o(1t)

Pr(Xj(t +1t) = 2|Xj(t) = 1) = ε1t + o(1t),

Pr(Xj(t +1t) = 3|Xj(t) = 1) = η1t + o(1t),

Pr(Xj(t +1t) = 0|Xj(t) = 2) = 0,

Pr(Xj(t +1t) = 1|Xj(t) = 2) = 0,

Pr(Xj(t +1t) = 2|Xj(t) = 2) = 1− γ1t + o(1t),

Pr(Xj(t +1t) = 3|Xj(t) = 2) = γ1t + o(1t),

Pr(Xj(t +1t) = 0|Xj(t) = 3) = ζ1t + o(1t),

Pr(Xj(t +1t) = 1|Xj(t) = 3) = 0,

Pr(Xj(t +1t) = 2|Xj(t) = 3) = 0,

Pr(Xj(t +1t) = 3|Xj(t) = 3) = 1− ζ1t + o(1t),

By the total probability formula, we have the following
relations:

sj(t +1t) = sj(t) Pr(Xj(t +1t) = 0|Xj(t) = 0)

+ dj(t) Pr(Xj(t +1t) = 0|Xj(t) = 1)

+ ij(t) Pr(Xj(t +1t) = 0|Xj(t) = 2)

+ rj(t) Pr(Xj(t +1t) = 0|Xj(t) = 3),

dj(t +1t) = sj(t) Pr(Xj(t +1t) = 1|Xj(t) = 0)

+ dj(t) Pr(Xj(t +1t) = 1|Xj(t) = 1)

+ ij(t) Pr(Xj(t +1t) = 1|Xj(t) = 2)

+ rj(t) Pr(Xj(t +1t) = 1|Xj(t) = 3),

ij(t +1t) = sj(t) Pr(Xj(t +1t) = 2|Xj(t) = 0)

+ dj(t) Pr(Xj(t +1t) = 2|Xj(t) = 1)

+ ij(t) Pr(Xj(t +1t) = 2|Xj(t) = 2)

+ rj(t) Pr(Xj(t +1t) = 2|Xj(t) = 3),

rj(t +1t) = sj(t) Pr(Xj(t +1t) = 3|Xj(t) = 0)

+ dj(t) Pr(Xj(t +1t) = 3|Xj(t) = 1)

+ ij(t) Pr(Xj(t +1t) = 3|Xj(t) = 2)

+ rj(t) Pr(Xj(t +1t) = 3|Xj(t) = 3).

Combining the above equations and letting1t → 0, we get
the following 4N -dimensional differential dynamical system

dsj(t)
dt
=ζ rj(t)− λsj(t)

∑
k

ajk ik (t), j = 1, . . . ,N ,

ddj(t)
dt
=λsj(t)

∑
k

ajk ik (t)− (ε + η)dj(t), j = 1, . . . ,N ,

dij(t)
dt
= εdj(t)− γ ij(t), j = 1, . . . ,N ,

drj(t)
dt
= ηdj(t)+ γ ij(t)− ζ rj(t), j = 1, . . . ,N .

(1)

As sj(t) + dj(t) + ij(t) + rj(t) = 1, this system is equal to
the following 3N -dimensional system

d ′j (t) = λ(1− dj(t)− ij(t)− rj(t))
∑

k ajk ik (t)

−(ε + η)dj(t), j = 1, . . . ,N ,
i′j(t) = εdj(t)− γ ij(t), j = 1, . . . ,N ,

r ′j (t) = ηdj(t)+ γ ij(t)− ζ rj(t), j = 1, . . . ,N .

(2)

Note that
∑

k ajk ik (t) = EajEiN , where Eaj is the jth row
vector of A and EiN = (i1, . . . , iN )T . Next, we refer to system
(1) or system (2) as the node-based model for ransomware
spreading. Obviously, system (2) always has an equilibrium
E0 = 0. This trivial equilibrium means that the epidemic
ransomware over the network will finally disappear almost
surely.

