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ABSTRACT Dispatching the output of distributed power sources is the main task in the microgrid operation
phase. This task is more concerned with the optimal dispatch of large electric vehicles connected to the
grid-connected microgrid today.Full consider the influence of storage battery and peak-valley electricity
price, its objective is to minimize the operating cost of microgrid and the cost of environmental protection,
and establishing economic dispatching model of microgrid. To solve this constrained optimization problem,
an annealing mutation particle swarm optimization algorithm is proposed. Through simulation and compar-
ison, the dispatching cost results of microgrid are obtained under two dispatching modes of electric vehicle
disorder and order. It is concluded that the orderly charging and discharging mode guided by electricity
prices can effectively reduce the operating cost and environmental protection cost of microgrid. Improving
the economy and reliability of microgrid operation.

INDEX TERMS Microgrid, electric vehicle, particle swarm optimization, peak and valley price, optimal
scheduling.

I. INTRODUCTION
WITH the improvement of social awareness of environmen-
tal protection and energy security, people gradually realize
the inherent shortcomings of traditional power grid [1]. The
smart microgrid technology provides innovation solutions for
countries to build green, safe and sustainable power sup-
ply systems. Because the microgrid contains uncontrollable
renewable energy, which has profound uncertainty [2], [3].
Therefore, the research on optimal dispatching of smart
microgrid system plays a key supporting role in promoting
the application and development of smart micro-grid projects.

Aiming at minimizing the operation and investment costs
of the system throughout the life cycle of the microgrid,
a multi-energy complementary low-carbon allocation opti-
mization model is established and solved by genetic algo-
rithm. The results prove the effectiveness of the proposed
low-carbon configuration method for microgrid, but the
impact of electricity price policy on microgrid system is not
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considered [4]. Literature [5] studies the economic dispatch
of microgrid system consisting of wind, light, storage, gas
boilers and cogeneration under different electricity price poli-
cies. The simulation results show that different electricity
price policies can reduce the operating cost of microgrid
system, but the influence of electric vehicles on micro-
grid dispatching is not considered. Literature [6] proposes a
microgrid scheduling model and strategy including electric
vehicles for the energy storage characteristics of electric vehi-
cles for the energy storage characteristics of electric vehicles,
but does not consider the economic impact of V2G(vehicle
to grid) technology on electric vehicle users. Literature [7]
considers that electric vehicles participate in grid-connected
economic dispatch of microgrid through V2G(Vehicle to
grid) technology under peak-valley electricity price. At the
same time, the system model is set up to minimize the dou-
ble objectives of microgrid operation cost and environment
protection cost. The output power of distributed power sup-
plies is optimized by improved particle swarm optimization
algorithm, The results show that the dispatching of electric
vehicles is effective for the economic operation of microgrid.
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However, only few electric vehicles are considered partici-
pating in dispatching process, and the economic impact of
largescale electric vehicle interconnection on microgrid oper-
ation is not considered, which affects the safety and reliability
of power grid operation.

In view of the deficiencies mentioned above[7], this paper
comprehensively considers the influence of energy storage
and V2G loss cost on microgrid dispatching operation, espe-
cially in large-scale electric vehicles situation. The optimal
dispatching model of microgrid is re-established and the
parameter adaptive particle swarm optimization algorithm [7]
is applied simultaneously. The mutation characteristic of
simulated annealing and the fine search characteristic of
Gaussian mutation are used to improve it, then a particle
swarm optimization algorithm based on annealing mutation
is proposed for microgrid optimal scheduling.

II. PROBLEM DESCRIPTION
A. SCENE DESCRIPTION
The microgrid scenario in this section is shown in Fig.1 [8].
The scene mainly consists of five parts: Unidirectional Dis-
tributed Power Supply A, Fixed Energy Storage Equip-
ment B, Mobile Energy Storage Equipment C, Public Power
Grid D and Load E. Part A is mainly composed of WT (wind
turbine), PV (photovoltaic generator), DE (diesel engine) and
MT (micro turbine) which can only output but not input
unidirectional distributed power. Part B is mainly composed
of bi-directional BA (storage battery) energy storage equip-
ment that can both output and input. Part C is composed of
mobile lithium battery, which can be output and input. Part D
consists of the main power grid dominated by traditional ther-
mal power generation, which can be both output and input.
Part E consists of various loads, including commercial loads,
residential loads and industrial loads, etc. Signal transmission
is carried out between each component by wired or wireless
means.