142226 VOLUME 7, 2019



W. Liu: Modeling Ransomware Spreading by a Dynamic Node-Level Method

B =



−(ε + η) 0 · · · 0 λa11 λa12 · · · λa1N 0 0 · · · 0
0 −(ε + η) · · · 0 λa21 λa22 · · · λa2N 0 0 · · · 0
...

...
...

...
...

...
...

...
...

0 0 · · · −(ε + η) λaN1 λaN2 · · · λaNN 0 0 · · · 0
ε 0 · · · 0 −γ 0 . . . 0 0 0 · · · 0
0 ε · · · 0 0 −γ . . . 0 0 0 · · · 0
...

...
...

...
...

...
...

...
...

0 0 · · · ε 0 0 . . . −γ 0 0 · · · 0
η 0 · · · 0 γ 0 . . . 0 −ζ 0 · · · 0
0 η · · · 0 0 γ . . . 0 0 −ζ · · · 0
...

...
...

...
...

...
...

...
...

0 0 · · · η 0 0 . . . γ 0 0 · · · −ζ



(5)

III. STABILITY OF THE TRIVIAL EQUILIBRIUM E0
This section focuses on the stability properties of the trivial
equilibrium. First, we consider the asymptotic stability of the
trivial equilibrium of system (2). For that purpose, letR3 N

+ =

{(x1, x2, . . . , x3 N )T ∈ R3 N
|xj ≥ 0, j = 1, 2, . . . , 3 N }, and

the meaningful domain for system (2) is denoted by � =
{y = (y1, y2, . . . , y3 N )T ∈ R3N

+ |yj + yN+j + y2N+j ≤ 1, j =
1, . . . ,N }, which can be confirmed as positively invariant for
system (2) in the following.

Let z(t) = (d1(t), . . . , dN (t), i1(t), . . . , iN (t), r1(t), . . . ,
rN (t))T , and system (2) can be rewritten in matrix-vector
notation as

dz(t)
dt
= Bz(t)+ G(z(t)), (3)

with the initial vector z(0) ∈ �, the matrix B defined in (5),
as shown at the top of this page, and

G(z(t)) = (g1, g2, . . . , gN ,02N )T ,

where gj = −λ(zj(t) + zj+N (t) + zj+2N (t))
∑

k ajkzk+N (t),
j = 1, 2, . . . ,N .
Let EN stand for the N -order unit matrix, then the above

matrix B can be rewritten as

B =

−(ε + η)EN λA 0
εEN −γEN 0
ηEN γEN −ζEN

 .
Now, it is ready to present a criterion for the asymptotic

stability of the trivial equilibrium.
Theorem 1: Let A = [aij]N×N be the adjacency matrix

of the spreading network, and denote T1 = γ (ε + η)/(λε).
Consider system (2), then the trivial equilibriumE0 is asymp-
totically stable if λmax(A) < T1, where λmax(A) represents the
largest eigenvalue of the adjacent matrix of the considered
spreading network.

Proof: The Jacobian matrix of system (2) evaluated at
the trivial equilibrium E0 is

J =

−(ε + η)EN λA 0
εEN −γEN 0
ηEN γEN −ζEN

 .

Then, the characteristic equation of the above Jacobian
matrix can be calculated as

det(J − xE3N )

= det

−(ε+η)EN − xEN λA 0
εEN −γEN − xEN 0
ηEN γEN −ζEN − xEN


= det(−ζEN − xEN ) det

×

[
−(ε + η)EN − xEN λA

εEN −γEN − xEN

]
= (−ζ − x)N det((ε + η + x)(γ + x)EN − ελA)

= (−ζ − x)N (ελ)N det
[
(ε + η + x)(γ + x)

ελ
EN − A

]
= 0.