FIGURE 1. Micro grid system structure.

As shown in fig. 1, Part A, C, D are the main application
scenarios of document [7]. However, Part C only discusses the
situationwhere three electric vehicles participate inmicrogrid

dispatching. A smart microgrid system is composed of WT,
PV, DE, MT and a small amount of EV (Electric Vehi-
cle). Multi-objective microgrid scheduling model including
microgrid operating costs and environmental management
costs is established. The model can satisfy a series of param-
eter indicators, such as the constraints of power balance,
upper and lower limits of distributed power supply, minimum
charge capacity for EV daily use, upper and lower limits
of EV charging and discharging, etc. The output power of
DE and MT, the sale and purchase power of microgrid, and
the charging and discharging power of EV are six unknown
variables solved by an improved variable parameter particle
swarm optimization algorithm.

B. RESEARCH MOTIVATION
As Part C of document [7] only considers a small number of
electric vehicles participating in grid connection, and does not
consider the important influence of large-scale electric vehi-
cles on grid dispatching. Therefore, in Part C of this section,
the influence of a large number of electric vehicles participat-
ing in microgrid dispatching is considered, as well as the peak
clipping and valley filling effect of energy storage system
on microgrid. Based on the [7] scenario, Part B of fixed
energy storage equipment is connected to further improve the
microgrid scenario. By considering the electric energy cost
lost by EV through V2G technology and the energy storage
operation andmaintenance cost, a double-objectivemicrogrid
optimal dispatching model is re-established. An improved
variable parameter PSO algorithm with simulated annealing
and Gaussian mutation is used to optimize the unidirectional
output power of DE and MT and bidirectional charging and
discharging power of BA and main network. The detailed
work comparison of the two articles is shown in table.1.

TABLE 1. Work comparison.

III. SYSTEM MODEL
A. DISTRIBUTED GENERATION MODEL
The models of PV, WT, DE, and MT in Part A of this paper
still use the model of reference [7]. The battery model of Part
B and the electric vehicle model of Part C are added and
reestablished and will be described in detail below.
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1) BATTERY CHARGE AND DISCHARGE MODEL
When the storage battery participates in the power grid
dispatching process, the state of charge in the charging
and discharging process must be considered. Therefore, its
charge-discharge model is as follows [9]:

SOC(t)=

{
(1−η) · SOC(t − 1)+ P(t)·1t·βc

Eβα
, P(t)>0

(1−η) · SOC(t − 1)+ P(t)·1t
Eβα·βd

, P(t)<0
(1)

In the formula, SOC(t) and SOC(t − 1) respectively rep-
resent the time and the state of charge of the storage battery
at the time. η is the self-discharge coefficient of the storage
battery. βc is the charging efficiency of the storage battery.
βd is the discharge efficiency of the storage battery. Eβα is
the capacity of the battery. 1t is the duration of the battery,
here 1 hour is the duration of the battery.

2) ELECTRIC VEHICLE MODEL
Private vehicles have great randomness. However, research
shows that the usage habits of large-scale electric vehicles
follow normal distribution[10]. x is the moment when the
last trip of the electric car ends. In this paper, the car with
on-board battery as ternary lithium battery is taken as the
research object, and the battery capacity is about 30kWh.
The charging and discharging behaviors of electric vehi-
cles of users obey normal distribution, and the model is as
follows [10]:

fs(x)

=


1

√
2π · σs

· exp[−
(x − µs)2

2σ 2
s

], µs−12<x 6 24

1
√
2π · σs

· exp[−
(x + 24− µs)2

2σ 2
s

], 0 < x 6 µs − 12

(2)

where:µs = 16.5 ,σs = 3.5 The daily mileage model of the
vehicle is as follows [11]:

fd (x) =
1

√
2π · σd · x

· exp[−
(ln x − µd )2

2σ 2
d

] (3)

where:µd = 3.1 , σd = 0.87. µd and σd are the expectations
and variances of the respective distribution function.