(4)

This equation has−ζ as a root with multiplicityN , and has
the following N pairs

−(γ + ε + η)±
√
(γ + ε + η)2 + 4[λελk − γ (ε + η)]

2
,

as the remaining 2N roots, where k = 1, . . . ,N . So,
if λmax(A) < γ (ε + η)/(λε), then for all k = 1, . . . ,N we
get λελk − γ (ε + η) ≤ λελmax(A) − γ (ε + η) < 0, which
implies the real parts of the above 2N roots are negative. Thus,
all the roots of (4) have negative real parts, and the trivial
equilibrium of system (2) is asymptotically stable. The proof
is complete.

The following lemma is necessary to prove that � is a
positive invariant for system (3), also see [16], [22].
Lemma 1: Consider a system dx/dt = f (x) which is

defined at least in a compact set C. Then, C is invariant if,
for every point y on ∂C (the boundary of C), the vector f (y) is
tangent to or pointing into C.
Next, we consider the global stability of the trivial equi-

librium of system (2). For that purpose, the following two
lemmas are necessary.
Lemma 2: The set� is positively invariant for system (2).

That is, each y(0) ∈ � implies y(t) ∈ � for all t > 0.
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Proof: The boundary of �, denoted by ∂�, consists of
the following 4N hyperplanes:

Xj = {y ∈ �|yj = 0}, j = 1, 2, . . . ,N ,

Yj = {y ∈ �|yj+N = 0}, j = 1, 2, . . . ,N ,

Zj = {y ∈ �|yj+2N = 0}, j = 1, 2, . . . ,N ,

Hj = {y ∈ �|yj + yj+N + yj+2N = 1}, j = 1, 2, . . . ,N .

For 1 ≤ j ≤ N , Xj,Yj,Zj, Hj(j = 1, 2, . . . ,N ) have

φj = {0, . . . , 0,
j
−1, 0, . . . , 0}, j = 1, 2, . . . ,N ,

ϕj = {0, . . . , 0,
j+N
−1, 0, . . . , 0}, j = 1, 2, . . . ,N ,

ϑj = {0, . . . , 0,
j+2N
−1 , 0, . . . , 0}, j = 1, 2, . . . ,N ,

ψj = {. . . ,
j
1, 0, . . . , 0,

j+N
1 , 0, . . . , 0,

j+2N
1 , . . .},

as their respective outer normal vectors. Let y be a smooth
point of ∂�. Consider system (3), we distinguish among four
possibilities. That is, for all j = 1, 2, . . . ,N , we have(

dz
dt
|z∈Xj , φj

)
= −λ(1− ij(t)− rj(t))

∑
k

ajk ik (t) ≤ 0,(
dz
dt
|z∈Yj , ϕj

)
= −εdj(t) ≤ 0,(

dz
dt
|z∈Zj , ϑj

)
= −(ηdj(t)+ γ ij(t)) ≤ 0,(

dz
dt
|z∈Hj , ψj

)
= −ζ rj(t) ≤ 0.

Combining the above discussions, we get that for each y ∈
∂�, z(y) is pointing into or tangent to ∂�. The claimed result
then follows from Lemma 1. The proof is complete.

Consider an n × n matrix M , denote s(M) =

max1≤i≤n{Re λi}, where λi, i = 1, . . . , n are the eigenvalues
of the matrixM , and Re(·) denotes the real part. The follow-
ing lemma is very important, see also Ref. [16].
Lemma 3: Consider an n-dimensional autonomous system

dx(t)
dt
= Bx(t)+H(x(t)), x(t) ∈ D,

where D is a region containing the origin, H(x(t)) ∈ C1(D),
limx→0 ‖H(x)‖/‖x‖ = 0. Assume that there are a positively
invariant compact convex set C ⊂ D containing the origin,
a positive number r , and a real eigenvector ω of BT such that
(C1) (x, ω) ≥ r‖x‖ for all x ∈ C,
(C2) (H(x), ω) ≤ 0 for all x ∈ C,
(C3) the origin forms the largest positively invariant set

included in the set {x ∈ C|(H(x), ω) = 0}.
Let λmax(B) denote the maximum real part of all eigenval-

ues of B. Then we get
(1) λmax(BT) < 0 implies that the origin is globally asymp-

totically stable in C,
(2) λmax(BT) > 0 implies that there exists m > 0 such that

x(0) ∈ C − {0} implies lim inft→∞ ‖x(t)‖ ≥ m.