B. OBJECTIVE FUNCTION
In this paper, the microgrid system is operated in a
grid-connected mode. Considering its economic and envi-
ronmental protection, a multi-objective economic dispatch
model with minimum operation and maintenance costs
and environmental compensation costs is established. This
section improves the objective function [7] based on the
objective function of literature, taking into consideration the
cost of battery and electric vehicle losses.

1) OBJECTIVE FUNCTION f1
f1 is the operating cost of the microgrid. Including fuel cost of
distributed power supplies, operation and maintenance cost,

sale and purchase cost of power exchange between micro-
grid and main network, and compensation cost of electric
vehicles participating in grid dispatching. Therefore, it can
be described as follows [8]:

f1 = Cfuel + COM + Cbuy − Csell + CBAT (4)

Considering that diesel engines and micro turbines need
fossil fuels for power generation, the fuel cost of the micro-
grid Cfuel can be described as follows:

Cfuel = CDE + CMT (5)

During the operation of each distributed power supply,
regular inspection and maintenance are required to ensure the
stable and reliable operation of each distributed power gen-
eration equipment. Therefore, its operation and maintenance
expenses COM are described as follows [12]:

COM =
24∑
t=1

Kom,iPi(t) (6)

whereKom,i andPi(t) are the operation andmaintenance coef-
ficients (having the dimension $/kWh) and the actual output
power of the type i distributed power supply, respectively.

Following formula [13] is used to analysis the sensitivity
of operation an maintenance costs.

Si1,i2,...,is =
Di1,i2,...,is

D
(1 6 i1 < . . . < is 6 k) (7)

where S indicates sensitivity, Di1,i2,...,is indicates S order
eccentricity and D indicates model total variance.

Microgrid guides electricity consumption behavior of
users by electricity price, which ensures that microgrid oper-
ates in a more economical way. The interactive costs can be
divided into two parts: the purchase of electricityCbuy and the
sale of electricityCsell Detailed description is as follows [14]:

Cbuy =
24∑
t=1

Pbuy(t)S(t)

Csell =
24∑
t=1

Psell(t)S(t)

(8)

In the formula, Pbuy(t) is the active power purchased by
the microgrid from the main network at time t. Psell(t) is the
active power of the microgrid sold to the main network at
time t . S(t) is the transaction price in the electricity market at
time t . Peak and valley prices are used here.

Electric vehicles, as a portable energy storage device,
can be charged and discharged when they participate in the
operation of microgrid dispatching. However, when V2G
technology interacts with the power grid, the battery life of
EV will decrease gradually, and a small amount of power
loss will be caused during charging and discharging. In the
operation process of the smart microgrid system in this paper,
it is necessary to consider the cost CBAT generated by grid
connection of electric vehicles, which mainly consists of
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depreciation cost Cbat and electric energy loss cost Ccon,
Detailed description is as follows[15]:

CBAT = Ccon + Cbat (9)
Cbat =

24∑
t=1

n∑
j=1

KEV · PEV ,j(t)

Ccon =
24∑
t=1

n∑
j=1

Csell(t) · (1− ηc,j · ηd,j)
ηc,j · ηc,j

· PEV ,j(t)

(10)

where Ccon is the loss cost caused by the interaction between
the V2G technology and the main network of the electric
vehicle. Cbat is the depreciation cost of electric vehicle bat-
tery. ηc,j and ηd,j are the charging and discharging efficiencies
of the No.j electric vehicle. PEV ,j(t) is the discharge power of
the second electric vehicle at t time. KEV is the depreciation
factor of the vehicle battery.

2) OBJECTIVE FUNCTION f2
f2 is the environmental compensation cost of microgrid,
including the environmental compensation cost of fossil
energy combustion of diesel engine and gas turbine and the
environmental compensation cost of fossil energy combus-
tion in main network [16].

f2 =
24∑
t=1

N∑
h=1

((CDE,huDE,h)PDE (t)

+(CMT ,huMT ,h)PMT (t)+ (Cbuy,hubuy,h)Pbuy(t)) (11)

Here, h is the type of pollutant, N is the total type
of pollutants. There are three kinds of pollutant releases:
CO2, SO2 and NOx, CDE,h, h and CMT ,h, h are the compensa-
tion costs for the type h pollutants of diesel engines and micro
turbines respectively. uDE,h and uMT ,h are the emission coef-
ficeient of corresponding pollutants respectively. Cbuy,h is
the compensation fee for pollutant h in the main network.
ubuy,h is the pollutant release coefficient corresponding to
the main network. (3) The operation cost of smart microgrid
and the environmental compensation cost of a smart micro-
grid are regarded as equally important objectives.Therefore,
the economic dispatching objective of microgrid F can be
determined as follows:

minF = f1 + f2 (12)

C. CONSTRAINTS[18]
In order to ensure the stable and reliable operation of
microgrid, microgrid should meet the following constraints.
(1) Supply and demand balance constraints. The generation
power in the microgrid at each time should be equal to the
load demand in the microgrid.

N∑
i=1

Pi(t)+ Pbuy(t)+ Psell(t) = Pload (t)+ PEV (t) (13)

(2) Distributed generation power constraints. The output
power of each distributed power supply should satisfy its

maximum and minimum power constraints so that it can
operate normally.

Pi,min 6 Pi(t) 6 Pi,max (14)

(3) Power exchange constraints in power grids. When
the microgrid is connected to the grid, the power supply to
the main network should satisfy the upper and lower limits
of the tie-line, so that it can exchange power reasonably.{

0 6 Pbuy(t) 6 Pbuy,max
0 6 Psell(t) 6 Psell,max

(15)

(4) Electric vehicle charging and discharging power con-
straints. Electric vehicles can release and absorb electric
energy when they participate in microgrid dispatching. When
charging and discharging, the power should meet the upper
and lower limits.

PEV ,min 6 PEV (t) 6 PEV ,max (16)

(5) Constraints on the state of charge. When battery and
electric vehicle battery exchange power in microgrid, their
charging state should be at a reasonable level to maximize
their service life.

SOCba,min 6 SOCba(t) 6 SOCba,max (17)

D. MICROGRID OPTIMAL DISPATCHING STRATEGY
BASED ON ANNEALING MUTATION PARTICLE
SWARM OPTIMIZATION
The model in this paper belongs to a typical multi-variable
and multi-constraint optimization problem. In reference [7],
a particle swarm optimization (PSO) algorithm with dynam-
ically adjusting parameters is proposed, which dynamically
adjusts the inertia weight and learning factor of the PSO
algorithm to improve the global optimization ability of the
algorithm. However, the optimization ability of the algorithm
still needs to be improved. Therefore, this paper introduces
simulated annealing mechanism and Gauss mutation opera-
tion on the basis of the algorithm to further improve the global
search ability and local search ability of PSO algorithm, and
help the algorithm to jump out of the local optimal solution.
The algorithmic diagram is shown in fig. 2.

FIGURE 2. Algorithmic diagram.

1) IMPROVED PSO ALGORITHM
Because the learning factor and inertia weight have important
influence on the convergence speed and local optimization of
particle swarm optimization. Therefore, a method of adaptive
learning factor and inertia weight is proposed in reference [7],
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which updates the position and velocity of particle swarm.
Specific parameter adjustment strategies are as follows [7]:

ω = ωs + (ωe − ωs)
it2

T 2

c1 = c1s + (c1e − c1s)
it2

T 2

c2 = c2s + (c2e − c2s)
it2

T 2

(18)

where ωs ,ωe are the starting and ending weights of inertia
weightω, respectively. it is the current iteration number. T is
the total number of iterations.c1s,c1e, c2s ,c2e are the start and
end factors of c1 and c2 parameters respectively.