By the lemmas above, we can derive the following
theorem.
Theorem 2: Consider system (3). Then,E0 = 0 is globally

asymptotically stable with respect to � if λmax(A) < γ (ε +
η)/(λε).

Proof:Let C = �. Note that thematrixBT is irreducible,
and all of its non-diagonal entries are nonnegative, thus it
follows by [16] that BT has a positive eigenvector Eω =
(ω, . . . , ω3 N ) corresponding to its eigenvalue s(BT ).

Letω0 = min1≤j≤3N {ωj} > 0. Then, for all y ∈ �, we have

(y, Eω) ≥ ω0

3N∑
i=1

yi ≥ ω0

(
3N∑
i=1

y2i

) 1
2

= ω0‖y‖,

(G(y), Eω) = −λ
N∑
j=1

[
ωj(zj + zj+N + zj+2N )

N∑
k=1

ajkzk+N

]
≤ 0.

Moreover, (G(y), Eω) = 0 implies that y = 0. In the above,
we have proved that s(BT ) < 0 if λmax(A) < γ (ε +
η)/(λε), hence, the claimed result follows from assertion (1)
of Lemma 3.

IV. NUMERICAL SIMULATIONS
In this section, several numerical examples will be designed
to verify the theoretical results derived above. For that pur-
pose, we denote I (t) =

∑N
j=1 ij(t) the number of intruded

nodes at time t , and p(t) the percentage of intruded nodes,
i.e., p(t) = 1

N

∑N
j=1 ij(t).That is, p(t) means I (t) over the total

number of network nodes at time t . To make the following
simulations more practical, we set the time evolution by
hour, i.e., a unit time representing one hour. The parameter
values of the model need to be appropriately given, and then
the parameters specifically mean corresponding transition
probabilities per hour. To explore ransomware spreading over
general networks, we first consider two kinds of networks
with simple topology structures: star-shaped networks and
complete networks.

Firstly, for a star-shaped propagating network of size N ,
the characteristic equation for its adjacency matrix can be
explicitly computed as Pstar (x) = xN−2(x2 − (N − 1)) = 0,
which obviously implies that the maximum eigenvalue is
√
N − 1 (the other eigenvalues are a unique negative eigen-

value −
√
N − 1, and zero with multiplicity N − 2). There-

fore, for this kind of networks, Theorem 2 guarantees the
global stability of the trivial equilibrium E0 if N < [γ (ε +
η)/(λε)]2 + 1. That is, once the parameter values are specifi-
cally fixed, then the dynamics of ransomware spreading over
star-networks are dependent on the network size.
Example 1: Consider the node-based SDIRS model (1),

and take a star-shaped graph of size N as the spreading net-
work. The probabilistic parameters in system (2) are specifi-
cally given by λ = 5 × 10−4, γ = 0.02, ε = 0.2, η = 0.1,
ζ = 0.01. Then, by certain calculations, we can derive that
T1 = γ (ε + η)/(λε) = 60.
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FIGURE 3. Ransomware dynamics over star networks with parameters
shown in Example 1. a) Evolutions for some components of system (2)
with N = 600 and a set of randomly-given initial values. For each
linestyle, various colors correspond to the different index j = 1, . . . , N .
b) Evolutions of percentage of I-nodes with various network size N .