2) IMMUNE SELECTION
Simulated annealing algorithm is mainly inspired by the law
of energy change in the solid during heating and cooling to
crystallization. Thus, it is introduced into the combinatorial
optimization problem to solve some complex problems that
other optimization algorithms can not solve[18]. The algo-
rithm regards the objective function as the change of the
internal energy of the object, and the optimal solution is
the lowest state of energy. The initial solution is the initial
state of the internal energy of the object. The temperature is
a function related to the physical internal energy. With the
decrease of the internal energy, the temperature decreases
gradually [19]. In the simulated annealing mechanism, a ran-
dom number is generated randomly in each iteration. When
the probability of mutation of a particle is greater than this
random number, the optimal solution of the particle so far is
selected and replaced by the global optimal solution in the
population velocity update formula, thus changing the direc-
tion of the population optimization, making the algorithm
continue to search around the optimal solution randomly and
reducing the calculation. The mutation probability formula is
as follows [19]:

Pk =
e−(fpk−fpg)/T

N∑
t=1

e−(fpk−fpg)/T
(19)

where Pk is the mutation probability of particle k . N is the
population size. fpk is the current optimum fitness of particle.
fpg is the current global optimal fitness value of the popula-
tion. T is the control parameter of temperature, i.e. mutation
probability. The speed update formula of the original PSO
algorithm is improved by simulated annealing algorithm as
shown in formula [20]:

ϑ it+1i = ωϑ iti + c1γ1(p
it
i − X

it
i )+ c2γ2(p

it
j − X

it
j ) (20)

where ω is the inertia weight, γ1 and γ2 are random numbers
distributed between [0-1], the current number of iterations is
tested, piti is the optimal particle position of the individual,
pitj is the global optimal particle position, and c1 and c2 are
constants. ϑ iti is the particle velocity and X itj is the particle
position.

E. GAUSS MUTATION OPERATION
Gauss mutation is to select individuals from the population
with a certain probability of mutation, and then to randomly
change a gene of the individual with a probability consistent
with the Gauss distribution, that is to say, to focus on the ran-
dom search of the region near the optimal solution. Therefore,
it has a good search ability near the local small range [21].
In this paper, Gauss mutation operation is applied to the
global search state of PSO algorithm, which guides individu-
als to search for the optimal solution of the population, speeds
up the algorithm to find the optimal solution, and improves
the convergence ability of PSO algorithm. The definition is as
follows [22]:

X itm = X iti ∗ (G(0, 1)+ 1) (21)

where, G(0, 1) is a random variable obeying (0,1) normal
distribution. X iti i is the individual selected from the pop-
ulation by mutation probability Pm in the itth iteration.
X itm is the individual generated by Gauss mutation in the
itth iteration.

F. ALGORITHM FLOW
The implementation steps of the proposed algorithm are as
follows and The flow chart is shown in fig. 3.
(1) Initialization of algorithm parameters. The popula-

tion size, the initial value of two learning factors, the
initial value of inertia weight, the total number of itera-
tions, the mutation probability and the mutation factor are
initialized.
(2) Calculate fitness. The fitness values of all particles in

each iteration are calculated and recorded.
(3) Optimal selection. It is to select a local optimal solution

as the global optimal solution of the objective function with
a certain probability from multiple local optimal solutions
generated in the process of algorithm optimization.
(4) Perform SA(Simulated Annealing) search. The muta-

tion probability is used to modify the global optimal
solution and change the global search direction of the
population.
(5) Update inertia weight and learning factor. Two learning

factors and inertia weights in the algorithm are updated by
using the update formulas of inertia weights and learning
factors proposed in reference [7].
(6) Update location and speed. The position and velocity

updating formulas are used to update them.
(7) Gauss variation. The population varies with probability.
(8) Renewal population optimization. The fitness values

of each mutation particle are calculated and compared with
the historical individual optimum and the group optimum to
update the group optimum.
(9) Judgment conditions. If the number of iterations

reaches the maximum set of parameters, the power of each
distributed power source will be output if it is satisfied; if
it is not satisfied, it will jump to step 2 to continue the
optimization.
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FIGURE 3. Algorithm flow chart.

IV. SIMULATION RESULTS AND ANALYSIS
A. EXPERIMENTAL SCENE AND RELATED DATA
The experimental data in this paper are obtained by Get-
Data Graph Digitizer software from document [7]. Microgrid
mainly uses wind power and photovoltaic power generation,
and other distributed generators as auxiliary power supply.
The solar output of wind power, photoelectricity and load
in the microgrid is shown in fig. 4. As can be seen from
Figure 4the peak load period is from 8:00 a.m. to 23:00 p.m
and the trough is from 24:00 p.m. to 7:00 a.m. Among them,
the minimum load is 41.475 kW and the maximum. load
is 148.163 kW. In this paper, we consider the disorderly

FIGURE 4. Load curve photovoltaic and wind power output curve.

FIGURE 5. Balanced power.

charging (Scenario 1) and orderly charging and discharging
(Scenario 2) of large-scale electric vehicles in the microgrid
dispatching scenario. Therefore, the disordered and disor-
dered charging and discharging power of large-scale electric
vehicles can be simulated respectively according to the charg-
ing behavior and market price behavior of the user. Because
wind power generation and photovoltaic power generation
are the main components of microgrid. Therefore, when the
microgrid without electric vehicle is dispatched, the balance
power is the difference of load minus wind and light out-
put. The two microgrid modes with orderly and disorderly
charging and discharging behavior of electric vehicles are
to superimpose the simulated power of electric vehicles on
the balanced power required by the dispatching operation of
microgrid. Therefore, the balanced power required for micro-
grid dispatching in three cases is shown in fig. 5. In this paper,
the environmental compensation parameters of distributed
power supply used in microgrid system are adopted in refer-
ence [4]. The operation constraints of each distributed power
supply are shown in table. 2. The maintenance coefficients
of each equipment are shown in table. 3. Peak and valley
tariffs are used for policy guidance in microgrid. Specific
tariff information is shown in table. 4.
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TABLE 2. Distributed power supply parameters.

TABLE 3. Operational maintenance coefficient.

TABLE 4. Operational maintenance coefficient.

B. COMPARATIVE ANALYSIS OF ALGORITHMS
In order to verify the performance of the algorithm proposed
in this section, the objective functions of scenario 2 are
optimized by using traditional PSO, IPSO in reference [4]
and SAGAPSO in this section. In this section, the algorithm
parameters are set as follows: Other parameters such as inertia
weight and learning factor are consistent with those in refer-
ence [4]. The comparison results of the three algorithms are
shown in fig. 6.

FIGURE 6. Algorithmic comparison.

As can be seen from fig. 6, it can be seen that the basic PSO
algorithm falls into the local optimal solution about 70 times,
and the optimal value is constant. The IPSO algorithm in
reference [4] is better than the basic PSO algorithm, and keeps
searching for the optimal solution until the 500 iterations,
when the algorithm falls into the local optimal solution,
the optimal value is constant. Before 620 times, the algo-
rithm proposed in this paper constantly explores and jumps
out of local optimum, and finally find the optimal solution

in 620 times, and the optimal solution is smaller than that
found by IPSO and basic PSO.

From reference[23], it is difficult to obtain a theoretical
solution for the optimization problem of strong oscillation
multimodal function by PSO algorithm and GA algorithm,
but SAGAPSO can obtain the theoretical solution. It can
be seen that his adaptability is better than PSO and GA
algorithm.The result is shown in table. 5.