For this case, it follows by Theorem 2 that Example 1
implies the global stability of the trivial equilibrium E0 = 0
provided that the network size N ≤ 3600. Consider a star
network of N = 600 nodes, Fig. 3(a) shows the evolutions
of components dj(t), ij(t), rj(t), j = 1, . . . ,N of system (2),
where the solutions with different degrees are distinguished
by various colors. It can be seen in Fig. 3(a) that the solutions
of system (2) finally tend to zero, in agreement with the the-
oretical prediction. The evolutions of percentages of I-nodes
over different star-networks with N = 1000, . . . , 3500 are
shown in Fig. 3(b), where it can be seen that all the curves
coincide generally with a little differences (leading to a cer-
tain greater number difference on larger networks), and reach
the peak rapidly, and then gradually decrease and tend to
zero. This implies that for star networks with different size,
almost same percentage of the whole nodes will be intruded
by ransomware at any time t .

Secondly, consider a fully-connected network of N nodes,
the characteristic equation of its adjacency matrix can be
calculated as Pfull(x) = (x + 1)N−1(x − (N − 1)) = 0, which
implies only two eigenvalues: one is negative x1 = −1 with
multiplicity N − 1, and the other is positive x2 = N − 1 (the
largest eigenvalue).
Example 2: Consider the node-based SDIRS model, and

take a complete graph of size N as the propagation network.
The parameters in system (2) are specifically given by λ =
5.5 × 10−5, γ = 0.02, ε = 0.2, η = 0.1, ζ = 0.01. Then,
we have γ (ε + η)/(λε) = 545.4545.
According to Theorem 2, the case shown in Example 2

implies that the trivial equilibrium E0 = 0 of system (2)
is always globally stable provided the network size N ≤
546. For N = 120, it can be seen in Fig. 4(a) that ran-
somware tends to extinction very quickly, in consistency
with the prediction. Fig. 4(b) shows the number evolutions
of intruded nodes over ten different complete networks with
size N = 100, . . . , 1000. It can be observed in Fig. 4(b)
that the numbers of I-nodes for all considered cases reach
their peaks rapidly, and then gradually decrease and tend to
balance. Specifically, for the cases N = 100, . . . , 500, it is
shown in Fig. 4(b) that the numbers of I-nodes eventually
converge to zero, agreeing with the above result. However,
for the other cases N = 600, . . . , 1000 shown in Fig. 4(b),
the numbers of intruded nodes finally tend to corresponding
different constants, which imply that ransomware spreading
will persist over the network. The evolutions of percentages
of intruded nodes over ten different networks are shown
in Fig. 4(c), where it can be found that all the trajectories
with N ≤ 500 finally converge to zero, agreeing with the
prediction. It is shown in Fig. 4(b) that the number of I-nodes
over a larger-size network is always greater than that over a
smaller-size network, whereas it is shown in Fig. 4(c) that
the fractions of I-nodes for all the considered cases are nearly
same for the early stage.

It is well known that a multitude of real-world networks
are scale-free, i.e., their degree distributions approximately
follow a power law [29]. The properties of approximate
power-law degree distribution over scale-free networks are
considered in the model of Ref. [19]. In this work, the adja-
cency matrix of the spreading network involved in model (2)
can more fully reflect the topology of the network. Thus,
the new complex-network model can be used to depict ran-
somware spreading over a larger number of networks includ-
ing scale-free networks. In the sequel, we will simulate the
ransomware spreading over a scale-free network. Themethod
proposed by Barabási and Albert [29] can be applied to
generate scale-free networks.
Example 3: Consider the node-based SDIRS model, and

generate a scale-free network with a given number of N
nodes using the Barabási-Albert method. Take this network
as the propagation network. The parameters in system (2) are
specifically given by λ = 5 × 10−4, γ = 0.02, ε = 0.2,
η = 0.1, ζ = 0.01. Then, we have T1 = γ (ε+η)/(λε) = 60.
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FIGURE 4. Ransomware dynamics of model (2) over complete networks
with the parameters shown in Example 2. a) Evolutions for all
components of system (2) with a set of randomly-given initial values and
N = 120. For each linestyle, various colors correspond to the different
index j = 1, . . . , 120. b) Number evolutions of I-nodes with different
values of network size. c) Percentages of I-nodes on several networks
with different sizes.