C. ANALYSIS OF SCENE OUTPUT
As can be seen from fig. 4, the microgrid scenario with
random charging behavior of electric vehicles enlarges the
difference between peak and valley power, and increases the
load that the microgrid needs to balance. In the microgrid
scenario with orderly charging and discharging of electric
vehicles, because electric vehicles can charge and discharg-
ing, the difference of balanced power required by the micro-
grid can be reduced by adding them to the original load, and
the surplus (negative power) power can be sold to the grid
at a low price to reduce the dispatching cost of the smart
microgrid. The dispatch of each micro-source in the smart
microgrid model including the random charging behavior of
electric vehicles is shown in fig. 7.

TABLE 5. Function solution comparison.

FIGURE 7. Output power of EV disorderly charging devices in microgrid.

As can be seen from fig. 7, 1:00-8:00 DE and MT have
no power output. During this period, the microgrid mainly
receives power supply from the large grid and storage.
Because, at this time, renewable energy can not meet the
demand of load and electric vehicle charging, while the price
of the main network is at a low level, which is lower than
the generation cost of controllable power supply. At about
9:00-13:00, it is mainly powered by batteries, and hardly
interacts with large power grids. Because grid prices are
at their peak at the moment, From 14:00 to 23:00, diesel
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FIGURE 8. Output power of EV disorderly charging devices in microgrid.

engines and gas turbines began to work with the increasing
demand for load and electric vehicles. But it can not meet
the power demand of the load. Then the high price purchases
electricity from themain network, and the total load decreases
around 24:00, and the output power of the controllable power
supply decreases. As can be seen from fig. 8, the load in the
microgrid is mainly supplied by the large grid at 1:00-8:00.
And the power supply decreases gradually with the decrease
of net load, while DE and MT do not work. Because the cost
of purchasing electricity from the main network is less than
the cost of generating electricity from DE and MT. Because
the cost of purchasing electricity from the main network is
less than the cost of generating electricity from DE and MT.
From 9:00 to 12:00, there is little energy interaction between
the microgrid and the large grid, and the power supply is
provided by DE, MT and energy storage. Because at this
time, with the photovoltaic work, the net load in themicrogrid
gradually decreases, and the grid price is higher at this time.
From 13:00 to 18:00, DE and MT do not work and electricity
is sold to the main network for profit. This is because, under
the guidance of electricity prices, electric vehicles discharge,
and photovoltaic power generation, wind power release more
electricity than load demand. So at the moment, there is
enough electricity in the microgrid, some of which are stored
in batteries, and some of which are sold to the large grid for
profit. From 18:00 to 24:00, with the decline of photovoltaic
output, load demand is once again greater than that of electric
vehicles, wind and light. Therefore, at this time, DE and
MT start to work again, output power, and buy part of the
power from the main network at a high price. The dispatching
cost of microgrid in two scenarios is 844.42 yuan (scenario
1) and 776.63 yuan (scenario 2), respectively. Comparing the
two scenarios, the orderly charging and discharging mode of
electric vehicle guided by electricity price inmicrogridmakes
the operation cost of microgrid more economical. Because
the electric vehicle can release electricity when the electricity
price is high and reduce the load, thus saving the dispatching
cost. Scene 2 saves 67.79 yuan compared with Scene 1.

V. CONCLUSION
This paper presents our microgrid scenario and compares
it with the work of reference [4]. Then, according to the
micro-grid scenario, under the mechanism of peakvalley tar-
iff, the objective is to minimize the operation cost and envi-
ronmental protection cost of microgrid. Under the constraint
of satisfying the balance between supply and demand of
microgrid, we establish our economic dispatching model of
microgrid. This model not only takes into account the energy
loss cost of electric vehicles participating in the microgrid
dispatching process through V2G technology, which increas-
ing the energy storage capacity. In order to optimize the dis-
patching results of microgrid, an annealing mutation particle
swarm optimization algorithm is proposed. Finally, through
simulation and comparison, the dispatching cost results of
microgrid under two dispatching modes of electric vehicle:
disorderly and orderly.By comparing the dispatching results
of two modes of electric vehicle, the orderly charging and
discharging mode guided by electricity price can effectively
reduce the operation cost and environmental protection cost
of microgrid, and improve the economic and reliability of
microgrid operation.
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