FIGURE 5. Evolutions of ransomware over generated scale-free networks.
a) Evolutions for some components of system (2) over a generated
network of size N = 500 and a set of randomly-given initial values. For
each linestyle, various colors correspond to the different index
j = 1, . . . , 500. b) Evolutions of percentage of I-nodes with various
network size N . c) Distributions of node degree corresponding to the
generated networks used in Fig. 5(b).
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The dynamics of system (2) with parameters given in
Example 3 are numerically shown in Fig. 5. First, we generate
a scale-free network of size N = 500 by the Barabási
and Albert method, whose node degree distribution is shown
in Fig. 5(a). For this case, numerical calculations give that
its leading eigenvalue is λmax = 19.1, which is obviously
less than 60. Thus, it follows by Theorem 2 that the trivial
equilibrium E0 = 0 is globally stable. By randomly fix-
ing a set of initial values, Fig. 5(a) shows the evolutions
for some components of system (2), which finally tend to
zero. Fig. 5(b) shows the fractions of I-nodes over time on
several generated networks with N = 600, . . . , 1000 shown
in Fig. 5(c). It can be observed that all the curves coincide
nearly in the whole process, except for slight differences
around the peaks, and all of them reach their corresponding
peaks quickly and then gradually decrease to zero.
Remark 1: In the above experiments, we just verify the

theoretical results by considering ransomware spreading over
ordinary and complex networks. Actually, to verify the effec-
tiveness of the method and the proposed model in this paper,
it will be more meaningful to compare the theoretical results
with real ransomware attacks. Theoretically, we think that
this is practicable. However, it is very hard for us to derive
real data of ransomware attacks. Moreover, in the processes
of analyzing real data, we possibly face two problems: one
is that we need to adjust suitable parameters for the real
case, the other is that it may be complicated to calculate the
eigenvalues of the adjacency matrix when the real attacking
network is large enough. Thus, we propose to carry out further
research on model (1) and we will also consider to practically
verify the effectiveness of this model in future works.

Combined with the above theoretical and numerical anal-
ysis, some practical recommendations can be suggested.
In order to effectively prevent ransomware diffusion, it is
necessary to find the attacks of ransomware as quickly as
possible, e.g., using solutions that apply advanced machine
learning to detect all types of ransomware. It will be helpful
to backup your data so that it can be recovered in case of
a ransomware attack. Furthermore, it is also important to
enhance the safety awareness of network users. For example,
employees should be trained on identifying and reporting sus-
picious phishing links to cut off ransomware attacks before
causing damage.

V. CONCLUSION
In this study, we mainly explore how the topology of prop-
agating networks affects ransomware spreading processes.
By incorporating the network structure using the adjacent
matrix of the spreading network, an analytical network-based
model is newly developed. This is a much more complicated
high-dimensional model, and the topology of the network can
be general and arbitrary. The properties of the model system
are carefully analyzed, theoretically proving the global sta-
bility of the trivial equilibrium under a condition involving in
the leading eigenvalue of the adjacent matrix.

The idea of our work, especially the proposed novel model,
is heuristic and significant in the area of modeling ran-
somware spreading. Compared with the previous models
which are limited to describe epidemic dynamics over homo-
geneous networks, the node-based model incorporating the
adjacent matrix is applicable over a wide range of general
networks including real networks. Our numerical simulations
suggest that ransomware prevalence over networks, to a cer-
tain degree, can be effectively prevented and controlled by
properly modifying the network topology such that the char-
acteristics of the propagating networks satisfy the require-
ments. However, system (1) is also a fundamental model, thus
more in-depth research on this model is needed for enhancing
the ability to prevent and control ransomware attacks.
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